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ON A HYBRID FINITE-VOLUME-PARTICLE METHOD

Alina Chertock1 and Alexander Kurganov2

Abstract. We present a hybrid finite-volume-particle numerical method for computing the transport
of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant
system of shallow water equations and the pollutant propagation is described by a transport equation.
This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput.
(to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core
idea behind the finite-volume-particle method is to use different schemes for the flow and pollution
computations: the shallow water equations are numerically integrated using a finite-volume scheme,
while the transport equation is solved by a particle method. This way the specific advantages of each
scheme are utilized at the right place. A special attention is given to the recovery of the point values
of the numerical solution from its particle distribution. The reconstruction is obtained using a dual
equation for the pollutant concentration. This results in a significantly enhanced resolution of the
computed solution and also makes it much easier to extend the finite-volume-particle method to the
two-dimensional case.
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1. Introduction

Prediction of pollution transport by flows is an important problem in many industrial and environmental
projects. Different mathematical models are used to describe the propagation of the pollutant and to obtain its
accurate location and concentration.

In this paper, we consider the transport of a passive pollutant by a flow modeled by the Saint-Venant system
of shallow water equations. In the two-dimensional (2-D) case, the system reads

ht + (hu)x + (hv)y = S,

(hu)t +
(

hu2 +
gh2

2

)
x

+ (huv)y = −ghBx,

(hv)t + (huv)x +
(

hv2 +
gh2

2

)
y

= −ghBy.

(1.1)
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Here, h, u, and v are the depth, the x- and y-velocities of the water, respectively, g is the gravity constant,
and S is a fluid mass source term. The function B represents the bottom topography (B ≡ Const corresponds
to the flat bottom case). System (1.1), introduced in [23], is commonly used to describe flows in rivers and
coastal areas. For a detailed description of a more realistic shallow water model, derived from the Navier-Stokes
equations, we refer the reader to [12].

The propagation of the pollutant is modeled by the transport equation,

(hT )t + (uhT )x + (vhT )y = TSS, (1.2)

which describes the motion of the pollutant mass concentration T , where TS is a given concentration of the
pollutant at the fluid mass source (see, e.g., [2, 4]). Equations (1.2) and (1.1) are coupled through the source,
mass and velocity terms.

Designing an accurate, efficient and reliable numerical method for this model is a challenging task due to the
following reasons. Solutions of system (1.1)–(1.2) are typically nonsmooth: they may contain both nonlinear
shock and rarefaction waves, and linear discontinuities in the pollution concentration. Moreover, the interaction
with a nonflat bottom may result in very complicated wave structures and nontrivial equilibria, which are hard
to preserve numerically. In addition, dry states (arising, for example, in dam break problems) need special
attention, since (even small) numerical oscillations may lead to nonphysical negative values of the water depth
there.

In order to overcome these difficulties, a high-resolution shock-capturing numerical method is required. Such
methods for hyperbolic systems of balance laws, and in particular for the Saint-Venant system (1.1), are readily
available (to cite a few of them, see e.g. [1, 3, 11, 14, 21]). In this paper, we implement semi-discrete central
schemes. These schemes were originally introduced in [18] in the context of hyperbolic systems of conservation
laws, and then further improved in [15–17], where the so-called central-upwind schemes have been developed.
An application of the central-upwind schemes to the Saint-Venant system can be found in [14].

Godunov-type central-upwind schemes enjoy all the major advantages of Riemann-problem-solver-free central
schemes (universality, efficiency and robustness), and at the same time, have a certain “built-in” upwind nature.
They can be relatively easily extended to solve (1.1)–(1.2), but, as we demonstrate in Section 3, the resolution
of the computed contact waves in the pollution concentration is not sufficiently sharp. There are some other
alternatives (see e.g. [2]), but we are not aware of any method which completely resolves this issue.

In [5], a hybrid finite-volume-particle method for the one-dimensional (1-D) version of (1.1)–(1.2) has been
proposed. The core idea is to use central-upwind schemes to solve the system of balance laws (1.1) and a
particle method [22] to solve the transport equation (1.2). The problem, which remained open in [5], is how
to avoid the loss of resolution when the point values of the numerical solution are recovered from its particle
distribution at the final time. For instance, the standard reconstruction procedure, see e.g. [22], typically
smears discontinuities. An alternative reconstruction technique used in [5] does not smear the discontinuities,
but may lead to oscillations, which can be filtered out in certain cases. To remove the oscillations, a nonlinear
filter from [7] was implemented in [5] as a post-processing. However, the applicability of this filter is limited
and its 2-D extension is rather cumbersome.

In this paper, we propose another way of recovering the point values of the computed solution from the
particle distribution – the solution is recovered via an equation, dual to (1.2). This prevents the aforementioned
loss of resolution and leads to a new finite-volume-particle (FVP) method, which takes an advantage of the low
dissipative (in certain cases, completely nondissipative) particle method, and thus guarantees almost perfect
resolution of the contact discontinuities in the pollutant concentration. We would like to emphasize that the
new recovering procedure not only significantly enhances the resolution of the computed 1-D solutions, but
also makes a 2-D extension of the FVP method much easier. Therefore, in this work we present the new
2-D method while leaving the details of its 1-D reduction to the reader (see also [5], where the original
1-D method is described).
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The paper is organized as follows. In Sections 2.1 and 2.2, we give a brief overview of central-upwind schemes
and particle methods. Our new method is described in Section 2.3, and the numerical computations are carried
out in Section 3.

