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Abstract The paper is concerned with development of a new finite-volume method
for a class of chemotaxis models and for a closely related haptotaxis model. In its
simplest form, the chemotaxis model is described by a system of nonlinear PDEs: a
convection-diffusion equation for the cell density coupled with a reaction-diffusion
equation for the chemoattractant concentration. The first step in the derivation of the
new method is made by adding an equation for the chemoattractant concentration
gradient to the original system. We then show that the convective part of the resulting
system is typically of a mixed hyperbolic-elliptic type and therefore straightforward
numerical methods for the studied system may be unstable. The proposed method
is based on the application of the second-order central-upwind scheme, originally
developed for hyperbolic systems of conservation laws in Kurganov et al. (SIAM
J Sci Comput 21:707–740, 2001), to the extended system of PDEs. We show that
the proposed second-order scheme is positivity preserving, which is a very important
stability property of the method. The scheme is applied to a number of two-dimensional
problems including the most commonly used Keller–Segel chemotaxis model and its
modern extensions as well as to a haptotaxis system modeling tumor invasion into
surrounding healthy tissue. Our numerical results demonstrate high accuracy, stability,
and robustness of the proposed scheme.

Mathematics Subject Classification (2000) 76M12 · 92C17 · 35M10

A. Chertock (B)
Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
e-mail: chertock@math.ncsu.edu

A. Kurganov
Mathematics Department, Tulane University, New Orleans, LA 70118, USA
e-mail: kurganov@math.tulane.edu

123



170 A. Chertock, A. Kurganov

1 Introduction

This paper is focused on designing a new numerical method for a class of two-
dimensional (2D) systems of advection-reaction-diffusion equations describing che-
motaxis models [13,25–27,41,44,50,51] and a closely related haptotaxis model
[2,10,11].

We begin with the most common formulation of the Keller–Segel system [13],
which can be written in the dimensionless form as:

ut + ∇·(χu∇v) = �u, (1.1)

vt = �v − v + u. (1.2)

Here, u(x, y, t) denotes the cell density, v(x, y, t) stands for a chemoattractant concen-
tration, andχ is a chemotactic sensitivity constant. It is well-known that solutions of the
system (1.1) and (1.2) may blow up in finite time, see, e.g., [9,22,23,45] and the refe-
rences therein. This blow-up represents a mathematical description of a cell concen-
tration phenomenon that occur in real biological systems, see, e.g., [1,6–8,14,46,54].

The Keller–Segel model (1.1) and (1.2) can be generalized to better describe the
reality by taking into account several additional factors. For instance, one may consider
a more complicated (than just a constant) and a more realistic chemotactic sensitivity
function, χ = χ(u, v), in (1.1) as, e.g, in [21,25,38,50,51]. Some other factors, such
as growth and death of cells, more accurate [than on the right-hand side (RHS) of (1.2)]
terms describing production and uptake of the chemoattractant by cells, presence of
food and other chemicals in the system, may also be incorporated into the chemotaxis
model, see, e.g., [50,51].

A common property of all existing chemotaxis systems is their ability to model a
concentration phenomenon that mathematically results in solutions rapidly growing
in small neighborhoods of concentration points/curves. The solutions may blow up
or may exhibit a very singular, spiky behavior. In either case, capturing such singu-
lar solutions numerically is a challenging problem. Several numerical methods for a
simpler version of the Keller–Segel model,

{
ut + ∇·(χu∇v) = �u,

�v − v + u = 0,

have been proposed in [15,40,48]. In this model, Eq. (1.2) has been replaced by an
elliptic equation using an assumption that the chemoattractant concentration v changes
over much smaller time scales than the cell density u. A fractional step numerical
method for a fully time-dependent chemotaxis system from [51] has been proposed in
[52] (see also [39] for an application of the fractional step method to related models
of angiogenesis and vasculogenesis). However, the fractional step (operator splitting)
approach may not be applicable in the case when the convective part of the chemotaxis
system is not hyperbolic, which is a generic situation as we demonstrate below. Thus,
there is a need in accurate and robust numerical methods for general chemotaxis
models, especially since many interesting theoretical questions are still completely
open due to the lack of reliable numerical tools.
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A second-order positivity preserving central-upwind scheme 171

In this paper, we provide a simple mathematical explanation on why a naïve
numerical approach for, say, the system (1.1) and (1.2) may not be able to capture
its blowing up solutions. To this end, we differentiate equation (1.2) with respect to x
and y and then rewrite the system (1.1) and (1.2) as:

{
ut + ∇·(χuw) = �u,

wt − ∇u = �w − w,
(1.3)

where w := ∇v. In Sect. 2, we show that the convective part of the system (1.3),

{
ut + ∇·(χuw) = 0,

wt − ∇u = 0,
(1.4)

is generically of a mixed, hyperbolic-elliptic type. Moreover, in the hyperbolic region,
the propagation speeds are generically larger than |vx | and |vy |. A numerical method
that does not employ this information may obviously be unstable, as it is demonstrated
in Sects. 3.1 and 3.2.

The main goal of this paper is to develop an accurate and robust numerical method
for the Keller–Segel system and related models. We design a scheme, which is both
second-order accurate and positivity preserving. The former property ensures a high
resolution of the numerical solution, while the latter property (positivity of the com-
puted cell densities u) is very important since appearance of negative values of u may
trigger numerical instabilities as demonstrated in Sects. 3.1 and 3.2. We would like to
emphasize that designing a numerical method, which preserves positivity for a second-
order scheme is, in general, a nontrivial task and, for the best of our knowledge, the
central-upwind scheme, we propose here, is the first one to achieve this goal.

The new method is constructed by applying a second-order Godunov-type central-
upwind scheme from [32] to the system (1.3). Central-upwind schemes have been
originally developed in [31,32,34] for hyperbolic systems of conservation laws. They
have also been successfully applied to convection-diffusion equations [12,34] and sys-
tems of balance laws [29,30,33]. Central-upwind schemes are Godunov-type finite-
volume methods that, unlike the original first-order Godunov scheme [17] and its
higher-order upwind extensions (see, e.g., [16,28,35,36]), do not employ a charac-
teristic decomposition and/or (approximate) solutions of (generalized) Riemann pro-
blems and thus can be applied as a “black-box-solver” to a wide variety of (systems
of) time-dependent PDEs.

Since (1.4) is not necessarily hyperbolic, the central-upwind scheme has to be
modified while applied to the system (1.3) and therefore, we design an extension of
the second-order central-upwind scheme for this system. We prove that the resul-
ting second-order method globally preserves positivity of the computed values of the
density u (see Sect. 2.1).

In Sect. 3.1, we test the proposed method on the classical Keller–Segel model. In
Sects. 3.2 and 3.3, the new method is applied to a more realistic chemotaxis model from
[50,51] and in Sect. 3.4, it is implemented to the haptotaxis model from [2,10,11]. Our
numerical experiments clearly demonstrate high resolution, stability and robustness
of the designed central-upwind scheme.
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172 A. Chertock, A. Kurganov

2 Derivation of the scheme

In this section, we derive a central-upwind scheme for the Keller–Segel system (1.1)
and (1.2). As it was mentioned above, we first differentiate equation (1.2) with respect
to x and y and rewrite the system as (1.3), which in the coordinate form reads:

⎧⎪⎨
⎪⎩

ut + (χup)x + (χuq)y = uxx + uyy,

pt − ux = pxx + pyy − p,

qt − uy = qxx + qyy − q,

(2.1)

where (p, q)T := w = ∇v. This system can be viewed as a system of advection-
reaction-diffusion equations:

Ut + f(U)x + g(U)y = �U + R(U), (2.2)

where U := (u, p, q)T , f(U) := (χup,−u, 0)T , g(U) := (χuq, 0,−u)T , and
R(U) := (0,−p,−q)T . The Jacobians of f and g are:

∂f
∂U

=
⎛
⎝χp χu 0

−1 0 0
0 0 0

⎞
⎠ and

∂g
∂U

=
⎛
⎝χq 0 χu

0 0 0
−1 0 0

⎞
⎠ ,

and their eigenvalues are:

λf
1,2 = χ

2

(
p ±

√
p2−4u

χ

)
, λf

3 = 0 and λ
g
1,2 = χ

2

(
q ±

√
q2−4u

χ

)
, λ

g
3 = 0,

(2.3)

respectively. It is now clear that the “purely” convective system (1.4) is hyperbolic
only if both χp2 ≥ 4u and χq2 ≥ 4u (otherwise, it is elliptic). Unfortunately, the
ellipticity condition, χ min(p2, q2) < 4u, is satisfied in generic cases, for example,
when p = vx = 0 and u > 0. Therefore, the operator splitting (fractional step)
approach, which requires solving the convection, reaction and diffusion parts of the
system separately (see, e.g., [52]), may be inapplicable here. Obviously, the full system
(2.1) contains a stabilizing diffusion term, but one has to be very careful since ellipticity
of the convective part may still cause instabilities.

