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WELL-BALANCED POSITIVITY PRESERVING CENTRAL-UPWIND SCHEME
ON TRIANGULAR GRIDS FOR THE SAINT-VENANT SYSTEM
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Abstract. We introduce a new second-order central-upwind scheme for the Saint-Venant system of
shallow water equations on triangular grids. We prove that the scheme both preserves “lake at rest”
steady states and guarantees the positivity of the computed fluid depth. Moreover, it can be applied
to models with discontinuous bottom topography and irregular channel widths. We demonstrate these
features of the new scheme, as well as its high resolution and robustness in a number of numerical
examples.
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1. Introduction

We consider the two-dimensional (2-D) Saint-Venant system of shallow water equations [8]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ht + (hu)x + (hv)y = 0,

(hu)t +

(
hu2 +

1
2
gh2

)
x

+ (huv)y = −ghBx,

(hv)t + (huv)x +

(
hv2 +

1
2
gh2

)
y

= −ghBy,

(1.1)

where the function B(x, y) represents the bottom elevation, h is the fluid depth above the bottom, (u, v)T is
the velocity vector, and g is the gravitational constant. This system is widely used in many scientific and
engineering applications related to modeling of water flows in rivers, lakes and coastal areas. The development
of robust and accurate numerical methods for the computation of its solutions is important and challenging
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problem that has been extensively investigated in the recent years. One of the difficulties encountered is the
fact that system (1.1) admits nonsmooth solutions: shocks, rarefaction waves and, when the bottom topography
function B is discontinuous, contact discontinuities. In the latter case, the solution may not be unique, which
makes the design of robust numerical methods more challenging even in the one-dimensional (1-D) case (see,
e.g., [2] and the references therein).

A good numerical method for (1.1) should have two major properties, which are crucial for its stability:

(i) The method should be well-balanced, that is, it should exactly preserve the “lake at rest” steady-state
solutions h + B ≡ const., u ≡ v ≡ 0 (lake at rest states). This property diminishes the appearance of
unphysical waves of magnitude proportional to the grid size (the so-called “numerical storm”), which
are normally present when computing quasi steady-states;

(ii) The method should be positivity preserving, that is, the water depth h should be nonnegative at all
times. This property ensures a robust performance of the method on dry (h = 0) and almost dry (h ∼ 0)
states.

In the past decade, a number of well-balanced [4,5,10,15,16,18,21,25,26,29–32,36,37] and positivity preserving
[4,18,21,30] schemes for (1.1) have been proposed, but only few of them satisfy both major properties (i) and
(ii). Among the methods developed are generalizations of the class of accurate, efficient and robust Godunov-
type semi-discrete central-upwind schemes, introduced in [19,20,22–24] as universal Riemann-problem-solver-free
methods for general multidimensional hyperbolic systems. More precisely, the central-upwind schemes have been
extended to compute the solutions of both the 1-D and 2-D Saint-Venant systems. For example, see [18], where
well-balanced and positivity preserving central-upwind schemes have been introduced. However, the schemes
presented in [18] do not simultaneously satisfy (i) and (ii) over the entire computational domain. In a recent
work [21], a new second-order central-upwind scheme, which is well-balanced and positivity preserving at the
same time, has been proposed. The key ideas in the development of this scheme are:

• Replacement of the bottom topography function B with its continuous piecewise linear (or bilinear in
the 2-D case) approximation;

• Change of conservative variables from (h, hu, hv)T to (w := h + B, hu, hv)T ;
• Special positivity preserving correction of the piecewise linear reconstruction for the water surface w;
• Development of a special finite-volume-type quadrature for the discretization of the cell averages of the

geometric source term.

In both [18,21], the central-upwind schemes for the 2-D system (1.1) are developed for Cartesian grids. Many
real world engineering applications require the use of triangular meshes due to the complicated structure of the
computational domains of the problems being investigated. A well-balanced central-upwind scheme on trian-
gular grids has been recently developed in [6], where the presented “triangular” scheme is a (nonconservative)
modification of the “triangular” central-upwind scheme from [20] with a special quadrature for the source term
average over arbitrary triangular cells. The method in [6] has not been tested on examples with (almost) dry
states, but since the method is not positivity preserving, it is expected to fail on such states.

In this paper, we present a new second-order semi-discrete central-upwind scheme for computing the solutions
of the system (1.1) on triangular grids. Like the central-upwind scheme from [6], our scheme is well-balanced,
but the new quadrature for the discretization of the geometric source, presented in Section 2.2, is much simpler
than the one proposed in [6]. In addition, unlike the scheme from [6], the proposed central-upwind scheme
is positivity preserving. The latter property is achieved by replacing the (possibly discontinuous) bottom
topography function B with its continuous piecewise linear approximation (Sect. 2.1) and adjusting the piecewise
linear reconstruction for w according to the piecewise linear approximation of B (Sect. 2.3). This technique is
borrowed from [21] and naturally adopted to triangular meshes.

The new central-upwind scheme is derived in Section 2 and its positivity preserving property is proved in
Section 2.4. In Section 3, we demonstrate the high resolution and robustness of the new scheme on a variety of
numerical examples.
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Figure 1. A typical triangular cell with three neighbors.