2. Hybrid finite-volume-particle method

2.1. Semi-discrete central-upwind schemes – an overview

In this section, we briefly describe the central-upwind schemes for 2-D hyperbolic systems of conservation
and balance laws. These schemes are Godunov-type finite-volume methods. For their complete description and
derivation, as well as for their 1-D version, we refer the reader to [15, 16].

We first consider a 2-D system of conservation laws,

ut + f(u)x + g(u)y = 0,

and note that it can be rewritten in the equivalent form:

d
dt

ū(x, y, t) = − 1
|I(x, y)|

 y+∆y
2∫

η=y−∆y
2

{
f

(
u

(
x +

∆x

2
, η, t

))
− f

(
u

(
x − ∆x

2
, η, t

))}
dη

+

x+∆x
2∫

ξ=x−∆x
2

{
g

(
u

(
ξ, y +

∆y

2
, t

))
− g

(
u

(
ξ, y − ∆y

2
, t

))}
dξ

 , (2.3)

where ū(x, y, t) := 1
|I(x,y)|

∫∫
I(x,y) u(ξ, η, t) dη dξ, I(x, y) :=

{
ξ, η : |ξ − x| < ∆x

2 , |η − y| < ∆y
2

}
, and |I(x, y)| =

∆x∆y.
For simplicity, we consider a uniform grid xµ := µ∆x, yν := ν∆y. If at time level t the cell averages,

ūj,k(t) := ū(xj , yk, t), are available, we use them to reconstruct a non-oscillatory piecewise polynomial in x
and y,

ũ(x, y, t) = pj,k(x, y, t), xj− 1
2

< x < xj+ 1
2
, yk− 1

2
< y < yk+ 1

2
, ∀j, k, (2.4)

and evolve it according to (2.3). The (formal) order of the resulting scheme depends on the order of accuracy of
a quadrature used to approximate the integrals in (2.3) and the order of accuracy of the piecewise polynomial
interpolant (2.4). For instance, if second-order accuracy is desired, one may use the midpoint rule for the
integrals in (2.3),

d
dt

ūj,k(t) = −
f(u(xj+ 1

2
, yk, t)) − f(u(xj− 1

2
, yk, t))

∆x
−

g(u(xj , yk+ 1
2
, t)) − g(u(xj , yk− 1

2
, t))

∆y
, (2.5)

and a piecewise linear reconstruction,

pj,k(x, y, t) = ūj,k(t) + (ux)j,k(x − xj) + (uy)j,k(y − yk). (2.6)

To ensure a non-oscillatory behavior of the second-order central-upwind scheme, the slopes in (2.6) should be
computed with a nonlinear limiter. In our numerical experiments, we have used a one-parameter family of the
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minmod limiters [19, 20, 24]:

(ux)j,k = minmod
(

θ
ūj+1,k − ūj,k

∆x
,

ūj+1,k − ūj−1,k

2∆x
, θ

ūj,k − ūj−1,k

∆x

)
,

(uy)j,k = minmod
(

θ
ūj,k+1 − ūj,k

∆y
,

ūj,k+1 − ūj,k−1

2∆y
, θ

ūj,k − ūj,k−1

∆y

)
, (2.7)

where θ ∈ [1, 2], and the multivariate minmod function is defined by

minmod(z1, z2, ...) :=


minj{zj}, if zj > 0 ∀j,
maxj{zj}, if zj < 0 ∀j,
0, otherwise.

Notice that larger θ’s correspond to less dissipative but, in general, more oscillatory limiters.
The second-order semi-discrete central-upwind scheme,

d
dt

ūj,k(t) = −
Hx

j+ 1
2 ,k

(t) − Hx
j− 1

2 ,k
(t)

∆x
−

Hy

j,k+ 1
2
(t) − Hy

j,k− 1
2
(t)

∆y
, (2.8)

is, in fact, an approximation of (2.5) with the numerical fluxes Hx
j+ 1

2 ,k
and Hy

j,k+ 1
2

given by (see [15] for the
derivation)

Hx
j+ 1

2 ,k(t) :=
a+

j+ 1
2 ,k

f(uE
j,k) − a−

j+ 1
2 ,k

f(uW
j+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+ a+
j+ 1

2 ,k
a−

j+ 1
2 ,k

[
uW

j+1,k − uE
j,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

− qx
j+ 1

2 ,k

]
, (2.9)

and

Hy

j,k+ 1
2
(t) :=

b+
j,k+ 1

2
g(uN

j,k) − b−
j,k+ 1

2
g(uS

j,k+1)

b+
j,k+ 1

2
− b−

j,k+ 1
2

+ b+
j,k+ 1

2
b−
j,k+ 1

2

[
uS

j,k+1 − uN
j,k

b+
j,k+ 1

2
− b−

j,k+ 1
2

− qy

j,k+ 1
2

]
. (2.10)

Here, the one-sided local speeds can be estimated, for example, by

a+
j+ 1

2 ,k
:= max

{
λN

(
A(uW

j+1,k)
)
, λN

(
A(uE

j,k)
)
, 0

}
,

a−
j+ 1

2 ,k
:= min

{
λ1

(
A(uW

j+1,k)
)
, λ1

(
A(uE

j,k)
)
, 0

}
,

b+
j,k+ 1

2
:= max

{
λN

(
B(uS

j,k+1)
)
, λN

(
B(uN

j,k)
)
, 0

}
,

b−
j,k+ 1

2
:= min

{
λ1

(
B(uS

j,k+1)
)
, λ1

(
B(uN

j,k)
)
, 0

}
,

(2.11)

where, λ1 < λ2 < . . . < λN are the N eigenvalues of the corresponding Jacobians, A := ∂f
∂u and B := ∂g