We now apply the semi-discrete central-upwind scheme from [32] to (2.2). To this
end, we introduce the following notation: xα = α�x, yβ = β�y, where �x and
�y are small spatial scales assumed, for simplicity, to be constants throughout the
computational domain, divided into the cells C j,k := [x j− 1

2
, x j+ 1

2
] × [yk− 1

2
, yk+ 1

2
].

According to the central-upwind approach, the cell averages,

U j,k(t) := 1

�x�y

∫ ∫
C j,k

U(x, y, t) dxdy,
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A second-order positivity preserving central-upwind scheme 173

are evolved in time by solving the following system of ODEs:

d

dt
U j,k = −

Hx
j+ 1

2 ,k
−Hx

j− 1
2 ,k

�x
−

Hy
j,k+ 1

2
−Hy

j,k− 1
2

�y

+�

[
U j+1,k−2U j,k+U j−1,k

(�x)2
+U j,k+1−2U j,k+U j,k−1

(�y)2

]
+R j,k, (2.4)

where � is a diagonal diffusion matrix (in our case, it is equal to the identity matrix).
The numerical fluxes Hx and Hy in (2.4) are given by (see [30,32] for details):

Hx
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
f(UE

j,k)− a−
j+ 1

2 ,k
f(UW

j+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+

j+ 1
2 ,k

a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
UW

j+1,k − UE
j,k

]
,

(2.5)

Hy
j,k+ 1

2
=

b+
j,k+ 1

2
g(UN

j,k)− b−
j,k+ 1

2
g(US

j,k+1)

b+
j,k+ 1

2
− b−

j,k+ 1
2

+
b+

j,k+ 1
2
b−

j,k+ 1
2

b+
j,k+ 1

2
− b−

j,k+ 1
2

[
US

j,k+1 − UN
j,k

]
.

Here, UE,W,N,S
j,k are the point values of the piecewise linear reconstruction Ũ ≡

(̃u, p̃, q̃) for U,

Ũ(x, y) := U j,k + (Ux ) j,k(x − x j )+ (Uy) j,k(y − yk), (x, y) ∈ C j,k, (2.6)

at (x j+ 1
2
, yk), (x j− 1

2
, yk), (x j , yk+ 1

2
), and (x j , yk− 1

2
), respectively. Namely, we have:

UE
j,k := Ũ(x j+ 1

2
− 0, yk) = U j,k + �x

2 (Ux ) j,k,

UW
j,k := Ũ(x j− 1

2
+ 0, yk) = U j,k − �x

2 (Ux ) j,k,

UN
j,k := Ũ(x j , yk+ 1

2
− 0) = U j,k + �y

2 (Uy) j,k,

US
j,k := Ũ(x j , yk− 1

2
+ 0) = U j,k − �y

2 (Uy) j,k .

(2.7)

The numerical derivatives (Ux ) j,k and (Uy) j,k are (at least) first-order approximations
of Ux (x j , yk, t) and Uy(x j , yk, t), respectively, and are computed using a nonlinear
limiter that would ensure a nonoscillatory nature of the reconstruction (2.6). A library
of such limiters is available (see, e.g., [16,28,35–37,42,49]), and one can compute
the numerical derivatives using one’s favorite limiter. However, it is important that
the reconstruction of the cell density, ũ, is positivity preserving, namely, if u j,k ≥
0 ∀ j, k, then the reconstructed point values, {uE,W,N,S

j,k }, are nonnegative as well. In
our numerical experiments, we have used the positivity preserving generalized minmod
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174 A. Chertock, A. Kurganov

reconstruction [35,37,42,49] with:

(Ux ) j,k =minmod

(
θ

U j,k − U j−1,k

�x
,

U j+1,k − U j−1,k

2�x
, θ

U j+1,k − U j,k

�x

)
,

(2.8)

(Uy) j,k =minmod

(
θ

U j,k − U j,k−1

�y
,

U j,k+1 − U j,k−1

2�y
, θ

U j,k+1 − U j,k

�y

)
,

where the minmod function, defined as

minmod(z1, z2, . . .) :=

⎧⎪⎨
⎪⎩

min j {z j }, if z j > 0 ∀ j,

max j {z j }, if z j < 0 ∀ j,

0, otherwise,

is applied in a componentwise manner. The parameter θ can be used to control the
amount of numerical viscosity present in the resulting scheme: larger values of θ
correspond to less dissipative but, in general, more oscillatory reconstructions.

The one-sided local speeds in the x- and y-directions, a±
j+ 1

2 ,k
and b±

j,k+ 1
2
, are

determined as follows. If all the eigenvalues of the Jacobian ∂f
∂U are real (i.e., if both

χ(pE
j,k)

2 ≥ 4uE
j,k and χ(pW

j+1,k)
2 ≥ 4uW

j+1,k), then a±
j+ 1

2 ,k
are obtained from the

largest and the smallest eigenvalues of the Jacobian (see (2.3)):

a+
j+ 1

2 ,k
= χ

2
max

⎛
⎜⎝pE

j,k+

√√√√
(pE

j,k)
2−

4uE
j,k

χ
, pW

j+1,k+

√√√√
(pW

j+1,k)
2−

4uW
j+1,k

χ
, 0

⎞
⎟⎠,

(2.9)

a−
j+ 1

2 ,k
= χ

2
min

⎛
⎜⎝pE

j,k−

√√√√
(pE

j,k)
2−

4uE
j,k

χ
, pW

j+1,k−

√√√√
(pW

j+1,k)
2−

4uW
j+1,k

χ
, 0

⎞
⎟⎠,

otherwise we take a±
j+ 1

2 ,k
to be:

a+
j+ 1

2 ,k
= χ max

(
pE

j,k, pW
j+1,k, 0

)
, a−

j+ 1
2 ,k

= χ min
(

pE
j,k, pW

j+1,k, 0
)
. (2.10)

In fact, in the elliptic region, the propagation speeds are infinite. However, the values
of a±

j+ 1
2 ,k

chosen in (2.10) guarantee positivity of the computed cell densities as we

show in Sect. 2.1.
The y-propagation speeds are computed in a similar fashion: if both χ(qN

j,k)
2 ≥

4uN
j,k and χ(qS

j,k+1)
2 ≥ 4uS

j,k+1, then b±
j,k+ 1

2
are obtained from the largest and the
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A second-order positivity preserving central-upwind scheme 175

smallest eigenvalues of the Jacobian ∂g
∂U (see (2.3)):

b+
j,k+ 1

2
= χ

2
max

⎛
⎝qN

j,k+
√
(qN

j,k)
2−4uN

j,k

χ
, qS

j,k+1+
√
(qS

j,k+1)
2−4uS

j,k+1

χ
, 0

⎞
⎠,

(2.11)

b−
j,k+ 1

2
= χ

2
min

⎛
⎝qN

j,k−
√
(qN

j,k)
2−4uN

j,k

χ
, qS

j,k+1−
√
(qS

j,k+1)
2−4uS

j,k+1

χ
, 0

⎞
⎠,

otherwise we take:

b+
j,k+ 1

2
= χ max

(
qN

j,k, qS
j,k+1, 0

)
, b−

j,k+ 1
2

= χ min
(

qN
j,k, qS

j,k+1, 0
)
. (2.12)

The cell averages of the reaction terms, {R j,k}, in (2.4) are computed using the
midpoint rule, namely:

R
(1)
j,k = 0, R

(2)
j,k = −p j,k, R

(3)
j,k = −q j,k, (2.13)

where R = (R(1), R(2), R(3))T .
Notice, that in Eqs. (2.4)–(2.13), we suppress the dependence of U j,k , Hx

j+ 1
2 ,k

,

Hy
j,k+ 1

2
, R j,k , UE,W,N,S

j,k , (Ux ) j,k , (Uy) j,k , a±
j+ 1

2 ,k
, and b±

j,k+ 1
2

on t to simplify the

notation.