2. Description of the scheme

In this section, we describe our new second-order semi-discrete central-upwind scheme for solving the Saint-
Venant system of shallow water equations on triangular grids. We first denote the water surface by w := h + B
and rewrite (1.1) in terms of the vector U := (w, hu, hv)T :

Ut + F(U, B)x + G(U, B)y = S(U, B), (2.1)

where the fluxes and the source terms are:

F(U, B) =
(

hu,
(hu)2

w − B
+

1
2
g(w − B)2,

(hu)(hv)
w − B

)T

, (2.2)

G(U, B) =
(

hv,
(hu)(hv)
w − B

,
(hv)2

w − B
+

1
2
g(w − B)2

)T

, (2.3)

S(U, B) =
(
0,−g(w − B)Bx,−g(w − B)By

)T

. (2.4)

We assume that a triangulation T :=
⋃
j

Tj of the computational domain, consisting of triangular cells Tj of

size |Tj|, is given. We denote by �njk := (cos(θjk), sin(θjk)) the outer unit normals to the corresponding sides
of Tj of length �jk, k = 1, 2, 3, see Figure 1. Let (xj , yj) be the coordinates of the center of mass for Tj and
Mjk = (xjk, yjk) be the midpoint of the k-th side of the triangle Tj, k = 1, 2, 3. We denote by Tj1, Tj2 and Tj3

the neighboring triangles that share a common side with Tj.
A semi-discrete scheme for (2.1) is a system of ODEs for the approximations of the cell averages of the

solution:

Uj(t) ≈
1

|Tj|

∫
Tj

U(x, y, t) dxdy.
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We refer the reader to [20], where a general form of a “triangular” central-upwind scheme for systems of
hyperbolic conservation laws is derived. Its second-order version (see [6,20]) reads:

dUj

dt
= − 1

|Tj |

3∑
k=1

�jk cos(θjk)
ain

jk + aout
jk

[
ain

jkF(Ujk(Mjk), B(Mjk)) + aout
jk F(Uj(Mjk), B(Mjk))

]
− 1

|Tj |

3∑
k=1

�jk sin(θjk)
ain

jk + aout
jk

[
ain

jkG(Ujk(Mjk), B(Mjk)) + aout
jk G(Uj(Mjk), B(Mjk))

]
+

1
|Tj |

3∑
k=1

�jk

ain
jkaout

jk

ain
jk + aout

jk

[
Ujk(Mjk) − Uj(Mjk)

]
+ Sj , (2.5)

where Uj(Mjk) and Ujk(Mjk) are the corresponding values at Mjk of the piecewise linear reconstruction

Ũ(x, y) := Uj + (Ux)j(x − xj) + (Uy)j(y − yj), (x, y) ∈ Tj (2.6)

of U at time t, that is:

Uj(Mjk) := lim
(x,y)→Mjk;(x,y)∈Tj

Ũ(x, y), Ujk(Mjk) := lim
(x,y)→Mjk;(x,y)∈Tjk

Ũ(x, y). (2.7)

The numerical derivatives (Ux)j and (Uy)j are (at least) first-order, componentwise approximations of
Ux(xj , yj, t) and Uy(xj , yj , t), respectively, computed via a nonlinear limiter, used to minimize the oscillations
of the reconstruction (2.6). One can use any nonlinear limiter. A variety of nonoscillatory reconstructions can
be found, for example, in [1,3,7,9,13,14,17,20,35]. In our numerical experiments, we have used a componentwise
piecewise linear reconstruction, which is a modification of the Cartesian grid minmod reconstruction (see,
e.g., [27,28,33,34]). To calculate the numerical derivatives of the ith component of U, (U(i)

x )j and (U(i)
y )j , we

construct three linear interpolations L12
j (x, y), L23

j (x, y) and L13
j (x, y), which are conservative on the triangle Tj

and two of the neighboring triangles (Tj1, Tj2), (Tj2, Tj3) and (Tj1, Tj3), respectively. More precisely, the
plane L12

j (x, y), for example, passes through the points whose first two coordinates are the coordinates of the
centers of mass of the triangles Tj, Tj1 and Tj2, and the third coordinates are the cell averages of U(i) over
the corresponding triangles. We then select the linear piece with the smallest magnitude of the gradient, say,
Lkm

j (x, y), and set

((U(i)
x )j , (U(i)

y )j)T = ∇Lkm
j . (2.8)

We minimize the oscillations by checking the appearance of local extrema at the points Mjk, 1, 2, 3. If for some k

one of the reconstructed point values of the ith component of U, U(i)
j (Mjk) or U(i)

jk (Mjk), is not between the

cell averages U
(i)

j and U
(i)

jk , we replace (2.8) by

(U(i)
x )j = (U(i)

y )j = 0.

The quantity Sj in (2.5) is an appropriate discretization of the cell averages of the source term:

Sj(t) ≈
1

|Tj|

∫
Tj

S(U(x, y, t), B(x, y)) dxdy.

In Section 2.2, we discuss in detail how to compute Sj in a simple way, which guarantees the well-balanced
property of the proposed scheme.
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Finally, the directional local speeds ain
jk and aout

jk in (2.5) are defined by

ain
jk(Mjk) = −min{λ1[Vjk(Uj(Mjk))], λ1[Vjk(Ujk(Mjk))], 0},

aout
jk (Mjk) = max{λ3[Vjk(Uj(Mjk))], λ3[Vjk(Ujk(Mjk))], 0},

(2.9)

where λ1 [Vjk] ≤ λ2 [Vjk] ≤ λ3 [Vjk ] are the eigenvalues of the matrix

Vjk = cos(θjk)
∂F
∂U

+ sin(θjk)
∂G
∂U

,

(the explicit expression of the eigenvalues are given in (2.29) below). If both ain
jk and aout

jk are zero (or very close
to zero), the scheme (2.5) reduces to

dUj

dt
= − 1

|Tj |

3∑
k=1

�jk cos(θjk)
2

[F(Ujk(Mjk), B(Mjk)) + F(Uj(Mjk), B(Mjk))]

− 1
|Tj |

3∑
k=1

�jk sin(θjk)
2

[G(Ujk(Mjk), B(Mjk)) + G(Uj(Mjk), B(Mjk))] + Sj . (2.10)

In all reported numerical experiments, we switched from (2.5) to (2.10) when ain
jk + aout

jk < 10−8.
A fully discrete scheme is obtained from (2.5) (or (2.10)) by using a stable ODE solver of an appropriate

order. In our numerical experiments, we have used the third-order SSP-RK ODE solver, see [12]. The time step
size should satisfy the CFL condition, see [20]:

Δt <
1
3

min
j,k

[
rjk

max{aout
jk , ain

jk}

]
, (2.11)

where rjk, k = 1, 2, 3 are the three corresponding altitudes of the triangle Tj ∈ T .