∂u , and
the point values of the piecewise linear reconstruction (2.6) are given by

u
E(W)
j,k := ūj,k(t) ± ∆x

2
(ux)j,k, u

N(S)
j,k := ūj,k(t) ± ∆y

2
(uy)j,k. (2.12)
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Finally, qx
j+ 1

2 ,k
and qy

j,k+ 1
2

are the “anti-diffusion” terms that help to reduce numerical dissipation present at
non-oscillatory central schemes [15]:

qx
j+ 1

2 ,k = minmod

(
uNW

j+1,k − uint
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,
uint

j+ 1
2 ,k

− uNE
j,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,
uSW

j+1,k − uint
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,
uint

j+ 1
2 ,k

− uSE
j,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)
, (2.13)

qy

j,k+ 1
2

= minmod

(
uSW

j,k+1 − uint
j,k+ 1

2

b+
j,k+ 1

2
− b−

j,k+ 1
2

,
uint

j,k+ 1
2
− uNW

j,k

b+
j,k+ 1

2
− b−

j,k+ 1
2

,
uSE

j,k+1 − uint
j,k+ 1

2

b+
j,k+ 1

2
− b−

j,k+ 1
2

,
uint

j,k+ 1
2
− uNE

j,k

b+
j,k+ 1

2
− b−

j,k+ 1
2

)
, (2.14)

where

uint
j+ 1

2 ,k =
a+

j+ 1
2 ,k

uW
j+1,k − a−

j+ 1
2 ,k

uE
j,k −

{
f(uW

j+1,k) − f(uE
j,k)

}
a+

j+ 1
2 ,k

− a−
j+ 1

2 ,k

,

uint
j,k+ 1

2
=

b+
j,k+ 1

2
uS

j,k+1 − b−
j,k+ 1

2
uN

j,k −
{
g(uS

j,k+1) − g(uN
j,k)

}
b+
j,k+ 1

2
− b−

j,k+ 1
2

,

u
NE(NW)
j,k := ūj,k(t) ± ∆x

2
(ux)j,k +

∆y

2
(uy)j,k, u

SE(SW)
j,k := ūj,k(t) ± ∆x

2
(ux)j,k − ∆y

2
(uy)j,k.

Remark. In the original semi-discrete central-upwind scheme [16], both qx
j+ 1

2 ,k
and qy

j,k+ 1
2

were chosen to be
zero.

In [14], the central-upwind scheme (2.8)–(2.14) has been generalized for the 2-D system of balance laws,

ut + f(u)x + g(u)y = R(u(x, y, t), x, y, t).

The resulting scheme is

d
dt

ūj,k(t) = −
Hx

j+ 1
2 ,k

(t) − Hx
j− 1

2 ,k
(t)

∆x
−

Hy

j,k+ 1
2
(t) − Hy

j,k− 1
2
(t)

∆y
+ R̄j,k(t), (2.15)

where R̄j,k(t) is an appropriate quadrature for
1

∆x∆y

∫ x
j+ 1

2

x
j− 1

2

∫ y
k+1

2

y
k− 1

2

R(u(x, y, t), x, y, t) dxdy, and the numerical

fluxes, Hx
j+ 1

2 ,k
, Hy

j,k+ 1
2
, are still given by (2.9)–(2.10). However, it should be pointed out that the local speeds,

a±
j+ 1

2 ,k
, b±

j,k+ 1
2
, can be affected by the presence of the source term, and that the formulae in (2.11) may require

adjustments.

Remarks.
1. The semi-discretization (2.9)–(2.15) is a system of time dependent ODEs, which should be solved by

at least second-order accurate and stable ODE solver. In our numerical experiments, we have used the
third-order strong stability preserving (SSP) Runge-Kutta solver, [13].

2. For the 1-D version of the semi-discrete central-upwind scheme (2.8)–(2.14), we refer the reader
to [15–17].

2.2. Particle methods – an overview

Let us now briefly describe the second main ingredient of our new method – the particle method.
Consider a 2-D linear transport equation with variable coefficients:

ϕt + (ξ1ϕ)x + (ξ2ϕ)y = f(x, y, t), (2.16)
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subject to compactly supported (or periodic) initial data,

ϕ(x, y, 0) = ϕ0(x, y), (2.17)

and denote by x := (x, y)T and ξ :=(ξ1, ξ2)T . The solution of (2.16)–(2.17) is sought as a linear combination of
Dirac distributions,

ϕN (x, t) =
N∑

i=1

αi(t)δ(x − xp
i (t)), (2.18)

where xp
i and αi are the location and the weight of the ith particle, respectively. Considering a weak formulation

of the problem and substituting (2.18) into (2.16) results in the following system of ODEs for xp
i (t) and αi(t):

dxp
i (t)
dt

= ξ(xp
i , t),

dαi(t)
dt

= βi(t),
(2.19)

where βi(t) reflects the contribution of the source term f (see, e.g., [6, 22]), which can be approximated by

f(x, t) =
N∑

i=1

βi(t)δ(x − xp
i (t)), βi(t) =

∫ ∫
Di(t)

f(x, t) dx ≈ f(xp
i (t), t) · |Di(t)|.