Remark Since the third component of the f flux and the second component of the g flux
are zero, the amount of numerical diffusion present at the central-upwind scheme (2.4)–
(2.7), (2.9)–(2.13) can be safely decreased by taking (H x )

(3)
j+ 1

2 ,k
≡ 0 and (H y)

(2)
j,k+ 1

2
≡

0 for all j, k, where H = (H (1), H (2), H (3))T . This has been done in all numerical
experiments reported in Sect. 3.1.

Finally, the system of ODEs (2.4) has to be numerically solved by a sufficiently
accurate and stable ODE solver. Since the system (2.4) is rather stiff, one may prefer
to use an implicit or large stability domain explicit ODE solver. However, this may
affect the positivity preserving property of the resulting fully discrete scheme. In
Sect. 2.1, we prove that if one uses the forward Euler method or another strong stability
preserving (SSP) method (either the Runge–Kutta or a multistep one) from [18], then
the positivity of u will be ensured. The SSP methods are not very efficient for stiff
problems. Therefore, it is worthwhile to implement an adaptive strategy by switching
between a highly efficient, but not positivity preserving ODE solver, and the SSP
method in the following manner. The efficient ODE solver is used from the beginning.
If after a certain time step, a negative value of the computed cell density emerges, this
step should be rejected and an SSP time step should be performed instead. Then, one
has to switch back to the efficient solver.
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2.1 Proof of the positivity preserving property

Theorem 2.1 Consider the system (2.2) and the semi-discrete central-upwind scheme
(2.4)–(2.7), (2.9)–(2.13) with a positivity preserving piecewise linear reconstruction
for u. Assume that the system of ODEs (2.4) is discretized by the forward Euler method.
Then, the computed cell densities {u j,k(t)} remain nonnegative provided the initial cell
densities are nonnegative and the following CFL condition is satisfied:

�t ≤ min

{
�x

8a
,
�y

8b
,

(�x)2(�y)2

4((�x)2 + (�y)2)

}
. (2.14)

where

a := max
j,k

{
max

{
a+

j+ 1
2 ,k
,−a−

j+ 1
2 ,k

}}
, b :=max

j,k

{
max

{
b+

j,k+ 1
2
,−b−

j,k+ 1
2

}}
. (2.15)

Proof The proof of this theorem is a straightforward extension of the proof of the
positivity preserving property of central-upwind schemes for the Saint–Venant system
of shallow water equations [30,33] (see also [32,34]).

Let us assume that at a certain time level t the computed solution is available and
that u j,k(t) ≥ 0 ∀ j, k. Then the new cell densities are obtained from the forward Euler
discretization of the first equation in (2.4):

u j,k(t +�t) = u j,k−λ
(
(H x )

(1)
j+ 1

2 ,k
−(H x )

(1)
j− 1

2 ,k

)
−µ

(
(H y)

(1)
j,k+ 1

2
−(H y)

(1)
j,k− 1

2

)

+�t

[
u j+1,k−2u j,k + u j−1,k

(�x)2
+ u j,k+1−2u j,k + u j,k−1

(�y)2

]
, (2.16)

where λ := �t/�x, µ := �t/�y, and, as before, the dependence of all terms on the
RHS of (2.16) on t is suppressed to simplify the notation. Since

(H x )
(1)
j+ 1

2 ,k
= χ

a+
j+ 1

2 ,k
uE

j,k pE
j,k − a−

j+ 1
2 ,k

uW
j+1,k pW

j+1,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+

j+ 1
2 ,k

a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
uW

j+1,k − uE
j,k

]

and

(H y)
(1)
j,k+ 1

2
= χ

b+
j,k+ 1

2
uN

j,kqN
j,k − b−

j,k+ 1
2
uS

j,k+1qS
j,k+1

b+
j,k+ 1

2
− b−

j,k+ 1
2

+
b+

j,k+ 1
2
b−

j,k+ 1
2

b+
j,k+ 1

2
− b−

j,k+ 1
2

[
uS

j,k+1 − uN
j,k

]
,
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and since by the conservation property of the piecewise reconstruction (2.6)

u j,k = 1

4

(
uE

j,k + uW
j,k + uN

j,k + uS
j,k

)
,

which can be rewritten as

u j,k = 1

8

(
uE

j,k + uW
j,k + uN

j,k + uS
j,k

)
+ 1

2
u j,k, (2.17)

we obtain:

u j,k(t +�t) =
⎡
⎣1

8
+ λa−

j− 1
2 ,k

⎛
⎝ a+

j− 1
2 ,k

− pW
j,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

⎞
⎠
⎤
⎦ uW

j,k

+
⎡
⎣1

8
− λa+

j+ 1
2 ,k

⎛
⎝ pE

j,k − a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

⎞
⎠
⎤
⎦ uE

j,k

− λa−
j+ 1

2 ,k

⎛
⎝a+

j+ 1
2 ,k

− pW
j+1,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

⎞
⎠ uW

j+1,k

+ λa+
j− 1

2 ,k

⎛
⎝ pE

j−1,k − a−
j− 1

2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

⎞
⎠ uE

j−1,k

+
⎡
⎣1

8
+ µb−

j,k− 1
2

⎛
⎝ b+

j,k− 1
2

− qS
j,k

b+
j,k− 1

2
− b−

j,k− 1
2

⎞
⎠
⎤
⎦ uS

j,k

+
⎡
⎣1

8
− µb+

j,k+ 1
2

⎛
⎝ qN

j,k − b−
j,k+ 1

2

b+
j,k+ 1

2
− b−

j,k+ 1
2

⎞
⎠
⎤
⎦ uN

j,k

− µb−
j,k+ 1

2

⎛
⎝ b+

j,k+ 1
2

− qS
j,k+1

b+
j,k+ 1

2
− b−

j,k+ 1
2

⎞
⎠ uS

j,k+1

+ µb+
j,k− 1

2

⎛
⎝ qN

j,k−1 − b−
j,k− 1

2

b+
j,k− 1

2
− b−

j,k− 1
2

⎞
⎠ uN

j,k−1

+ u j,k

[
1

2
−�t

(
2

(�x)2
+ 2

(�y)2

)]

+�t

[
u j+1,k + u j−1,k

(�x)2
+ u j,k+1 + u j,k−1

(�y)2

]
. (2.18)

Notice that the new values {u j,k(t + �t)}, computed using (2.18), are linear com-
binations of the nonnegative reconstructed point value {uE

j,k, uW
j,k, uN

j,k, uS
j,k} and the
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nonnegative cell averages {u j,k}. Moreover, our selection of the local speeds a±
j+ 1

2 ,k

and b±
j,k+ 1

2
in (2.9)–(2.12) together with the CFL condition (2.14) guarantees that the

coefficients in these linear combinations are nonnegative. Therefore, the new values
of the cell densities, computed at time level t +�t , are nonnegative. This completes
the proof of the theorem. ��
Remarks

1. Notice that one can improve the CFL condition (2.14) by rewriting (2.17) in a
more general, one-parameter form:

u j,k = ω

4

(
uE

j,k + uW
j,k + uN

j,k + uS
j,k

)
+ (1 − ω)u j,k, ω ∈ (0, 1).

This would lead to the following estimate:

�t ≤ max
ω∈(0,1)min

{
ω�x

4a
,
ω�y

4b
,
(1 − ω)(�x)2(�y)2

2((�x)2 + (�y)2)

}
,

which is the optimal theoretical CFL condition, but is hard to implement in prac-
tice.

2. Theorem 2.1 is also valid if the forward Euler method is replaced by a higher-order
SSP ODE solver, because a time step in such solvers can be written as a convex
combination of several forward Euler steps.

3. The upper bound on the time step in (2.18) is a minimum of three terms: the first
two,�x/(8a) and�y/(8b), are related to the chemotaxis term in the first equation
in (2.1), while the third one is due to the parabolic term there. In the (near) blowup
regime, a and b in (2.18) are large and thus the first two terms determine the size of
time steps, in which case an explicit method is efficient enough. However, when a
and b are small, the third term in (2.18) dominates, which reduces the efficiency of
the explicit method. One of the ways to overcome this difficulty is to use implicit-
explicit (IMEX) methods [3,4,24] as long as a and b remain relatively small. This
does not affect the positivity preserving property of our method as we proof in the
next theorem.