2.1. Piecewise linear approximation of the bottom

We start by replacing the bottom topography function B with its continuous piecewise linear approxima-
tion B̃, which over each cell Tj is given by the formula:∣∣∣∣∣∣∣∣

x − x̃j12 y − ỹj12 B̃(x, y) − Bj12

x̃j23 − x̃j12 ỹj23 − ỹj12 Bj23 − Bj12

x̃j13 − x̃j12 ỹj13 − ỹj12 Bj13 − Bj12

∣∣∣∣∣∣∣∣ = 0, (x, y) ∈ Tj. (2.12)

Here, Bjκ are the values of B̃ at the vertices (x̃jκ , ỹjκ), κ = 12, 23, 13, of the cell Tj (see Fig. 1), computed
according to the following formula:

Bjκ :=
1
2

(
max

ξ2+η2=1
lim

h,�→0
B(x̃jκ + hξ, ỹjκ + �η) + min

ξ2+η2=1
lim

h,�→0
B(x̃jκ + hξ, ỹjκ + �η)

)
, (2.13)

which reduces to
Bjκ = B(x̃jκ , ỹjκ),

if the function B is continuous at (x̃jκ , ỹjκ). Note that when B is discontinuous at this point, formula (2.13)
prescribes to Bjκ the average of the minimum and maximum values of B at (x̃jκ , ỹjκ). In any practical case,
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this can be done quite easily. However, if the bottom topography function has a very complicated discontinuous
structure, one may use any of the “one-sided” values of B at (x̃jκ , ỹjκ) as Bjκ instead of (2.13).

Let us denote by Bjk the value of the continuous piecewise linear reconstruction at Mjk, namely Bjk :=
B̃(Mjk), and by Bj := B̃(xj , yj) the value of the reconstruction at the center of mass (xj , yj) of Tj . Notice
that, in general, Bjk �= B(Mjk) and

Bj =
1

|Tj|

∫
Tj

B̃(x, y) dxdy.

Moreover, one can easily show that

Bj =
1
3

(Bj1 + Bj2 + Bj3) =
1
3

(Bj12 + Bj23 + Bj13). (2.14)

Notice that the approach described above is applicable to any bottom topography function, both continuous
and discontinuous.

2.2. Well-balanced discretization of the source term

The well-balanced property of the scheme is guaranteed if the discretized cell average of the source term, Sj ,
exactly balances the numerical fluxes so that the right-hand side (RHS) of (2.5) vanishes for “lake at rest” steady
states U ≡ (C, 0, 0)T, where C = const. Notice that for these states Ujk(Mjk) ≡ Uj(Mjk) ≡ (C, 0, 0)T, ∀j, k.
After a substitution of a “lake at rest” steady state into (2.5) and taking into account that in this case, ain

jk = aout
jk ,

see (2.9) which becomes (2.29), the source quadrature should satisfy the following two conditions:

− g

|Tj |

3∑
k=1

�jk cos(θjk)
(C − B(Mjk))2

2
+ S

(2)

j = 0 (2.15)

and

− g

|Tj |

3∑
k=1

�jk sin(θjk)
(C − B(Mjk))2

2
+ S

(3)

j = 0, (2.16)

where Sj = (0,S
(2)

j ,S
(3)

j ),

S
(2)

j ≈ − g

|Tj|

∫
Tj

(C − B(x, y))Bx(x, y) dxdy,

and

S
(3)

j ≈ − g

|Tj|

∫
Tj

(C − B(x, y))By(x, y) dxdy.

To derive the desired quadrature, we first apply Green’s formula,∫
Tj

div �G dxdy =
∫

∂Tj

�G · �n ds,
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to the vector field �G = (1
2 (w(x, y) − B(x, y))2, 0) and obtain:

−
∫
Tj

(w(x, y) − B(x, y))Bx(x, y) dxdy =
3∑

k=1

∫
(∂Tj)k

(w(x, y) − B(x, y))2

2
cos(θjk) ds

−
∫
Tj

(w(x, y) − B(x, y))wx(x, y) dxdy, (2.17)

where (∂Tj)k is the kth side of the triangle Tj , k = 1, 2, 3. Next, we apply the midpoint rule to the integrals on

the RHS of (2.17) and arrive at the following quadrature for the cell average S
(2)

j :

− g

|Tj |

∫
Tj

(w − B)Bx dxdy ≈ g

2|Tj|

3∑
k=1

�jk(w(Mjk) − B(Mjk))2 cos(θjk) − gwx(xj , yj)(wj − Bj), (2.18)

where

Bj :=
1

|Tj|

∫
Tj

B(x, y) dxdy.

Likewise, we obtain the quadrature for the cell average S
(3)

j :

− g

|Tj|

∫
Tj

(w − B)By dxdy ≈ g

2|Tj|

3∑
k=1

�jk(w(Mjk) − B(Mjk))2 sin(θjk) − gwy(xj , yj)(wj − Bj). (2.19)

Notice that since wx ≡ wy ≡ 0 for w ≡ const., the quadratures (2.18)–(2.19) satisfy (2.15)–(2.16) when
U ≡ (C, 0, 0)T.

We then replace B with its continuous piecewise linear interpolant B̃. Since the interpolant (2.12) is second
order accurate for smooth B, this replacement does not affect the (formal) order of both the central-upwind
fluxes in (2.5) and the quadratures (2.18)–(2.19). Finally, the discretization of the source term in (2.5) becomes:

S
(2)

j =
g

2|Tj|

3∑
k=1

�jk(wj(Mjk) − Bjk)2 cos(θjk) − g(wx)j(wj − Bj),

S
(3)

j =
g

2|Tj|

3∑
k=1

�jk(wj(Mjk) − Bjk)2 sin(θjk) − g(wy)j(wj − Bj),

(2.20)

where Bjk = B̃(Mjk) and Bj is given by (2.14).