Here, Di(t) is the domain that includes the ith particle and satisfies the following properties:

αi(t) =
∫ ∫
Di(t)

ϕ(x, t) dx, D1(t) ⊕ D2(t) ⊕ . . . ⊕ DN (t) = X, X is the computational domain.

The size of Di(t) is typically obtained by solving the following ODE:

d
dt

|Di(t)| = |Di(t)| · divξ(xp
i , t). (2.20)

The initial positions of the particles, xp
i (0), and the weights, αi(0), are chosen to provide with a high-order

approximation to the initial data (2.17) according to (2.18). The latter can be achieved by choosing αi(0) to
be an integral of ϕ0(x) over Di(0), so that

N∑
i=1

αi(0) =
∫ ∫
X

ϕ0(x) dx.

For example, one may cover the computational domain with a uniform rectangular mesh and use the midpoint
rule, in which case Di(0) = [xp

i (0) − ∆x
2 , xp

i (0) + ∆x
2 ] × [yp

i (0) − ∆y
2 , yp

i (0) + ∆y
2 ] and

αi(0) := ∆x∆y ϕ0(x
p
i (0)).

In general, the system (2.19) has to be solved numerically, and at final time tfin, the solution ϕ(x, tfin) should
be recovered from the computed particle approximation ϕN (x, tfin). The reconstruction procedure, which is one
of the key issues of this paper, is discussed in detail in the next section.
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2.3. The finite-volume-particle method

The finite-volume-particle (FVP) method for (1.1)–(1.2) is a hybrid of the methods in Sections 2.1 and 2.2:
we apply the semi-discrete central-upwind scheme to the Saint-Venant system (1.1), while the transport equa-
tion (1.2) is solved by the particle method. We now present a detailed description of the method.

Following [14], we start by rewriting the system (1.1) in terms of the water surface, w := h + B, and the x-
and y-discharges, hu and hv,

wt + (hu)x + (hv)y = S,

(hu)t +
[

(hu)2

w − B
+

g

2
(w − B)2

]
x

+
[
(hu)(hv)
w − B

]
y

= −g(w − B)Bx,

(hv)t +
[
(hu)(hv)
w − B

]
x

+
[

(hv)2

w − B
+

g

2
(w − B)2

]
y

= −g(w − B)By.

(2.21)

The central-upwind scheme (2.9)–(2.15) is then applied to this system. To this end, the quadratures for

R̄j,k(t) :=
(
R̄

(1)
j,k(t), R̄(2)

j,k(t), R̄(3)
j,k(t)

)T

that appear on the right-hand side (RHS) of (2.15) should be speci-

fied. The quadrature in R̄
(1)
j,k depends on the type of the source S. For instance, if the source is a smooth

function as in Section 3, Example 3, the midpoint rule can be used:

R̄
(1)
j,k(t) = S(xj , yk, t).

A simpler example of a spatially localized point source is considered in [5]. To compute R̄
(2)
j,k and R̄

(3)
j,k , one

should use the special quadrature,

R̄
(2)
j,k(t) = −g

2

(
wE

j,k − B(xj+ 1
2
, yk) + wW

j,k − B(xj− 1
2
, yk)

)
· B(xj+ 1

2
, yk) − B(xj− 1

2
, yk)

∆x
,

R̄
(3)
j,k(t) = −g

2

(
wN

j,k − B(xj , yk+ 1
2
) + wS

j,k − B(xj , yk− 1
2
)
)
·
B(xj , yk+ 1

2
) − B(xj , yk− 1

2
)

∆y
,

(2.22)

where, as before, w
E(W,N,S)
j,k denote the corresponding point values of the piecewise linear reconstruction of w,

see (2.12). Using quadrature (2.22) guarantees the preservation of the stationary steady-state solution (w ≡
Const, (hu, hv)T ≡ 0, S ≡ 0), which corresponds to the “lake at rest” state. This property is especially important
when quasi-stationary solutions are concerned (see [1, 14] for details).

In our FVP method, we will apply the central-upwind scheme to the Saint-Venant system (2.21) only, but
it can be applied to the transport equation (1.2) as well. In the latter case, the numerical dissipation present
at the central-upwind scheme can be reduce by applying it to the system (2.21) and equation (1.2) separately,
as described in Appendix B. This approach leads to a reasonable overall resolution, as demonstrated in the
numerical experiments in Section 3 and in [5]. However, the contact waves in pollution concentration are still
excessively smeared, and therefore it would be desirable to further reduce the amount of numerical dissipation.

In order to achieve this goal, we solve equation (1.2) using the aforementioned particle method with ϕ := hT ,
ξ :=(u, v)T , and f := TSS. Since the Saint-Venant system (1.1) can be solved independently of the transport
equation (1.2), the particle method, described in Section 2.2, can be applied directly to (1.2). To do that, one
will need to know the values of the velocity vector (u(xp

i (t), t), v(xp
i (t), t))T and the functions βi in (2.19). The

velocities, together with their partial derivatives required in (2.20), can be calculated from the piecewise linear
reconstruction of w, hu, and hv, used for solving (2.21) by the central-upwind scheme. The functions βi depend
on the type of the source term in (1.2). A particular example is considered in Section 3, Example 3.
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Remark. Notice that, we use two different grids in our hybrid method. The grid for the central-upwind scheme,
{(xj , yk)}, is fixed, while the particles locations, {xp

i (t)}, change in time according to the flow velocity.