Theorem 2.2 Consider the system (2.2) and the semi-discrete central-upwind scheme
(2.4)–(2.7), (2.9)–(2.13) with a positivity preserving piecewise linear reconstruction
for u. Assume that the system of ODEs (2.4) is discretized by the first-order IMEX
method, namely,

U j,k(t +�t) = U j,k(t)− λ

(
(H x )

(1)
j+ 1

2 ,k
(t)− (H x )

(1)
j− 1

2 ,k
(t)

)

− µ

(
(H y)

(1)
j,k+ 1

2
(t)− (H y)

(1)
j,k− 1

2
(t)

)

+�t
U j+1,k(t +�t)− 2U j,k(t +�t)+ U j−1,k(t +�t)

(�x)2
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+�t
U j,k+1(t +�t)− 2U j,k(t +�t)+ U j,k−1(t +�t)

(�y)2

+�tR j,k(t +�t). (2.19)

Then, the computed cell densities {u j,k(t)} remain nonnegative provided the initial
cell densities are nonnegative and the following CFL condition is satisfied:

�t ≤ min

{
�x

4a
,
�y

4b

}
, (2.20)

where a and b are give by (2.15).

Proof We begin in exactly the same way as in the proof of Theorem 2.1 and group
the terms in the first equation in (2.19) as

u j,k(t +�t) =
⎡
⎣1

4
+ λa−

j− 1
2 ,k

⎛
⎝ a+

j− 1
2 ,k

− pW
j,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

⎞
⎠
⎤
⎦ uW

j,k

+
⎡
⎣1

4
− λa+

j+ 1
2 ,k

⎛
⎝ pE

j,k − a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

⎞
⎠
⎤
⎦ uE

j,k

− λa−
j+ 1

2 ,k

⎛
⎝a+

j+ 1
2 ,k

− pW
j+1,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

⎞
⎠ uW

j+1,k

+ λa+
j− 1

2 ,k

⎛
⎝ pE

j−1,k − a−
j− 1

2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

⎞
⎠ uE

j−1,k

+
⎡
⎣1

4
+ µb−

j,k− 1
2

⎛
⎝ b+

j,k− 1
2

− qS
j,k

b+
j,k− 1

2
− b−

j,k− 1
2

⎞
⎠
⎤
⎦ uS

j,k

+
⎡
⎣1

4
− µb+

j,k+ 1
2

⎛
⎝ qN

j,k − b−
j,k+ 1

2

b+
j,k+ 1

2
− b−

j,k+ 1
2

⎞
⎠
⎤
⎦ uN

j,k

− µb−
j,k+ 1

2

⎛
⎝ b+

j,k+ 1
2

− qS
j,k+1

b+
j,k+ 1

2
− b−

j,k+ 1
2

⎞
⎠ uS

j,k+1

+ µb+
j,k− 1

2

⎛
⎝ qN

j,k−1 − b−
j,k− 1

2

b+
j,k− 1

2
− b−

j,k− 1
2

⎞
⎠ uN

j,k−1

+�t
u j+1,k(t +�t)− 2u j,k(t +�t)+ u j−1,k(t +�t)

(�x)2

+�t
u j,k+1(t +�t)− 2u j,k(t +�t)+ u j,k−1(t +�t)

(�y)2
. (2.21)
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(compare with (2.18)). Once again, the time dependence of all terms in (2.21) calcu-
lated at time level t is suppressed to simplify the notation.

Next, we rewrite Eq. (2.21) in the following vector form:

(I +�t M)	u(t +�t) = 	L
(
	uE, 	uW, 	uN, 	uS

)
, (2.22)

where M is a so-called M-matrix [24], 	u is a vector containing the cell averages
u j,k(t + �t) and 	L is a vector, each element of which is a linear combination of
the corresponding point values uE,W,N,S

j,k with the coefficients that are nonnegative

provided the CFL condition (2.20) is satisfied. Since all the point values uE,W,N,S
j,k are

nonnegative, each entry of 	L is nonnegative as well.
It is well-known [24,47] that all components of the solution of the linear system

(2.22),

	u(t +�t) = (I +�t M)−1 	L
(
	uE, 	uW, 	uN, 	uS

)
,

are also nonnegative. Thus, the proof of the theorem is complete. ��
Remark Theorem 2.2 is also valid if the first-order IMEX method is replaced with a
high-order IMEX-SSP [43] or a positivity preserving IMEX [20] method.

3 Numerical examples and applications

In this section, we demonstrate the performance of the proposed central-upwind
scheme on a number of test problems for the Keller–Segel system. We also show
that a naïve finite-difference scheme, described in Sect. 3.1 below, fails to capture
solutions of these problems. In addition, we apply our new method to two related
problems—two more complicated chemotaxis systems (Sects. 3.2 and 3.3) and the
haptotaxis model (Sect. 3.4).

In all numerical examples, we have used the Neumann boundary conditions imple-
mented in a straightforward “zero flux” manner. The central-upwind scheme has
always been used with the minmod limiter (2.8) with θ = 2 and the third-order
SSP Runge–Kutta ODE solver from [18] for the time evolution. The time step has
been selected adaptively according to (2.14).

The efficiency of the proposed central-upwind scheme can be improved by replacing
the SSP Runge–Kutta ODE solver with either an IMEX method (see, e.g., [3,4,20,
43]) or by implementing an adaptive switching between a highly efficient (but not
necessarily positivity preserving) ODE solver and an explicit SSP method.

3.1 Keller–Segel model

We begin with writing down a finite-difference scheme for the Keller–Segel system
(1.1) and (1.2). In the semi-discrete flux form, the scheme reads:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

du j,k

dt
= −

H x
j+ 1

2 ,k
(t)−H x

j− 1
2 ,k
(t)

�x
−

H y
j,k+ 1

2
(t)−H y

j,k− 1
2
(t)

�y
+u j+1,k(t)−2u j,k(t)+u j−1,k(t)

(�x)2

+ u j,k+1(t)−2u j,k(t)+u j,k−1(t)

(�y)2
,

dv j,k

dt
= v j+1,k(t)−2v j,k(t)+v j−1,k(t)

(�x)2
+v j,k+1(t)−2v j,k(t)+v j,k−1(t)

(�y)2
−v j,k(t)+u j,k(t),

(3.1)

where u j,k(t) and v j,k(t) denote the approximation of the point values u(x j , yk, t)
and v(x j , yk, t), respectively, and the centered fluxes are:

H x
j+ 1

2 ,k
(t) = χ

u j+1,k(t)+ u j,k(t)

2
· v j+1,k(t)− v j,k(t)

�x
,

H y
j,k+ 1

2
(t) = χ

u j,k+1(t)+ u j,k(t)

2
· v j,k+1(t)− v j,k(t)

�y
.

(3.2)

The fully discrete finite-difference scheme is then obtained by applying an ODE solver
to (3.1) and (3.2). In our numerical experiments, we have tested different ODE solvers
and the obtained results did not depend on a particular choice of the time discretization.

Example 1 (Blowup at the center of a square domain. Nonzero v(x, y, 0).) We first
consider the initial-boundary value problem (IBVP) for the Keller–Segel system with
the chemotactic sensitivity constant χ = 1 and the radially symmetric bell-shaped
initial data,

u(x, y, 0) = 1000 e−100(x2+y2), v(x, y, 0) = 500 e−50(x2+y2), (3.3)

in a square domain
[− 1

2 ,
1
2

]× [− 1
2 ,

1
2

]
.

According to the results in [19], both u- and v-components of the solution are
expected to blow up at the origin in finite time. This situation is especially challenging
since capturing blowing up solutions with shrinking support is extremely hard.

We first apply the finite-difference scheme (3.1) and (3.2) to the IBVP (1.1), (1.2),
and (3.3). We have used a uniform grid with �x = �y = 1/101. The computed cell
densities at times t = 10−6 and t = 5 × 10−6 are plotted in Fig. 1. As one can see,
the method performs reasonably well. However, already at t = 4.4 × 10−5 negative
densities appear (see Fig. 2) and this triggers severe numerical instabilities. By time
t = 10−4, the computed solution is already meaningless as it is shown in Fig. 3.