Remark 2.1. The well-balanced quadrature (2.20) is much simpler than the well-balanced source term dis-
cretization proposed in [6].

2.3. Positivity preserving reconstruction for w

In this section, we describe an algorithm that guarantees positivity of the reconstructed values of the water
depth hj(Mjk), k = 1, 2, 3, for all j, which are obtained from the corresponding point values of w̃ (obtained
with the help of the minmod-type reconstruction, described in the beginning of Sect. 2) and B̃:

hj(Mjk) := wj(Mjk) − Bjk, k = 1, 2, 3. (2.21)
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Notice that (see the proof of Thm. 2.2) in order to show that the scheme is positivity preserving, one only needs
to verify that hj(Mjk) ≥ 0. None of the aforementioned second-order piecewise linear (or even the first-order
piecewise constant) reconstructions for w can guarantee this since it may obviously happen that the cell average
wj > Bj , but wj < Bjk for some k. Therefore, we have to correct the original reconstruction w̃ so that we ensure
the nonnegativity of hj(Mjk) for k = 1, 2, 3. There are numerous correction procedures that would guarantee
that. The one that we have selected and describe below has less oscillations than some other choices, but we
have not conducted a complete study of the dependence of the numerical solution on the the various corrections.
Our proposed algorithm modifies w̃ so that we achieve w̃(x, y) ≥ B̃(x, y) throughout the entire computational
domain. The reconstruction w̃ should be corrected only in those triangles, where w̃(x̃jκ , ỹjκ) < Bjκ for some κ,
κ = 12, 23, 13. Since wj ≥ Bj , it is impossible to have w̃(x̃jκ , ỹjκ) < Bjκ for all three values of κ, that is, at
all three vertices of the triangle Tj . Thus, only two cases in which a correction is needed are possible: either
there are two indices κ1 and κ2, for which w̃(x̃jκ1

, ỹjκ1
) < Bjκ1

and w̃(x̃jκ2
, ỹjκ2

) < Bjκ2
, or there is only one

index κ1, for which w̃(x̃jκ1
, ỹjκ1

) < Bjκ1
.

In the first case, we will correct the reconstruction w̃ so that w̃(x̃jκ1
, ỹjκ1

) = Bjκ1
and w̃(x̃jκ2

, ỹjκ2
) = Bjκ2

.
These two conditions, together with the conservation requirement for the corrected reconstruction w̃, uniquely
determine the following correction algorithm:

if w̃(x̃jκ1
, ỹjκ1

) < Bjκ1
and w̃(x̃jκ2

, ỹjκ2
) < Bjκ2

,

set w̃(x̃jκ1
, ỹjκ1

) := Bjκ1
and w̃(x̃jκ2

, ỹjκ2
) := Bjκ2

, (2.22)

and replace the linear function, originally reconstructed over the triangle Tj , with a new function (still denoted
by w̃) defined by ∣∣∣∣∣∣∣∣

x − xj y − yj w̃(x, y) − wj

x̃jκ1
− xj ỹjκ1

− yj Bjκ1
− wj

x̃jκ2
− xj ỹjκ2

− yj Bjκ2
− wj

∣∣∣∣∣∣∣∣ = 0, (x, y) ∈ Tj. (2.23)

Note that the corrected reconstruction is the restriction over Tj of the plane that passes through the three
points with coordinates (x̃jκ1

, ỹjκ1
,Bjκ1

), (x̃jκ2
, ỹjκ2

,Bjκ2
), and (xj , yj, wj).

In the second case, we will only need to make sure that after the correction w̃(x̃jκ1
, ỹjκ1

) = Bjκ1
, while we still

have w̃(x̃jκ2
, ỹjκ2

) ≥ Bjκ2
and w̃(x̃jκ3

, ỹjκ3
) ≥ Bjκ3

. This leaves one degree of freedom in the construction of the
corrected linear piece over the triangle Tj . To minimize the oscillations, we decide to determine w̃(x̃jκ2

, ỹjκ2
)

and w̃(x̃jκ3
, ỹjκ3

) so that the corresponding distances w̃(x̃jκ2
, ỹjκ2

) − Bjκ2
and w̃(x̃jκ3

, ỹjκ3
) − Bjκ3

are equal.
The conservation requirement and the fact that w̃(x̃jκ1

, ỹjκ1
) = Bjκ1

results in the relation

w̃(x̃jκ2
, ỹjκ2

) − Bjκ2
= w̃(x̃jκ3

, ỹjκ3
) − Bjκ3

=
3
2
(wj − Bj). (2.24)

We then replace the original reconstruction over the triangle Tj, with a new one (still denoted by w̃) defined by∣∣∣∣∣∣∣∣
x − xj y − yj w̃(x, y) − wj

x̃jκ1
− xj ỹjκ1

− yj Bjκ1
− wj

x̃jκ2
− xj ỹjκ2

− yj W − wj

∣∣∣∣∣∣∣∣ = 0, (x, y) ∈ Tj, (2.25)

where W = 3
2 (wj − Bj) + Bjκ2

. The corrected reconstruction is the restriction over Tj of the plane that passes
through the three points with coordinates (x̃jκ1

, ỹjκ1
,Bjκ1

), (x̃jκ2
, ỹjκ2

, W ), and (xj , yj, wj).
The correction procedure (2.22)–(2.25) guarantees that the reconstruction of w is conservative and its values

are greater or equal to the corresponding values of B̃ over the whole triangle Tj. Hence the point values of the
water height, defined by (2.21), will be nonnegative.
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Equipped with the positivity preserving reconstruction w̃, we now proceed with the computation of the
velocities u and v, and the one-sided local speeds needed in (2.5). Since the obtained values of h may be very
small (or even zero), we calculate the velocities the same way as in [21], namely (we omit the j, k indexes):

u =
√

2 h (hu)√
h4 + max(h4, ε)

, v =
√

2h (hv)√
h4 + max(h4, ε)

, (2.26)

where ε is a prescribed tolerance (we have taken ε = max
j

{|Tj|2} in all our computations). After evaluating h,

u, and v, we recompute the x- and y-discharges and fluxes accordingly, that is, we set:

(hu) := h · u, (hv) := h · v,

F(U, B) :=
(

hu, hu · u +
1
2

g(w − B)2, hu · v
)T

, (2.27)

G(U, B) :=
(

hv, hv · u, hv · v +
1
2

g(w − B)2
)T

,

at the points where these quantities are to be calculated. As noted in [21], this is an important step that allows
us to preserve the positivity of the fluid depth h (see Thm. 2.2).