Recall that after applying the particle method to equation (1.2), only the locations {xp
i (tfin)} of the particles

and their weights {αi(tfin)} will be available, and point values of the computed solution are to be recovered from
the particle distribution. A commonly used way of such a reconstruction is to regularize the particle solution,

(hT )N (x, t) =
N∑

i=1

αi(t)δ(x − xp
i (t)),

by taking a convolution product with a smooth kernel ζε(x), namely,

(hT )ε
N (x, t) =

N∑
i=1

αi(t)ζε(x − xp
i (t)), (2.23)

where ζε serves as a smooth approximation of the δ-function satisfying

ζε =
1
ε2

ζ
(x

ε

)
,

∫∫
R2

ζ(x) dx = 1. (2.24)

It is well-known that the quality of this approximation depends on the smoothness of the solution [22], and,
unfortunately, when applied to discontinuous solutions, this reconstruction procedure will either smear the
discontinuities or lead to oscillations, depending on the value of ε, as illustrated in Section 3, Example 1,
Figure 3.2. In this 1-D example, Gaussian kernel ζ(x) = 1√

π
e−x2

was used, but other smooth kernels give
similar results.

To overcome this difficulty, in [5], where the 1-D version of the problem (1.1)–(1.2) was studied, the computed
particle data were interpreted as integrals of the approximated solution over some intervals around the particles.
Then, dividing the weights αi by the lengths of the corresponding intervals, the cell averages (hT )i were obtained.
Since the resulting piecewise constant approximation may be very oscillatory, a nonlinear filter from [7] was
implemented as a post-processing. However, even in the 1-D case, such an approach is of a limited use, as
it is demonstrated in Section 3, Example 1. Furthermore, the key drawback of this technique is that its
2-D generalization is rather problematic since particles, moving with the flow, can form a very complicated
unstructured grid.

In this paper, we propose a new method that allows to completely avoid any loss of resolution attributed to
the regularization of the particle distribution, and at the same time, does not produce any spurious oscillations.
The idea is to consider an equation on pollutant concentration T ,

Tt + uTx + vTy =
(TS − T )S

h
, (2.25)

which is dual to equation (1.2). Multiplying equation (1.2) by T and equation (2.25) by hT , adding them up,
and integrating with respect to x, we obtain

d
dt

∫∫
R2

(hT )T dx =
∫∫
R2

hT
(2TS − T )S

h
dx, (2.26)

provided either T or (hu, hv) vanish at infinity.
Let us now take (hT )(x, 0) to be a single particle, αi(0)δ(x − xi(0)), which, as it is explained above, will

evolve in time according to the ODE system (2.19). Then equation (2.26) reduces to the single ODE along the
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generalized characteristic xi(t):

d
dt

[
(αT )(xi(t), t)

]
=

{2TSαi(t) − (αT )(xi(t), t)}S(xi(t), t)
h(xi(t), t)

· (2.27)

Notice that since both h and S may be discontinuous, the RHS of (2.27) may be discontinuous as well. However,
as long as S is bounded and h ≥ Const > 0, the RHS of (2.27) is bounded, and thus the existence of its
generalized solution is guaranteed by the theory of Filippov [8–10]. In practice, h is a piecewise smooth function
with a finite number of discontinuities only, and therefore one can numerically solve (2.27) by the same ODE
solver used to solve the system (2.19). While doing this, h(xi(t), t) is replaced with w̃(xi(t), t) − B(xi(t)),
where w̃ is a piecewise linear reconstruction of w, used for solving (2.21) by the central-upwind scheme.

Finally, at time t = tfin the point values of T are obtained by

T (xi(tfin), tfin) =
(αT )(xi(tfin), tfin)

αi(tfin)
·

Remarks.
1. Notice that equation (2.25) is a consequence of (1.2) and of the first equation of (1.1) (at least for

smooth solutions).
2. If S ≡ 0, then αi(t) ≡ αi(0) and (2.27) becomes trivial, and its solution is

T (xi(tfin), tfin) = T (xi(0), 0). (2.28)

Note that in this case, the particle method for hT reduces to the method of characteristics for T .
However, one can verify that this will no longer be true if the RHS of (2.27) is not zero, that is, if S �≡ 0.

In Appendix A, we illustrate an advantage of our approach over the method of characteristics on an
example with a point source, where the method of characteristics fails while the FVP method produces
an accurate solution.

3. We would like to point out that the first component of the presented hybrid FVP method, the
Godunov type central-upwind scheme, can be replaced with one’s favorite finite-volume method for the
Saint-Venant system (1.1).

3. Numerical examples

In this section, we illustrate the performance of the FVP method in a number of 1-D and 2-D numerical
examples. We also compare these results with the corresponding solutions computed by the semi-discrete
central-upwind finite-volume (FV) scheme, applied to both (2.21) and (1.2) with a separate estimates of the
local speeds, as it is described in Appendix B. In all the examples, the gravity constant was taken g = 9.8,
the piecewise linear interpolants were constructed using the minmod limiter (2.6)–(2.7) with θ = 1.2, the
particles were initially uniformly distributed, and the arising systems of ODEs were solved by the third-order
SSP Runge-Kutta method [13].