On the contrary, the proposed central-upwind scheme performs well on this test
problem. The results obtained on the same uniform grid with �x = �y = 1/101
are plotted in Fig. 4. One may observe a lack of negative values of u (as predicted
by Theorem 2.1) or any other numerical instabilities, and a high resolution of the
blowing up solution. Numerical convergence of the central-upwind scheme is verified
by running the same test on a finer grid with �x = �y = 1/201, see Fig. 5. As one
can see, the coarse and the fine grid solutions are at a very good agreement at small
times (t = 10−6 and t = 5 × 10−6). However, they are quite different at a larger time
t = 4.4 × 10−5, and especially at t = 10−4. Therefore, we further refine the grid and
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Fig. 1 Solution (u) of (1.1) and (1.2), (3.3) at small times by the finite-difference scheme

Fig. 2 Solution (u) of (1.1), (1.2), and (3.3) at t = 4.4 × 10−5 by the finite-difference scheme (left) and
its one-dimensional (1D) slice along y = 0 (right)

−0.5 0 0.5
−2

0

2

4

6

8

x 10
6 t=10−4

Fig. 3 Solution (u) of (1.1), (1.2), and (3.3) at t = 10−4 by the finite-difference scheme (left) and its 1D
slice along y = 0 (right)
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Fig. 4 Solution (u) of (1.3), (3.3) by the central-upwind scheme with �x = �y = 1/101

apply the central-upwind scheme on the uniform grid with �x = �y = 1/401 to
the same IBVP. The results are shown in Fig. 6. It seems that the computed solution
converges at t = 4.4×10−5, but it keeps increasing (as the grid is refined) at t = 10−4.
A more precise interpretation of the obtained results would require a knowledge of the
blowup time (which is not available) since after the solution blows up no numerical
convergence is expected. Based on the presented numerical results, we conjecture that
the blowup time t∗ ∈ (4.4 × 10−5, 10−4).

Figures 4, 5 and 6 clearly demonstrate that the maximum value of u grows in time,
while its support shrinks. Since the growth rate is very high, the solutions at different
times are plotted in different vertical scales, which makes it somehow inconvenient to
visually compare them. It is also quite hard to see details of the computed solution at
the blowup stages. Therefore, in Figs. 7, 8 and 9, we plot the same computed solutions,
but in the uniform (in time) logarithmic vertical scale. All other results in Sect. 3.1
will be plotted in the logarithmic scale only.

Example 2 Blowup at the center of a square domain. v(x, y, 0) ≡ 0 Next, we apply
the central-upwind scheme to another IBVP for the same system (1.3) with χ = 1 on
the same domain

[− 1
2 ,

1
2

]× [− 1
2 ,

1
2

]
, but subject to the different initial data:

u(x, y, 0) = 1000 e−100(x2+y2), v(x, y, 0) ≡ 0. (3.4)

As in the previous example, both u- and v-components of the solution are expected
to blow up at the origin in finite time, [19]. However, the initial chemoattractant
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Fig. 5 Same as in Fig. 4 but on a finer grid with �x = �y = 1/201

Fig. 6 Same as in Figs. 4 and 5 but on a finer grid with �x = �y = 1/401

concentration is now zero, and thus the blowup is expected to occur much later than in
Example 1. Moreover, the diffusion initially dominates the concentration mechanism
and, as a result, the cell density spreads out and its maximum decreases at small times
(the maximum of u, computed at time t = 0.1, is ∼ 529.4/541.5).

The results obtained by the finite-difference scheme (3.1) and (3.2) applied to this
IBVP on the uniform grid with �x = �y = 1/101 are reasonably good at times
t = 0.1 and t = 0.2, but at about t ≈ 0.31345 negative cell densities appear, and
by time t = 0.3135 the computed solution is already meaningless (the numerical
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Fig. 7 Solution (ln(1 + u)) of (1.3), (3.3) by the central-upwind scheme with �x = �y = 1/101

Fig. 8 Same as in Fig. 7 but on a finer grid with �x = �y = 1/201
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Fig. 9 Same as in Figs. 7 and 8 but on a finer grid with �x = �y = 1/401

Fig. 10 Solution (ln(1 + u)) of (1.3), (3.4) by the central-upwind scheme with �x = �y = 1/101

instability is similar to the one shown in Figs. 2 and 3, so we do not plot any finite-
difference results here).

We now apply the central-upwind scheme to this test problem. The results obtained
on the same uniform are plotted in Fig. 10. The computed u-component solution
has got no negative values and is oscillation-free. Numerical convergence of the
central-upwind scheme is verified by running the same test on finer grids with �x =
�y = 1/201 (Fig. 11) and�x = �y = 1/401 (Fig. 12). As in Example 1, no conver-
gence has been observed at the largest shown time (t = 0.4). We conjecture that this
occurs since t = 0.4 is already a post-blowup time.
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Fig. 11 Same as in Fig. 10 but on a finer grid with �x = �y = 1/201

Fig. 12 Same as in Figs. 10 and 11 but on a finer grid with �x = �y = 1/401

Example 3 (Blowup at the corner of a square domain.) The third example is designed to
demonstrate the ability of the proposed central-upwind scheme to capture solutions that
blow up away from their initial location. We consider the same IBVP as in Example 2,
but with the initial data shifted by (0.25, 0.25):

u(x, y, 0) = 1000e−100((x−0.25)2+((y−0.25)2), v(x, y, 0) = 0. (3.5)

It has been proved in [19] that in this case, the solution is expected to blow up at the
boundary of the domain. The cell densities computed by the central-upwind scheme at
different times on two different uniform grids are shown (in the logarithmic scale) in
Figs. 13 and 14. Once again, one may observe that the behavior of the computed solu-
tion matches the prediction: the cells first move to the boundary and then concentrate
at the corner where the solution blows up.

We also consider the same IBVP but with a twice smaller initial cell density:

u(x, y, 0) = 500e−100((x−0.25)2+((y−0.25)2), v(x, y, 0) = 0. (3.6)

According to [19], the solution of this IBVP is expected to be different form the
previous one. The total mass is now below the critical value, and thus the solution
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Fig. 13 Solution (ln(1 + u)) of (1.3), (3.5) by the central-upwind scheme with �x = �y = 1/101

Fig. 14 Same as in Fig. 13 but on a finer grid with �x = �y = 1/201

may or may not blow up, and if it does, it has to concentrate at the boundary of the
domain. The cell densities (in the logarithmic scale) computed at different times on
two different uniform grids are shown in Figs. 15 and 16. Our results suggest that even
though the total mass is below the critical one, the solution still blows up at the corner.
However, at the early stages, the solution spreads out over the entire domain and the
maximum of u reduces to ∼ 79.35/79.41 at time t = 0.05, and only later on it starts
concentrating at the corner. As expected, the entire blowup process takes more time
than in the case of the IBVP (1.3), (3.5).
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Fig. 15 Solution (ln(1 + u)) of (1.3), (3.6) by the central-upwind scheme with �x = �y = 1/101

Fig. 16 Same as in Fig. 15 but on a finer grid �x = �y = 1/201

3.2 Model of chemotactic bacteria patterns in semi-solid medium

In this section, we consider a more complicated and more realistic chemotaxis model
proposed in [51] (see also [52]), which, in dimensionless form, can be written as:

ut + α∇·
[

u

(1 + v)2
∇v
]

= du�u + ρu

(
δ

w2

1 + w2 − u

)
(3.7)
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vt = dv�v + β
wu2

σ + u2 − γ uv, (3.8)

wt = dw�w − κu
w2

1 + w2 (3.9)

Here, as before, u(x, y, t) and v(x, y, t) are the cell density and a chemoattrac-
tant concentration, respectively. The new variable w(x, y, t) represents the nutrient
concentration and the coefficients α, du, ρ, δ, dv, β, σ, γ, dw , and κ are positive
constants.