Finally, we denote by uθ
j(Mjk) and uθ

jk(Mjk) the normal velocities at the point Mjk:

uθ
j(Mjk) := cos(θjk)uj(Mjk) + sin(θjk)vj(Mjk), uθ

jk(Mjk) := cos(θjk)ujk(Mjk) + sin(θjk)vjk(Mjk), (2.28)

and write the formulae for the local one-sided speeds of propagation:

aout
jk = max

{
uθ

j(Mjk) +
√

ghj(Mjk) , uθ
jk(Mjk) +

√
ghjk(Mjk) , 0

}
,

ain
jk = −min

{
uθ

j (Mjk) −
√

ghj(Mjk) , uθ
jk(Mjk) −

√
ghjk(Mjk) , 0

}
.

(2.29)

2.4. Positivity preserving property of the scheme

In this section, we prove the positivity preserving property of our new well-balanced central-upwind scheme
for triangular grids in the case when the system of ODEs (2.5) is discretized in time, using the forward Euler
method or a higher-order SSP ODE solver [12]. The following theorem holds.

Theorem 2.2. Consider the system (2.1)–(2.4) and the central-upwind semi-discrete scheme (2.5)–(2.7), (2.20),
(2.22)–(2.25), (2.29). Assume that the system of ODEs (2.5) is solved by the forward Euler method and that for
all j, wn

j − Bj ≥ 0 at time t = tn. Then, for all j, wn+1
j − Bj ≥ 0 at time t = tn+1 = tn + Δt, provided that

Δt ≤ 1
6a

min
j,k

{rjk}, where a := max
j,k

{aout
jk , ain

jk} and rjk, k = 1, 2, 3, are the altitudes of triangle Tj.

Proof. We write the first component in equation (2.5) together with the forward Euler temporal discretization
as:

wn+1
j = wn

j − Δt

|Tj|

3∑
k=1

�jk cos(θjk)
ain

jk + aout
jk

[
ain

jk(hu)jk(Mjk) + aout
jk (hu)j(Mjk)

]
− Δt

|Tj|

3∑
k=1

�jk sin(θjk)
ain

jk + aout
jk

[
ain

jk(hv)jk(Mjk) + aout
jk (hv)j(Mjk)

]
+

Δt

|Tj|

3∑
k=1

�jk

ain
jkaout

jk

ain
jk + aout

jk

[
wjk(Mjk) − wj(Mjk)

]
, (2.30)
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where all quantities on the RHS of (2.30) are evaluated at time level t = tn. Since the piecewise linear
interpolant B̃ of the bottom topography function is continuous, (2.21) implies that

wjk(Mjk) − wj(Mjk) = hjk(Mjk) − hj(Mjk). (2.31)

Moreover, (2.14), (2.21), and the fact that wn
j = 1

3

3∑
k=1

wj(Mjk) give:

wn
j − Bj =

1
3

3∑
k=1

hj(Mjk). (2.32)

Using (2.31)–(2.32), subtracting Bj from both sides of (2.30), and using the notation (2.28), we arrive at:

h
n+1

j =
Δt

|Tj |

3∑
k=1

hjk(Mjk)
�jkain

jk

ain
jk + aout

jk

[
aout

jk − uθ
jk(Mjk)

]
+

3∑
k=1

hj(Mjk)

(
1
3
− Δt

|Tj|
·

�jkaout
jk

ain
jk + aout

jk

[
ain

jk + uθ
j (Mjk)

])
, (2.33)

where, as mentioned in (2.27), we have used the fact that (hu) = h ·u and (hv) = h ·v. Next, from the definitions
of the local speeds (2.29) we obtain that aout

jk ≥ uθ
jk(Mjk) and therefore, all terms in the first sum on the RHS

of (2.33) are nonnegative since the corrected reconstruction for w guarantees that hjk(Mjk) ≥ 0 for all j and
k = 1, 2, 3. We also obtain:

Δt

|Tj|
·

�jkaout
jk

ain
jk + aout

jk

[
ain

jk + uθ
j (Mjk)

]
≤ Δt

|Tj|
·

�jkaout
jk

ain
jk + aout

jk

[
ain

jk + aout
jk

]
≤ 1

3
,

provided Δt ≤ 1
3α maxj,k{ |Tj |

�jk
}, where α := maxj,k{aout

jk }. From (2.11) and the fact that |Tj | = 0.5rjk�jk, we

conclude that all terms in the second sum on the RHS of (2.33) are also nonnegative as long as Δt <
1
6a

min
jk

{rjk},

a := max
j,k

{aout
jk , ain

jk}, since hj(Mjk) ≥ 0 for all j and k = 1, 2, 3. This completes the proof of the theorem. �

Remark 2.3.

1. Notice that Theorem 2.2 is proved under the stricter CFL condition than the one stated in (2.11).
2. Theorem 2.2 is still valid if one uses a higher-order SSP ODE solver (either the Runge-Kutta or the

multistep one), because such solvers can be written as a convex combination of several forward Euler
steps.

3. Numerical experiments

We test our well-balanced positivity preserving central-upwind scheme on several problems in which (almost) dry
“lake at rest” steady states and/or their small perturbations are present. These examples clearly demonstrate
the ability of the proposed scheme to accurately resolve quasi-steady states (small perturbations of “lake at rest”
steady states) and, at the same time, to preserve the positivity of the fluid depth h (as proved in Thm. 2.2).