Example 1 (1-D dam break). This example is devoted to the 1-D case, in which the Saint-Venant system (1.1)
reduces to 

ht + (hu)x = S,

(hu)t +
(
hu2 +

g

2
h2

)
x

= −ghB′(x),
(3.1)

and the transport equation (1.2) becomes

(hT )t + (uhT )x = TSS. (3.2)
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Figure 3.1. h (a), hu (b), hT (c), and T (d) by the FV method.

For the detailed description of the 1-D FVP method we refer the reader to [5], and the 1-D semi-discrete
central-upwind scheme can be found in [15–17].

A particular set of the data (taken from [2]) corresponds to a dam break on a flat bottom (B ≡ 0) in the
domain [−1000, 1000], where the pollutant has different concentrations on each side of the dam. The initial
Riemann data are:

(h, u, T )(x, 0) =
{

(1.00, 0, 0.7), if x < 0,
(0.01, 0, 0.5), if x > 0,

(3.3)

and there is no source, that is, S ≡ 0.
We apply the FVP and FV methods with ∆x = 10 for both the central-upwind scheme and the initial

distribution of the particles. The results at time tfin = 200 are presented in Figures 3.1–3.3. In Figures 3.1a–d,
we show the values of the evolved quantities h, hu, hT , and the pollutant concentration T := hT/h, respectively,
obtained by the FV method.

In Figures 3.2 and 3.3, we compare the values of hT and T , obtained by applying different versions of the
FVP method. In all the cases, the locations of particles at the final time, {xp

i (tfin)}, are computed by numerical
integration of the ODE system (2.19) with ξ = u and βi(t) ≡ 0 implying, in particular, that αi(t) ≡ αi(0) for
all t > 0.

First, we recover the point values of hT by a regularization procedure according to (2.23)–(2.24) with
ζε(x) = 1√

πε
e−x2/ε2

and ε = 20
√

∆x, and compute the point values of T using the following formula

T (xp
i (tfin), tfin) =

(hT )(xp
i (tfin), tfin)

h(xp
i (tfin), tfin)

, (3.4)
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Figure 3.2. hT and T obtained by the FVP method with regularization (2.23), (2.24).

where h(xp
i (tfin), tfin) are the corresponding values of the reconstructed piecewise linear interpolant

h̃(x, tfin) = h̄j(tfin) + (hx)j(x − xj), xj− 1
2

< x < xj+ 1
2
. (3.5)

The resulting hT and T are plotted in Figure 3.2. One can clearly observe a poor resolution of discontinuities
of the computed solution.

Second, we implement the reconstruction method introduced in [5]: the weights αi(t) ≡ αi(0) are interpreted
as integrals of the approximated solution over some intervals around the particles and the point values of hT
are computed by dividing the αi(0) by the lengths of the corresponding intervals, namely,

(hT )(xp
i (tfin), tfin) =

2αi(0)
xp

i+1(tfin) − xp
i−1(tfin)

· (3.6)

The point values of T are obtained, as before, from (3.4)–(3.5). The results are shown in Figures 3.3a–b, where
one can see very large oscillations both near the contact discontinuity and around the shock.

We then post-process these data by applying a nonlinear filter [7] to both hT and T (the data are first
projected onto the uniform grid, see [5] for the details). As in the examples, presented in [5], the filter manages
to remove the oscillations, see Figures 3.3c–d, but the achieved resolution is not as good as in the dam break
example in [5], where we considered the same problem with a slightly different initial data:

(h, u, T )(x, 0) =
{

(1.0, 0, 0.7), if x < 0,
(0.5, 0, 0.5), if x > 0,

instead of (3.3). It should be also pointed out that even though the nonlinear filter is a very powerful tool
for removing spurious oscillations, it may sometimes average out physically important features of the solution
(especially in the 2-D case) and to produce a “staircase-like” approximations as in Figures 3.3c–d.

Finally, we implement the new version of the FVP method, presented in this paper. The computed pollutant
concentration, T , is shown in Figure 3.3f. As one can clearly see, the achieved resolution is almost perfect. As
for the computed values of hT , presented in Figure 3.3e, the accuracy obviously deteriorate in the vicinity of
the shock, since hT is obtained by multiplying the computed values of T and h, and the L∞

loc-error in h is O(1)
there.
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Figure 3.3. hT and T obtained by the three different versions of the FVP method:
(a) and (b) – the FVP method from [5] without filtering; (c) and (d) – the FVP method
from [5] with filtering; (e) and (f) – the new FVP method.

Remarks.

1. Notice that h and hu are computed by the same central-upwind scheme for both the FVP and FV
methods, and therefore we plot them only once.

2. The reference solution is obtained by the new FVP method with ∆x = 0.4.
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Figure 3.4. Initial setting in Example 2.
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Figure 3.5. A 3-D plot (left) and a contour plot (right) of h.