According to our approach described in Sects. 1 and 2, we first differentiate equation
(3.8) with respect to x and y, and add two new equations to the system (3.7)–(3.9).
We obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut +
(

αup

(1 + v)2

)
x

+
(

αuq

(1 + v)2

)
y

= du(uxx + uyy)+ ρu

(
δw2

1 + w2 − u

)
,

vt = dv(vxx + vyy)+ βwu2

σ + u2 − γ uv,

pt +
(
γ uv − βwu2

σ + u2

)
x

= dv(pxx + pyy),

qt +
(
γ uv − βwu2

σ + u2

)
y

= dv(qxx + qyy),

wt = dw�w − κuw2

1 + w2

where, as before, p := vx , q := vy . In the flux form, this system reads:

Ut + f(U)x + g(U)y = �(Uxx + Uyy)+ R(U), (3.10)

where U := (u, v, p, q, w)T , the fluxes are f(U) :=
(

αup
(1+v)2 , 0, γ uv − βwu2

σ+u2 , 0, 0
)T

and g(U) :=
(

αuq
(1+v)2 , 0, 0, γ uv − βwu2

σ+u2 , 0
)T
, the diffusion matrix is � := diag

(du, dv, dv, dv, dw), and the source term is R(U) :=
(
ρu
(
δw2

1+w2 −u
)
,
βwu2

σ+u2 −γ uv, 0,

0, − κuw2

1+w2

)T
. The eigenvalues of the Jacobians ∂f

∂U and ∂g
∂U are:

λf
1,2 = α

2(1 + v)2

⎛
⎝p±

√
p2 − 4u(γ v − 2βσuw)(1 + v)2

α(σ + u2)2

⎞
⎠ , λf

3 = λf
4 = λf

5 = 0

(3.11)

and

λ
g
1,2 = α

2(1 + v)2

⎛
⎝q±

√
q2 − 4u(γ v−2βσuw)(1 + v)2

α(σ + u2)2

⎞
⎠, λ

g
3 =λg

4 =λg
5 =0, (3.12)
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respectively. Since the expression under the square root in (3.11) and (3.12) may be
negative, the convective part of the system (3.10) is only conditionally hyperbolic.

The positivity preserving semi-discrete central-upwind scheme for this system is
obtained in the same way as for the Keller–Segel system (2.2). The only difference is
in the computation of the one-sided local speeds and the cell averages of the reaction
term. The x-speeds are now given by:

a+
j+ 1

2 ,k
= α

2
max

⎛
⎝ pE

j,k

(1+vE
j,k)

2
+
√√√√ (pE

j,k)
2

(1+vE
j,k)

4
−4(uE

j,k)(γ v
E
j,k−2βσuE

j,kw
E
j,k)

α(1+vE
j,k)

2(σ+(uE
j,k)

2)2
,

pW
j+1,k

(1+vW
j+1,k)

2
+
√√√√ (pW

j+1,k)
2

(1+vW
j+1,k)

4
− 4(uW

j+1,k)
2(γ vW

j+1,k −2βσuW
j+1,kw

W
j+1,k)

α(1+vW
j+1,k)

2(σ+(uW
j+1,k)

2)2
, 0

⎞
⎠,

(3.13)

a−
j+ 1

2 ,k
= α

2
min

⎛
⎝ pE

j,k

(1 + vE
j,k)

2
−
√√√√ (pE

j,k)
2

(1 + vE
j,k)

4
−4(uE

j,k)(γ v
E
j,k−2βσuE

j,kw
E
j,k)

α(1 + vE
j,k)

2(σ + (uE
j,k)

2)2
,

pW
j+1,k

(1+vW
j+1,k)

2
−
√√√√ (pW

j+1,k)
2

(1+vW
j+1,k)

4
− 4(uW

j+1,k)
2(γ vW

j+1,k −2βσuW
j+1,kw

W
j+1,k)

α(1+vW
j+1,k)

2(σ+(uW
j+1,k)

2)2
, 0

⎞
⎠,

if all the expressions under the square roots in (3.13) are defined, and

a+
j+ 1

2 ,k
= αmax

(
pE

j,k

(1 + vE
j,k)

2
,

pW
j+1,k

(1 + vW
j+1,k)

2
, 0

)
,

a−
j+ 1

2 ,k
= αmin

(
pE

j,k

(1 + vE
j,k)

2
,

pW
j+1,k

(1 + vW
j+1,k)

2
, 0

)
,

otherwise. The one-sided local speeds in the y-direction are computed similarly:

b+
j,k+ 1

2
= α

2
max

⎛
⎝ qN

j,k

(1 + vN
j,k)

2
+
√√√√ (qN

j,k)
2

(1 + vN
j,k)

4
−4(uN

j,k)(γ v
N
j,k−2βσuN

j,kw
N
j,k)

α(1 + vN
j,k)

2(σ + (uN
j,k)

2)2
,

qS
j,k+1

(1+vS
j,k+1)

2
+
√√√√ (qS

j,k+1)
2

(1+vS
j,k+1)

4
− 4(uS

j,k+1)(γ v
S
j,k+1−2βσuS

j,k+1w
S
j,k+1)

α(1+vS
j,k+1)

2(σ+(uS
j,k+1)

2)2
, 0

⎞
⎠,

(3.14)

b−
j,k+ 1

2
= α

2
min

⎛
⎝ qN

j,k

(1 + vN
j,k)

2
−
√√√√ (qN

j,k)
2

(1+vN
j,k)

4
−4(uN

j,k)(γ v
N
j,k−2βσuN

j,kw
N
j,k)

α(1 + vN
j,k)

2(σ + (uN
j,k)

2)2
,

qS
j,k+1

(1+vS
j,k+1)

2
−
√√√√ (qS

j,k+1)
2

(1+vS
j,k+1)

4
− 4(uS

j,k+1)(γ v
S
j,k+1−2βσuS

j,k+1w
S
j,k+1)

α(1+vS
j,k+1)

2(σ+(uS
j,k+1)

2)2
, 0

⎞
⎠,
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if all the expressions under the square roots in (3.14) are defined, and

b+
j,k+ 1

2
= αmax

(
qN

j,k

(1 + vN
j,k)

2
,

qS
j,k+1

(1 + vS
j,k+1)

2
, 0

)
,

b−
j,k+ 1

2
= αmin

(
qN

j,k

(1 + vN
j,k)

2
,

qS
j,k+1

(1 + vS
j,k+1)

2
, 0

)
,

otherwise. The cell averages of the reaction term are obtained using the midpoint rule
and are given by:

R
(1)
j,k = ρu j,k

(
δ(w j,k)

2

1 + (w j,k)2
− u j,k

)
, R

(2)
j,k = βw(u j,k)

2

σ + (u j,k)2
− γ u j,kv j,k,

R
(3)
j,k = R

(4)
j,k = 0, R

(5)
j,k = −κu j,k(w j,k)

2

1 + (w j,k)2

where R = (R(1), R(2), R(3), R(4), R(5))T .
Finally, as in Sect. 2, we take the numerical fluxes (H x )

(2)
j+ 1

2 ,k
≡ (H x )

(4)
j+ 1

2 ,k
≡

(H x )
(5)
j+ 1

2 ,k
≡ 0 and (H y)

(2)
j,k+ 1

2
≡ (H y)

(3)
j,k+ 1

2
≡ (H y)

(5)
j,k+ 1

2
≡ 0 for all j, k, since

the corresponding components of the f and g fluxes are zero. Here, H = (H (1), H (2),

H (3), H (4), H (5))T .

Example 4 (Cell density pattern formation in semi-solid medium.) We consider the
following setup for the initial data:

u(x, y, 0) =
⎧⎨
⎩

5 cos2
(
π
√

x2+y2

4

)
, if x2 + y2 ≤ 4,

0, otherwise,

v(x, y, 0) = 0,
w(x, y, 0) ≡ 1.

(3.15)

The values of the parameters used are:

α = 40, du = 0.5, ρ = 1.5, δ = 2, dv = 0.25,

β = 10, σ = 100, γ = 1, dw = 0.25, κ = 0.005,
(3.16)

and the IBVP (3.7)–(3.9), (3.15) and (3.16) is solved in the domain [0, 30] × [0, 30].
Unlike the Keller–Segel model, the chemotactic term in (3.7) contains a regularizing

factor 1/(1 + v2), which is expected to prevent a solution blowup. To the best of our
knowledge, no analytic results on the global existence of the solution of (3.7)–(3.9) are
available. However, the numerical results reported in [51,52] suggest that the solution
of the IBVP (3.7)–(3.9), (3.15) and (3.16) may develop complicated spiky structures
but would not blow up. Therefore, one may expect that designing a good numerical
method for the considered IBVP would be easier than for the problems studied in
the previous numerical examples. As in Sect. 3.1, we demonstrate here that a naïve
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A second-order positivity preserving central-upwind scheme 193

finite-difference approach may not work due to appearance of negative values of the
computed cell density.