In all examples that follow, the gravitational constant is g = 1. In Examples 1–3, the computational domain
is a rectangle, and we use the structured triangular mesh outlined in Figure 2, while in Example 4, where we
simulate a flow in a converging-diverging channel, the mesh is unstructured, see Figure 16 (right).
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Figure 2. Structured triangular mesh. Horizontal to vertical cathetus ratio is 2:1.

0 0.5 1 1.5 2
0
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0.6

0.8

1

Figure 3. w component of the solution of the IVP (2.1)–(2.4), (3.1) on a 2 × 400 × 400 grid:
the 3-D view (left) and the contour plot (right).

Example 1 – Accuracy test

The goal of this numerical example is to experimentally check the order of accuracy of the proposed central-
upwind scheme. The scheme is applied to the system (2.1)–(2.4) subject to the following initial data and bottom
topography:

w(x, y, 0) = 1, u(x, y, 0) = 0.3, B(x, y) = 0.5 exp(−25(x − 1)2 − 50(y − 0.5)2). (3.1)

The computational domain is [0, 2] × [0, 1] and we have used a zero-order extrapolation at all boundaries.
For a reference solution, we solve this problem with our method on a grid using 2×400 ×400 triangles. By

t = 0.07, the solution converges to the steady state, which is in this case nonconstant but smooth. We show
the water surface for the reference solution at time t = 0.07 in Figure 3. We use this reference solution to test
the numerical convergence. The L1- and L∞-errors are shown in Table 1. The obtained errors and the rate of
convergence are similar to the ones reported in [21], Table 4.1, for the 1-D problem on a uniform grid of the
same size. Tests of our method on a finer mesh are prevented by the size of the problem and available computer
resources. We believe that further mesh refinement would increase the rates, similar to the behavior shown
in [21], Table 4.1.

Example 2 – Small perturbation of a stationary steady-state solution

Here, we first solve the initial value problem (IVP), which is a modification of the benchmark proposed
in [25]. The computational domain is [0, 2] × [0, 1] and the bottom consists of an elliptical shaped hump:

B(x, y) = 0.8 exp(−5(x − 0.9)2 − 50(y − 0.5)2). (3.2)
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Table 1. Example 1: L1- and L∞-errors and numerical orders of accuracy.

Number of cells L1-error Order L∞-error Order
2 × 50 × 50 6.59 e–04 – 8.02 e–03 –

2 × 100 × 100 2.87 e–04 1.20 3.59 e–03 1.16
2 × 200 × 200 1.00 e–04 1.52 1.21 e–03 1.57

0 1 2 3 4 5

6

8

10
x 10

−15

t

m
ax

(w
−

1)

Figure 4. max
x,y

(w − 1) as a function of t, where w is the solution of the IVP (2.1)–

(2.4), (3.2), (3.3) with ε = 10−14.

Initially, the water is at rest and its surface is flat everywhere except for 0.05 < x < 0.15:

w(x, y, 0) =
{

1 + ε, 0.05 < x < 0.15,
1, otherwise, u(x, y, 0) ≡ v(x, y, 0) ≡ 0, (3.3)

where ε is the perturbation height. We have used zero-order extrapolation at the right and the left boundaries,
while the boundary conditions in the y-direction are periodic.

We first take a very small ε = 10−14, which is comparable with the machine error, and numerically verify
property (i) of the proposed central-upwind scheme. In Figure 4, we plot max

x,y
(w − 1) as a function of t,

computed on a very coarse mesh using 2×10×10 triangles. As one can clearly see, no instabilities are developed
and the balance between the fluxes and the geometric source terms is preserved numerically.

We then take a larger, but still very small perturbation height ε = 10−4. Figure 5 (left column) displays
the right-going disturbance as it propagates past the hump. The water surface, w(x, y, t), computed on the
mesh using 2×200×200 triangles, is presented at times t = 0.6, 0.9, 1.2, 1.5 and 1.8. One can observe the high
resolution of complex small features of the flow (compare with [6,18,25]). To demonstrate that the importance
of the well-balanced property, we apply a non well-balanced central-upwind scheme, obtained by replacing the
quadrature (2.20) with a straightforward midpoint rule discretization:

S
(2)

j = −g(wj − Bj)(Bx)j , S
(3)

j = −g(wj − Bj)(By)j ,

where (Bx)j and (By)j are the slopes of the jth piece of the piecewise linear approximation of the bottom
topography, B̃, given by (2.12). A “non well-balanced” solution, computed on the same 2×200 ×200 grid, is
shown in the right column of Figure 5. As one can clearly see there, the solution, computed by the non well-
balanced scheme contains “parasitic” waves, which are of about the same magnitude as the waves generated by
the small perturbation. This clearly demonstrates the advantage of the well-balanced quadrature (2.20).
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Figure 5. w component of the solution of the IVP (2.1)–(2.4), (3.2), (3.3) with ε = 10−4,
computed by the well-balanced (left column) and non well-balanced (right column) central-
upwind schemes.
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ε=0.0001

0.0002
ε=0.01

Figure 6. 1-D slice of the bottom topographies (3.4), left, and (3.6), right. These plots are
not to scale.

Figure 7. w component of the solution of the IVP (2.1)–(2.4), (3.4), (3.5), computed by the
well-balanced central-upwind scheme on a 2×200×200 grid.