Example 2 (2-D dam break on a flat bottom without source). In this example, we solve the 2-D sys-
tem (2.21), (1.2) in the square domain outlined in Figure 3.4. We consider the case of a dam break on a
flat bottom (B ≡ 0) without source (S ≡ 0). The initial concentration of pollutant is

T (x, y, 0) =

{
e−0.0001[(x+50)2+(y−600)2], if − 700 ≤ x < 0, 0 ≤ y ≤ 1400,

0.5, if 0 ≤ x ≤ 700, 0 ≤ y ≤ 1400,

and the rest of the initial data is shown in Figure 3.4.
The water flows through the breach, located between y = 560 and y = 840, from the left to the right. The

solution computed on a 500 × 500 grid at time tfin = 200 is shown in Figures 3.5–3.7. The water height h,
computed by the same second-order central-upwind scheme (2.9)–(2.15) for both the FV and FVP methods, is
presented in Figure 3.5. As one can clearly see, the scheme provides a very high resolution of both the circular
shock wave and the vortices formed on the both sides of the breach. In Figures 3.6–3.7, we show the pollutant
concentration T , computed by the FV and FVP methods. One can observe a better resolution of the fronts,
and especially of the structures inside the vortices, achieved by the FVP method, see Figures 3.6–3.7 (right).
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Figure 3.6. Top view on T computed by the FV (left) and FVP (right) methods.

Figure 3.7. T computed by the FV (left) and FVP (right) methods.

In addition, we would like to recall that, while applying the FVP method, one does not need to calculate the
values of T at every time step, since S ≡ 0 for this problem. Once the location of the particles are computed at
final time tfin, T (xi(tfin), tfin) = T (xi(0), 0), according to (2.28).

Example 3 (2-D dam break on a nonflat bottom with nonzero source). We consider the 2-D system (2.21), (1.2)
in the square domain [−300, 1100]× [0, 1400] subject to the initial data shown in Figure 3.8, where the shape
of the dam is given by

Γ(y) =

min
[
200 +

(y − 700)2

400
, 600

]
, if 0 ≤ y < 700,

200, if 700 ≤ y ≤ 1400.
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Figure 3.8. Initial setting in Example 3.
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Figure 3.9. A contour plot of w.

In this example, the bottom consists of three elliptic-shape exponential humps:

B(x, y) = 4.5
[
e−κ1(x−500)2−κ2(y−700)2 + e−κ2(x−300)2−κ1(y−600)2 + e−κ2(x−700)2−κ1(y−700)2

]
,

with κ1 = 10−4 and κ2 = 10−3. We assume that initially the water is practically clean, that is T (x, y, 0) ∼ 0,
but later on a source of polluted water with the concentration of pollutant Ts = 25 is turned on:

S(x, y, t) = 0.5e−0.5(t−8)2−0.00001(x+y−1000)2−0.0005(x−y+200)2 .

The solutions at time tfin = 30, computed by the FV and FVP methods on a 500× 500 grid, are shown in Fig-
ures 3.9–3.12. An interaction of the initially curved shock wave with a complicated nonflat bottom results in a
rather complicated wave structures, see Figure 3.9. The time evolution of the pollutant is tracked in Figure 3.10.
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Figure 3.10. Top view on T at t = 7.5 (a), 15 (b), 22.5 (c), and 30 (d) computed by the FVP method.

In order to compare the FV and the FVP methods, we present the three-dimensional (3-D) plots of the pollutant
concentration T in Figure 3.11. As one can observe, the FVP method outperforms the FV method (it can be
especially clearly seen in the 2-D projection shown in Fig. 3.12).

Acknowledgements. The authors are grateful to Eitan Tadmor for a breakthrough suggestion to consider the dual equation.
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Figure 3.11. T computed by the FV (left) and FVP (right) methods.

Figure 3.12. 2-D projections of T computed by the FV (left) and FVP (right) methods.

Appendix A

Here, we bring a 1-D example, taken from [2], that illustrates an advantage of our method of computing the
point values of T over the method of characteristics, which can be also used for solving equation (2.25). The
water flow is described by 

ht + (hu)x = S(x, t),

(hu)t +
(

hu2 +
h2

2

)
x

= −hB′(x),
(A.1)

where the point source, acting at x = 45 between t = 100 and t = 300, is given by

S(x, t) = 0.01δ(x − 45) [H(t − 100) − H(t − 300)] , (A.2)
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Figure A.1. T (left) and h (right) computed by the FVP method.

and the bottom topography is

B(x) = (0.2 − 0.05(x − 10)2) [H(x − 8) − H(x − 12)] . (A.3)

Here and below, H is a Heaviside function. The pollutant propagates according to the transport equation,

(hT )t + (uhT )x = 10S, (A.4)

which can be (formally) rewritten in the advection form:

Tt + uTx =
10 − T

h
S. (A.5)

The initial data for this example are: h(x, 0) + B(x) = 2, h(x, 0)u(x, 0) = 1, and T (x, 0) = 0.
Solving this problem numerically requires a special treatment due to the presence of the point source on

the RHS of the above equations. An implementation of the FVP method for the system (A.1), (A.4) has been
presented in [5]. In this paper, we only show the computed solution at time t = 300 (right after the pollution
source has been turned off), see Figure A.1. Even though the exact solution of the problem is not available,
these results agree well with those obtained by the two time step kinetic method [2] and by the central-upwind
scheme [5], so that we can assume that the computed solution is sufficiently accurate. Therefore, in the following
we will use the computed T as a reference solution.

When the FVP method is applied in this example, the concentration T is obtained by solving the following
system of ODEs along each characteristic curve, x = xp

i (t):

dαi

dt
= 0.01|Di(t)|δ(t − t∗i ), (A.6)

d(αT )i

dt
=

20αi(t) − (αT )i(t)
hi(t)

0.01δ(t − t∗i ), (A.7)
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Figure A.2. The ith characteristic in the (x, t)-plane.

where xp
i (t

∗
i ) = 45, see Figure A.2. Alternatively, one may solve equation (A.5) by the method of characteristics,

which would require solving the ODE

dTi

dt
=

10 − Ti(t)
hi(t)

0.01δ(t− t∗i ) (A.8)

along the ith characteristic.
For a practical implementation, the delta-function on the RHS of both (A.7) and (A.8) is usually regularized.