We begin with writing down a semi-discrete finite-difference scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du j,k

dt
= −

H x
j+ 1

2 ,k
(t)− H x

j− 1
2 ,k
(t)

�x
−

H y
j,k+ 1

2
(t)− H y

j,k− 1
2
(t)

�y

+ du

[
u j+1,k(t)− 2u j,k(t)+ u j−1,k(t)

(�x)2
+ u j,k+1(t)− 2u j,k(t)+ u j,k−1(t)

(�y)2

]
,

+ ρu j,k(t)

(
δ

w2
j,k(t)

1 + w2
j,k(t)

− u j,k(t)

)

dv j,k

dt
= dv

[
v j+1,k(t)− 2v j,k(t)+ v j−1,k(t)

(�x)2
+ v j,k+1(t)− 2v j,k(t)+ v j,k−1(t)

(�y)2

]

+ β
w j,k(t)u2

j,k(t)

σ + u2
j,k(t)

− γ u j,k(t)v j,k(t)

dw j,k

dt
= dw

[
w j+1,k(t)− 2w j,k(t)+ w j−1,k(t)

(�x)2
+ w j,k+1(t)− 2w j,k(t)+ w j,k−1(t)

(�y)2

]

−κu j,k(t)
w2

j,k(t)

1 + w2
j,k(t)

.

(3.17)

Here, u j,k(t), v j,k(t) and w j,k(t) denote the approximation of the point values u(x j ,

yk, t), v(x j , yk, t) and w(x j , yk, t), respectively, and the centered fluxes are:

H x
j+ 1

2 ,k
(t) = α

u j+ 1
2 ,k
(t)

(1 + v j+ 1
2 ,k
(t))2

· v j+1,k(t)− v j,k(t)

�x
,

H y
j,k+ 1

2
(t) = α

u j,k+ 1
2
(t)

(1 + v j+ 1
2 ,k
(t))2

· v j,k+1(t)− v j,k(t)

�y
,

(3.18)

where

u j+ 1
2 ,k
(t) = u j+1,k(t)+ u j,k(t)

2
, v j+ 1

2 ,k
(t) = v j+1,k(t)+ v j,k(t)

2
,

u j,k+ 1
2
(t) = u j,k+1(t)+ u j,k(t)

2
, v j,k+ 1

2
(t) = v j,k+1(t)+ v j,k(t)

2
.

(3.19)

The fully discrete finite-difference scheme is then obtained by applying an ODE solver
to (3.17)–(3.19). In our numerical experiments, we have tested different ODE solvers
and the obtained results did not depend on a particular choice of the time discretization.

We apply the above finite-difference scheme to the IBVP (3.7)–(3.9), (3.15) and
(3.16). The cell densities at time t = 6 computed on a uniform grid �x = �y = 1/5
are plotted in Fig. 17. As one can see in the three-dimensional (3D) graph on the right,
negative values already appear at this time even though the structure of the solution
on the left looks reasonable (compare with the solution obtained by the proposed
positivity preserving central-upwind scheme shown in Fig. 19). We then refine the grid
to �x = �y = 1/10 and plot the computed cell densities in Fig. 18: the resolution
increased but some of the density values are still negative. We expect that by further
refining the mesh (while keeping the final time fixed) an accurate positive solution will
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Fig. 17 Solution (u) of (3.7)–(3.9), (3.15) and (3.16) by the finite-difference scheme with�x = �y = 1/5

Fig. 18 Solution (u) of (3.7)–(3.9), (3.15) and (3.16) by the finite-difference scheme with�x = �y = 1/10

Fig. 19 Solution (u) of (3.10), (3.15) and (3.16) by the central-upwind scheme with �x = �y = 1/5
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be captured by the described finite-difference scheme. However, the required mesh
size may be impractical, especially for computing the solution at large times.

Next, we compute the solution of the same IBVP (3.7)–(3.9), (3.15) and (3.16)
at time t = 6 using the positivity preserving central-upwind scheme, applied to the
system (3.10). For comparison, we perform computations on the same set of uniform
grids and present the results in Figs. 19 and 20. As anticipated, no negative numerical
values have been developed.

We then continue both the finite-difference and central-upwind computations to
times t = 12, 24, 18 and 30. The finite-difference scheme keeps producing negative
values of cell densities. Unlike the Keller-Segel case, the magnitude of these negative
values does not increase in time, but they propagate and slowly destroy the spiky
pattern in the computed solution—see Figs. 21 and 22 and compare with the results
obtained by the central-upwind scheme shown in Figs. 23 and 24. We would also
like to point out that the considered model is very sensitive to the choice of the
parameters in (3.16), but the qualitative behavior of the central-upwind results is in
the spirit of the experimental data from [7,8] and the numerical results reported in
[51,52].

3.3 Model of chemotactic bacteria patterns in liquid medium

In this section, we consider a special case of the system studied in Sect. 3.2, which
describes bacteria patterns in the liquid medium that contains sufficient nutrients for
the bacteria. According to [50] (see also [51]), in this case, the coefficients ρ and γ
are equal to zero and the nutritient concentration w is assumed to be constant so that
the system (3.7)–(3.9) reduces to:

ut + α∇·
[

u

(1 + v)2
∇v
]

= du�u, (3.20)

vt = dv�v + β
wu2

σ + u2 . (3.21)

Fig. 20 Solution (u) of (3.10), (3.15) and (3.16) by the central-upwind scheme with �x = �y = 1/10

123



196 A. Chertock, A. Kurganov

Fig. 21 Solution (u) of (19) and (20), (3.15) and (3.16) by the finite-difference scheme with �x = �y =
1/10

Fig. 22 Three-dimensional plot of the solution from Fig. 21 at times t = 18 and t = 30
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Fig. 23 Solution (u) of (3.10), (3.15) and (3.16) by the central-upwind scheme with �x = �y = 1/10

Fig. 24 Three-dimensional plot of the solution from Fig. 23 at times t = 18 and t = 30

As before, α, du, dv, β, and σ are positive constants.
As in the previous sections, we first differentiate equation (3.21) with respect to x

and y, introduce the notation p := vx , q := vy , and rewrite the system (3.20) and
(3.21) as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut +
(

αup

(1 + v)2

)
x

+
(

αuq

(1 + v)2

)
y

= du(uxx + uyy),

vt = dv(vxx + vyy)+ βwu2

σ + u2 ,

pt +
(
βwσ

σ + u2

)
x

= dv(pxx + pyy),

qt +
(
βwσ

σ+u2

)
y

= dv(qxx + qyy),

or in the flux form as:

Ut + f(U)x + g(U)y = �(Uxx + Uyy)+ R(U). (3.22)

Here, U := (u, v, p, q)T , f(U) :=
(

αup
(1+v)2 , 0, βwσ

σ+u2 , 0
)T
, g(U) :=

(
αuq
(1+v)2 , 0, 0,

βwσ

σ+u2

)T
, � := diag(du, dv, dv, dv), and R(U) := (0, βwu2

σ+u2 , 0, 0)T . The eigenvalues

of the Jacobians ∂f
∂U and ∂g

∂U are:

λf
1,2 = α

2(1 + v)2

⎛
⎝p ±

√
p2 − 8βwσu2(1 + v)2

α(σ + u2)2

⎞
⎠ , λf

3 = λf
4 = 0 (3.23)

and

λ
g
1,2 = α

2(1 + v)2

⎛
⎝q ±

√
q2 − 8βwσu2(1 + v)2

α(σ + u2)2

⎞
⎠ , λ

g
3 = λ

g
4 = 0, (3.24)

respectively.
As in the previously considered systems, the eigenvalues may be complex so that

the convective part of the system (3.22) is conditionally hyperbolic. Therefore, the
one-sided local speeds are computed depending on the sign of the expressions under
the square roots in (3.23) and (3.24). Namely, the x-speeds are:

a+
j+ 1

2 ,k
= α

2
max

⎛
⎝ pE

j,k

(1+vE
j,k)

2
+
√√√√ (pE

j,k)
2

(1+vE
j,k)

4
− 8βwσ(uE

j,k)
2

α(1+vE
j,k)

2(σ+(uE
j,k)

2)2
,

pW
j+1,k

(1+vW
j+1,k)

2
+
√√√√ (pW

j+1,k)
2

(1+vW
j+1,k)

4
− 8βwσ(uW

j+1,k)
2

α(1+vW
j+1,k)

2(σ+(uW
j+1,k)

2)2
, 0

⎞
⎠,

(3.25)

a−
j+ 1

2 ,k
= α

2
min

⎛
⎝ pE

j,k

(1+vE
j,k)

2
−
√√√√ (pE

j,k)
2

(1+vE
j,k)

4
− 8βwσ(uE

j,k)
2

α(1+vE
j,k)

2(σ+(uE
j,k)

2)2
,
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pW
j+1,k

(1+vW
j+1,k)