Next, we modify the bottom topography (3.2) to numerically study the case of a submerged flat plateau, see
Figure 6 (left). Notice that the plateau is very close to the water surface, and that the initial water depth over the
plateau is equal to the perturbation height ε = 10−4. The computational domain is now [−0.5, 0.5]× [−0.5, 0.5],
the radially symmetric bottom topography is given by

B(r) =

⎧⎨⎩
0.9998, r ≤ 0.1,
9.998(0.2− r), 0.1 < r < 0.2,
0, otherwise,

(3.4)

where r :=
√

x2 + y2, and the initial data are:

w(x, y, 0) =
{

1 + ε, −0.4 < x < −0.3,
1, otherwise, u(x, y, 0) ≡ v(x, y, 0) ≡ 0. (3.5)

In Figure 7, the solution, computed by the well-balanced central-upwind scheme on the mesh using 2×200×
200 triangles, is shown at times t = 0.2, 0.35, 0.5 and 0.65. Since the area over the plateau is almost dry, the
right-going disturbance mostly bends around that area, while only small portion of the wave propagates over the
area. As one can see from Figure 7, the general structure of the solution is well resolved on the 2×200×200 grid.
However, a finer mesh is clearly needed to achieve high resolution of the solution over the plateau area (see
Fig. 8, where the solution computed on the mesh using 2×400 ×400 triangles is plotted). Notice that the
positivity of h is preserved and no instabilities are developed at the almost dry area.
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Figure 8. w component of the solution of the IVP (2.1)–(2.4), (3.4), (3.5), computed by the
well-balanced central-upwind scheme on a 2×400×400 grid.

Figure 9. w component of the solution of the IVP (2.1)–(2.4), (3.4), (3.5), computed by a
non well-balanced central-upwind scheme on a 2×200×200 grid (compare with Fig. 7).

Figure 10. w component of the solution of the IVP (2.1)–(2.4), (3.4), (3.5), computed by a
non well-balanced central-upwind scheme on a 2 × 400 × 400 grid (compare with Fig. 8).

It is instructive to compare the results, obtained by the well-balanced positivity preserving central-upwind
scheme, with the solution, computed by a non well-balanced (yet positivity preserving) one. The latter results
are shown in Figures 9 and 10. As one can see, when a coarser 2×200×200 grid is used (Fig. 9), the “parasitic”
waves, generated at the plateau area, are dominating and the computed solution is completely incorrect. When
a finer 2×400×400 mesh is used (Fig. 10), the non well-balanced solution becomes a little less oscillatory, but
it is still unsatisfactory.
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In the final part of Example 2, we consider the situation in which the bottom hump is above the water surface
so that there is a disk-shaped island at the origin, see Figure 6 (right):

B(r) =

⎧⎨⎩
1.1, r ≤ 0.1,
11(0.2 − r), 0.1 < r < 0.2,
0, otherwise.

(3.6)

The computational domain is [−0.5, 0.5]× [−0.5, 0.5] and the initial data are given by

w(x, y, 0) =

{
1 + ε, −0.4 < x < −0.3,

max
{

1, B(
√

x2 + y2)
}

, otherwise,
u(x, y, 0) ≡ v(x, y, 0) ≡ 0. (3.7)

As one can see from Figure 11, where the computed water surface w is shown, the right-going disturbance
bends around the island while the general solution structure is quite similar to the one obtained in the submerged
plateau case. The major difference is that in this case w �= const. at the “lake at rest” steady state and completely
dry states and states that change their status back and forth between dry and almost dry (at the areas around
the island) are now present. Nevertheless, the solution obtained by the proposed positivity preserving central-
upwind scheme remains consistent and stable. This demonstrates the robustness of our method.

Example 3 – Saint-Venant system with friction and discontinuous bottom

It is a well-known fact that more realistic shallow water models based on the Saint-Venant system (1.1)
should include additional friction and/or viscosity terms. In [11], such models were derived from the Navier-
Stokes equations for incompressible flows with a free moving boundary. Presence of friction and viscosity terms
guarantees uniqueness of the steady state solution, especially in the case when the fluid propagates into a certain
region and gradually occupies parts of initially dry areas, as, for example, in Figure 13.

We consider the simplest model in which only friction terms, −κ(h)u and −κ(h)v, are added to the RHS of
the second and third equations in (1.1):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 +

1
2
gh2
)

x
+ (huv)y = −ghBx − κ(h)u,

(hv)t + (huv)x +
(
hv2 +

1
2
gh2
)

y
= −ghBy − κ(h)v.

(3.8)

We numerically solve the system (3.8) on the domain [−0.25, 1.75] × [−0.5, 0.5], assuming that the friction
coefficient is κ(h) = 0.001(1 + 10h)−1, and the bottom topography function has a discontinuity along the
vertical line x = 1 and is given by:

B(x, y) = 100y4 +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x < 0,

cos2(πx), 0 ≤ x ≤ 0.4,

cos2(πx) + 0.28(cos(10π(x − 0.5)) + 1), 0.4 ≤ x ≤ 0.5,

0.5 cos4(πx) + 0.28(cos(10π(x − 0.5)) + 1), 0.5 ≤ x ≤ 0.6,

0.5 cos4(πx), 0.5 ≤ x < 1,

0.28 sin(2π(x − 1)), 1 < x ≤ 1.5,

0, x > 1.5.

(3.9)
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Figure 11. w component of the solution of the IVP (2.1)–(2.4), (3.6), (3.7) on 2 × 200 × 200
(left column) and 2 × 400 × 400 (right column) grids.
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Figure 12. River valley topography – three-dimensional view (left) and contour plot (right).

This topography B mimics a mountain river valley, which, together with the surrounding mountains, is shown
in Figure 12. We take the following initial data:

w(x, y, 0) =

{
max

{
1.8, B(x, y)

}
, x < 0,

B(x, y), x > 0,
u(x, y, 0) ≡ v(x, y, 0) ≡ 0, (3.10)

and implement reflecting (solid wall) boundary conditions at all boundaries. These data correspond to the
situation when the second of the three dams, initially located at the vertical lines x = −0.25 (the left boundary
of the computational domain), x = 0, and x = 1.75 (the right boundary of the computational domain), breaks
down at time t = 0, the water propagates into the initially dry area x > 0, and a “lake at rest” steady state is
achieved after a certain period of time (this problem is a modification of the 1-D test problem from [21]).