Following [5] we replace the delta-function with

δε(t − t∗i ) :=
1
ε

[H(t − t∗i ) − H(t − t∗i − ε)],

where ε is proportional to ∆t, and proceed to solving

dTi

dt
=

10 − Ti(t)
hi(t)

0.01δε(t − t∗i ) (A.9)

and
d(αT )i

dt
=

20αi(t) − (αT )i(t)
hi(t)

0.01δε(t − t∗i ) (A.10)

together with (A.6) analytically. We start with the

Method of characteristics. We look for a solution of (A.9) in the form

Ti(t) = T̂ (t) + Ti(t∗i + 0)H(t − t∗i ),

where we expect T̂ (t) to be continuous at t = t∗i and T̂ (t) ≡ 0 for t ≤ t∗i . We also rewrite hi(t) in a similar
manner:

hi(t) = ĥ(t) + [hi(t∗i + 0) − ĥi(t∗i )]H(t − t∗i ), ĥi(t) is continuous at t = t∗i .
Then, integrating (A.9) yields

Ti(t) =
1

100ε

t∗i +ε∫
t∗i

10 − T̂ (τ) − Ti(t∗i + 0)

ĥ(τ) + hi(t∗i + 0) − ĥ(t∗i )
dτ, t > t∗i + ε.
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Finally, assuming that both T̂ and ĥ are smooth on (t∗i , t
∗
i + ε), we use their Taylor expansions about t = t∗i to

conclude with
Ti(t) =

10 − Ti(t∗i + 0)
100hi(t∗i + 0)

+ O(ε), t > t∗i + ε. (A.11)

This implies (see Fig. A.1b for the relevant values of hi) that

Ti(t) ∼ 0.05, t > t∗i + ε.

The above computation clearly demonstrates (compare with Fig. A.1a) that in this particular example, the
method of characteristics fails to provide an accurate approximation of the solution.

Next, we demonstrate how an accurate approximate solution is obtained by the

Particle method. We first integrate equation (A.6) to obtain

αi(t) ≡ αi(t∗i + 0) = 0.01|Di(t∗i )|, t > t∗i . (A.12)

We then solve equation (A.10) using the same approach as in the method of characteristics. This results in

(αT )i(t) =
20αi(t∗i + 0) − (αT )i(t∗i + 0)

100hi(t∗i + 0)
+ O(ε), t > t∗i + ε.

Solving the last equation for (αT )i(t) and taking into account (A.12) and the data in Figure A.1b, we conclude
with

Ti(t) :=
(αT )i(t)

αi(t)
∼ 0.1, t > t∗i + ε,

which agrees with our reference solution in Figure A.1a.

Appendix B

Here, we discuss an important detail related to the application of the central-upwind scheme to both (2.21)
and (1.2) (in Sect. 3, this scheme has been referred to as the FV method). In principle, the central-upwind
scheme described in Section 2.1 can be applied to the extended system (2.21), (1.2) in a straightforward manner.
However, it is possible to reduce numerical dissipation by taking an advantage of the fact that equation (1.2) is
basically coupled with the system (2.21) only through the source term S. This can be achieved by using separate
(and thus, more accurate) estimates of the local speeds of propagation for the the transport equation (1.2) and
the Saint-Venant system (2.21)1. For equation (1.2), the local speeds are:

a+
j+ 1

2 ,k
= max

{
uE

j,k, uW
j+1,k, 0

}
, a−

j+ 1
2 ,k

= min
{
uE

j,k, uW
j+1,k, 0

}
,

b+
j,k+ 1

2
= max

{
uN

j,k, uS
j,k+1, 0

}
, b−

j,k+ 1
2

= min
{
uN

j,k, uS
j,k+1, 0

}
,

while for the Saint-Venant system (2.21) as well as for the extended system (2.21), (1.2) they are, in general,
larger:

a+
j+ 1

2 ,k
= max

{(
u +

√
gh

)E

j,k
,
(
u +

√
gh

)W

j+1,k
, 0

}
,

a−
j+ 1

2 ,k
= min

{(
u −

√
gh

)E

j,k
,
(
u −

√
gh

)W

j+1,k
, 0

}
,

b+
j,k+ 1

2
= max

{(
u +

√
gh

)N

j,k
,
(
u +

√
gh

)S

j,k+1
, 0

}
,

b−
j,k+ 1

2
= min

{(
u −

√
gh

)N

j,k
,
(
u −

√
gh

)S

j,k+1
, 0

}
,

1 This idea has been worked out by A. Kurganov and G. Petrova, and was implemented in [5] in the 1-D case.
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where uE
j,k = (hu)Ej,k/hE

j,k, hE
j,k = wE

j,k − B(xj+ 1
2
, yk), (hu)Ej,k and wE

j,k are obtained from the piecewise linear
reconstruction (2.6), and the corresponding point values of uW(N,S) and hW(N,S) are computed similarly.

The numerical experiments in Section 3 and in [5] demonstrate that such a modification of the central-upwind
scheme provides a relatively high resolution of the contact waves in pollution concentration. However, these
waves are still smeared, and the proposed finite-volume-particle method clearly outperforms the finite-volume
one.
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