2
−
√√√√ (pW

j+1,k)
2

(1+vW
j+1,k)

4
− 8βwσ(uW

j+1,k)
2

α(1+vW
j+1,k)

2(σ+(uW
j+1,k)

2)2
, 0

⎞
⎠,

if all the expressions under the square roots in (3.25) are defined, and

a+
j+ 1

2 ,k
= αmax

(
pE

j,k

(1 + vE
j,k)

2
,

pW
j+1,k

(1 + vW
j+1,k)

2
, 0

)
,

a−
j+ 1

2 ,k
= αmin

(
pE

j,k

(1 + vE
j,k)

2
,

pW
j+1,k

(1 + vW
j+1,k)

2
, 0

)
,

otherwise; and the y-speeds are:

b+
j,k+ 1

2
= α

2
max

⎛
⎝ qN

j,k

(1+vN
j,k)

2
+
√√√√ (qN

j,k)
2

(1+vN
j,k)

4
− 8βwσ(uN

j,k)
2

α(1+vN
j,k)

2(σ+(uN
j,k)

2)2
,

qS
j,k+1

(1+vS
j,k+1)

2
+
√√√√ (qS

j,k+1)
2

(1+vS
j,k+1)

4
− 8βwσ(uS

j,k+1)
2

α(1+vS
j,k+1)

2(σ+(uS
j,k+1)

2)2
, 0

⎞
⎠,
(3.26)

b−
j,k+ 1

2
= α

2
min

⎛
⎝ qN

j,k

(1+vN
j,k)

2
−
√√√√ (qN

j,k)
2

(1+vN
j,k)

4
− 8βwσ(uN

j,k)
2

α(1+vN
j,k)

2(σ+(uN
j,k)

2)2
,

qS
j,k+1

(1+vS
j,k+1)

2
−
√√√√ (qS

j,k+1)
2

(1+vS
j,k+1)

4
− 8βwσ(uS

j,k+1)
2

α(1+vS
j,k+1)

2(σ+(uS
j,k+1)

2)2
, 0

⎞
⎠,

if all the expressions under the square roots in (3.26) are defined, and

b+
j,k+ 1

2
= αmax

(
qN

j,k

(1 + vN
j,k)

2
,

qS
j,k+1

(1 + vS
j,k+1)

2
, 0

)
,

b−
j,k+ 1

2
= αmin

(
qN

j,k

(1 + vN
j,k)

2
,

qS
j,k+1

(1 + vS
j,k+1)

2
, 0

)
,

otherwise. The cell averages of the reaction term are:

R
(1)
j,k = 0, R

(2)
j,k = βw(u j,k)

2

σ + (u j,k)2
, R

(3)
j,k = R

(4)
j,k = 0.
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Finally, as in Sects. 2 and 3.2, we take (H x )
(2)
j+ 1

2 ,k
≡ (H x )

(4)
j+ 1

2 ,k
≡ 0 and (H y)

(2)
j,k+ 1

2

≡ (H y)
(3)
j,k+ 1

2
≡ 0 for all j, k, since the corresponding components of the f and g fluxes

are zero.

Example 5 (Cell density pattern formation in liquid medium.) In this example, we
apply the derived scheme to the system (3.22) subject to the following initial data:

u(x, y, 0) = 0.9 + 0.2σ(x, y), v(x, y, 0) = 0, (3.27)

where σ is a random variable uniformly distributed on [0, 1]. The IBVP is solved in
the domain [0, 10] × [0, 10] and the parameters are chosen as:

α = 80, dv = 0.33, du = β = σ = w = 1.

In Figs. 25 and 26, we plot the computed solution (cell densities) at various times.
We would like to notice that the obtained results match well with both experimental
data from [7,8] and the numerical results reported in [50]. This confirms the robustness
of the proposed central-upwind scheme.

Fig. 25 Solution (u) of (3.22), (3.27) by the central-upwind scheme with �x = �y = 1/10

123



A second-order positivity preserving central-upwind scheme 201

Fig. 26 Three-dimensional plot of the solution from Fig. 25 at time t = 2

3.4 A haptotaxis model

In the final section, we apply the designed central-upwind scheme to a haptotaxis
model proposed in [2,10,11], see also [5,53]. The model can be described by the 2D
system of advection-reaction-diffusion equations:

ut + ∇·(χ(v)u∇v) = du�u − ψ(x, y, w)u + ρ(x, y, w)u, (3.28)

vt = −α(x, y)mv, (3.29)

mt = dm�m + δ(x, y)u − β(x, y)m, (3.30)

wt = dw�w + γ (x, y)v − e(x, y)w − η(x, y, u)w. (3.31)

This system models a process of tumor invasion into surrounding healthy tissue.
The dependent variables in (3.28)–(3.31) are: the density of tumor cells, u(x, y, t),
the density of extracellular matrix macromolecules, v(x, y, t), the concentration of
matrix degradative enzyme, m(x, y, t), and the concentration of oxygen (w(x, y, t)).
The parameters χ(v), du, ψ(x, y, w), ρ(x, y, w), α(x, y), dm , δ(x, y), β(x, y), dw,
γ (x, y), η(x, y, u), and e(x, y) are specified in the numerical example below.

As before, we begin with differentiating (3.29) with respect to x and y and denote
p := vx and q := vy . Then the modified system reads:

Ut + f(U)x + g(U)y = �(Uxx + Uyy)+ R(U), (3.32)

where

U := (u, v, p, q,m, w)T , � := diag(du, 0, 0, 0, dm, dw),

f(U) :=(χ(v)up, 0, α(x, y)mv, 0, 0, 0)T , g(U) :=(χ(v)uq, 0, 0, α(x, y)mv, 0, 0)T ,
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Fig. 27 Solution (u) of (3.32) and (3.34) by the central-upwind scheme with �x = �y = 1/100

R(U) := (−ψ(x, y, w)u + ρ(x, y, w)u,−α(x, y)mv, 0, 0, δ(x, y)u − β(x, y)m,

γ (x, y)v − η(x, y, u)w − e(x, y)w)T.

The eigenvalues of the Jacobians of ∂f
∂U and ∂g

∂U are:
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λf
1 =χ(v)p, λf

2 = · · ·=λf
6 = 0, and λ

g
1 =χ(v)q, λ

g
2 = · · ·=λg

6 = 0, (3.33)

respectively. Unlike the previously considered chemotaxis models, all the eigenvalues
are real now, and thus the convective part of the haptotaxis system (3.32) is hyperbolic.
Therefore, the one-sided local speeds can be taken as the largest/smallest eigenvalues
of the corresponding Jacobians.

The semi-discrete central-upwind scheme can be then applied to the system (3.32)
in a straightforward manner, and we leave it to the reader to fill in the remaining
details in the scheme construction. We would only like to mention that in (3.32), as in
the previously considered systems, there are several zero flux components. Therefore,
we take the corresponding numerical fluxes to be (H x )(2) ≡ (H x )(4) ≡ (H x )(5) ≡
(H x )(6) ≡ 0 and (H y)(2) ≡ (H y)(3) ≡ (H y)(5) ≡ (H y)(6) ≡ 0.

Example 6 (Constant haptotaxis sensitivity.) We apply the central-upwind scheme to
the system (3.32) with the following choice of parameters:

χ(v) ≡ 0.4, du = 0.01, ψ(x, y, w) ≡ 1, ρ(x, y, w) = 2w

1 + w
,

α(x, y) ≡ 5, dm = 0.01,

δ(x, y) ≡ 1, β(x, y) ≡ 0.01, dw = 0.01, γ (x, y) ≡ 5,

η(x, y, u) = 2u

1 + u
, e(x, y) ≡ 1.

The initial data are given by:

u(x, y, 0) = 5 max{0.3 − (x − 3)2 − (y − 3)2, 0},
v(x, y, 0) = 0.05 cos

(
5πx2

18

)
sin

(
13πy2

72

)
+ 0.3, (3.34)

m(x, y, 0) = u(x, y, 0), w(x, y, 0) = 4 v(x, y, 0),

and the IBVP is solved in the domain [0, 6] × [0, 6].

Fig. 28 Three-dimensional plot of the solutions from Fig. 27 at times t = 2 and t = 10
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204 A. Chertock, A. Kurganov

Tumor cell densities computed at different times are shown in Figs. 27 and 28. The
results seem to be in a very good agreement with the results reported in [53], which
confirms the robustness of the proposed central-upwind scheme.
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