We apply the well-balanced positivity preserving central-upwind scheme to this initial-boundary value prob-
lem (IBVP). The friction term in (3.8) is discretized in a straightforward manner. Notice that this affects
neither the well-balanced (since u ≡ v ≡ 0 at “lake at rest” steady states) nor the positivity preserving (since
the first equation has not been changed) properties of our scheme. The solution of the IBVP (3.8)–(3.10) at
times t = 0.3, 1, 4 and 7 is computed using two different grids. At later times, the computed solution almost
does not change, thus the solution at time t = 7 can be viewed as a numerical “lake at rest” steady state. The
solution (the water depth h) is shown in Figure 13, where one can clearly see the dynamics of the fluid flow
as it moves from the region x < 0 into the initially dry area x > 0 and gradually settles down into a “lake at
rest” steady state. Notice that this state includes dry areas and therefore its computation requires a method
that is both well-balanced and positivity preserving on the entire computational domain. To better illustrate
the obtained numerical solutions, we plot their 1-D slices along the y = 0 line in Figures 14, 15, where one can
see convergence of the computed solutions to their numerical steady states on two different grids.

Example 4 – Flows in converging-diverging channels

In the last example, borrowed from [14] (see also [6]), we study water flow in open converging-diverging
channel of length 3 with symmetric constrictions of length 1 at the center. The exact geometry of each channel
is determined by its breadth, which is equal to 2yb(x), where

yb(x) =
{

0.5 − 0.5(1 − d) cos2(π(x − 1.5)), |x − 1.5| ≤ 0.5,
0.5, otherwise,



WELL-BALANCED SCHEME ON TRIANGULAR GRIDS 19

Figure 13. Solution (h) of the IBVP (2.1)–(2.4), (3.6), (3.7) on 2 × 200 × 200 (left column)
and 2 × 400 × 400 (right column) grids.

and d is the minimum channel breadth (in our numerical experiments we take d = 0.9 and d = 0.6). Thus, the
computational domain is [0, 3] × [−yb(x), yb(x)], see Figure 16 (left). We take the following initial data:

w(x, y, 0) = max
{

1, B(x, y)
}
, u(x, y, 0) = 2, v(x, y, 0) = 0. (3.11)

In the case of a flat bottom B(x, y) ≡ 0, these initial data correspond to the data considered in [14] with
the Froude number equals to 2. Both the upper and lower y-boundaries are reflecting (solid wall), the left
x-boundary is an inflow boundary with u = 2 and the right x-boundary is a zero-order outflow boundary.
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Figure 14. 1-D slice of the water level w (solid line) and the interpolated bottom B (dashed
line) from the 2 × 200 × 200 numerical solution shown in Figure 13.

Finally, the bottom topography, shown in Figure 17, is given by

B(x, y) = Bmax

(
e−10(x−1.9)2−50(y−0.2)2 + e−20(x−2.2)2−50(y+0.2)2

)
, (3.12)

where Bmax is a parameter.
We apply the proposed central-upwind scheme on an unstructured triangular mesh obtained from the struc-

tured one, outlined in Figure 2, using the mapping

(x, y) →
{

(x, (1 − (1 − d) cos2(π(x − 1.5)))y), |x − 1.5| ≤ 0.5,
(x, y), otherwise.

The resulting triangulation is shown in Figure 16 (right). We test our method on the following four sets of
parameters: (d, Bmax) = (0.9, 0), (0.9, 1), (0.9, 2) and (0.6, 1). In every test, we run the simulations on two grids
using 2×200 ×200 and 2×400 ×400 triangles until the steady state (which is, in this case, not a “lake at rest”
one) is reached at about t = 2. The obtained results are shown in Figures 18–21.
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Figure 15. Same as Figure 14, but on the 2 × 400 × 400 grid.

d

Figure 16. Example 4: computational domain (left) and its unstructured triangulation (right).

We first verify that in the flat bottom case, (d, Bmax) = (0.9, 0), the results obtained by the central-upwind
scheme are in good agreement with the solution computed by an alternative finite-volume scheme, see Figure 18,
and compare it with Figure 10(e) in [14].

We then modify the IBVP by including two asymmetric elliptical Gaussian mounds in the bottom topography,
that is, by taking (d, Bmax) = (0.9, 1). This bottom function is similar to the one used in [6], but in our case
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Figure 17. Example 4: bottom topography for (d, Bmax) = (0.6, 1).
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Figure 18. Example 4: steady-state solution (w) for (d, Bmax) = (0.9, 0) on 2 × 200 × 200
(left) and 2 × 400 × 400 (right) grids.
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Figure 19. Example 4: steady-state solution (w) for (d, Bmax) = (0.9, 1) on 2 × 200 × 200
(left) and 2 × 400 × 400 (right) grids.

the water depth at the top of both mounds is zero. The proposed central-upwind scheme successfully captures
the complicated steady-state solution emerging in this case, see Figure 19.

Next, we increase Bmax to 2, which models the presence of two Gaussian-shaped islands. Our scheme still
exhibits a superb performance in this case, as one can see in Figure 20, where we show both the water surface
(w) and depth (h) to better illustrate the structure of the computed steady-state solution at/near the islands.

Finally, we modify the shape of the channel by taking d = 0.6, and compute the steady-state solution for
Bmax = 1. The results, presented in Figure 21, are of the same high quality as in the case of a wider channel
studied above.
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Figure 20. Example 4: steady-state solution (w – top, h – bottom) for (d, Bmax) = (0.9, 2)
on 2 × 200 × 200 (left) and 2 × 400 × 400 (right) grids.
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Figure 21. Example 4: steady-state solution (w) for (d, Bmax) = (0.6, 1) on 2 × 200 ×200
(left) and 2 × 400 × 400 (right) grids.
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l’introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147–154.
[9] L.J. Durlofsky, B. Engquist and S. Osher, Triangle based adaptive stencils for the solution of hyperbolic conservation laws.

J. Comput. Phys. 98 (1992) 64–73.

http://www-ian.math.uni-magdeburg.de/home/andriano/CONSTRUCT/testing.ps.gz
http://www-ian.math.uni-magdeburg.de/home/andriano/CONSTRUCT/testing.ps.gz


24 S. BRYSON ET AL.
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