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Abstract. We first develop non-oscillatory central schemes for a traffic flow
model with Arrhenius look-ahead dynamics, proposed in [A. Sopasakis and

M.A. Katsoulakis, SIAM J. Appl. Math., 66 (2006), pp. 921–944]. This
model takes into account interactions of every vehicle with other vehicles ahead

(“look-ahead” rule) and can be written as a one-dimensional scalar conserva-
tion law with a global flux. The proposed schemes are extensions of the non-
oscillatory central schemes, which belong to a class of Godunov-type projection-
evolution methods. In this framework, a solution, computed at a certain time,
is first approximated by a piecewise polynomial function, which is then evolved
to the next time level according to the integral form of the conservation law.
Most Godunov-type schemes are based on upwinding, which requires solving
(generalized) Riemann problems. However, no (approximate) Riemann prob-
lem solver is available for conservation laws with global fluxes. Therefore,
central schemes, which are Riemann-problem-solver-free, are especially attrac-
tive for the studied traffic flow model. Our numerical experiments demonstrate
high resolution, stability, and robustness of the proposed methods, which are
used to numerically investigate both dispersive and smoothing effects of the
global flux.

We also modify the model by Sopasakis and Katsoulakis by introducing
a more realistic, linear interaction potential that takes into account the fact
that a car’s speed is affected more by nearby vehicles than distant (but still
visible) ones. The central schemes are extended to the modified model. Our
numerical studies clearly suggest that in the case of a good visibility, the new
model yields solutions that seem to better correspond to reality.

1. Introduction. The main goal of this paper is to develop reliable and robust
numerical methods for a new deterministic traffic flow model recently introduced
in [29]. We also propose a more realistic modification of the model from [29] and
study it using the designed schemes.

Traffic flow has been modeled by PDEs since the pioneering works [18] and
[25]. The main idea in these models is to view cars as moving particles and to
extend fluid dynamics approaches to traffic flows. We refer the reader to [7, 8, 9,
27, 30] for examples of gas-kinetic-type (mesoscopic) models and to [7, 22, 31] for
some hydrodynamics-like (macroscopic) ones. Traffic flow has been also extensively
modeled by stochastic differential equations (see [28, 29] and the references therein),
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optimal velocity models (see, e.g., [1, 19, 24]), and cellular automaton models (see,
e.g., [2, 20, 21]).

The simplest deterministic continuum traffic flow model is ([18, 25]):

ut + f(u)x = 0, f(u) = uV (u), V (u) = Vm(1 − u), (1)

where u(x, t) is a car density (measured in “cars per car length” so that 0 ≤ u ≤ 1),
Vm is the maximum possible speed, and V (u) is the velocity function that is assumed
to depend only on the density.

In [29], this model has been extended to a more realistic one by taking into
account interactions with other vehicles ahead (“look-ahead” rule). This is done by
treating vehicle movement as an asymmetric exclusion process (ASEP) on a periodic
lattice representing a one-lane highway partitioned into N cells, L = {1, 2, . . . , N}.
Vehicles are represented as a spin configuration σ, which is defined for each x ∈ L
as

σ(x) =

{
1, if a vehicle occupies cell x,
0, if the cell is empty,

and offers the interpretation of the state of the system. Letting σ = {σ(x) : x ∈ L}
gives a state variable within space {0, 1}L. This approach models random dynamics
in traffic, as the spin configuration is treated as a stochastic process. The effect cars
have on each-other is represented in the interaction potential of vehicles in the ASEP
model, in which the Arrhenius look-ahead dynamics is incorporated. This leads to
a stochastic model presented and studied in [29].

It is also shown in [29] that under certain mild assumptions, the stochastic pro-
cess describing traffic movement can be treated as deterministic. To this end, the
fluctuations in {σ(x), x ∈ L} are approximated by the law of large numbers, and
the resulting PDE is the following scalar conservation law with a global flux (see
[29] for details):

ut + F (u)x = 0, F (u) = Vmu(1 − u) exp(−J ◦ u), (2)

where the contribution of short range interactions to the flux is modeled by the
convolution

J ◦ w(x) :=

∞∫

x

J(y − x)w(y) dy. (3)

In the first part of the paper, we follow [29] and consider a constant interaction
potential

J(r) :=
1

γ
ϕ

(
r

γ

)
, ϕ(r) :=

{
1, 0 < r < 1,
0, otherwise,

that is,

J(r) =

{
1/γ, 0 < r < γ,
0, otherwise,

(4)

where γ is a positive constant proportional to the look-ahead distance. Introducing
the anti-derivative, U :=

∫ x

−∞
u(ξ, t) dξ, equation (2)–(3) can be rewritten as:

ut + F (u, U)x = 0, F (u, U) = Vmu(1 − u) exp

(
−

U(x + γ) − U(x)

γ

)
. (5)

We are interested in developing accurate and reliable numerical methods for
equation (5). Since this model is an extension of the simplest model (1), one may
want to apply methods designed for scalar hyperbolic conservation laws to the global
flux equation (5). The most popular methods are finite-volume methods (see, e.g.,
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[4, 10, 16]) and, in particular, Godunov-type schemes. These schemes form a class of
projection-evolution methods, in which a computed solution is first interpolated by
a piecewise polynomial function and then evolved to the next time level according
to the integral form of the conservation law. Godunov-type schemes are divided
into two big classes: upwind and central. The evolution step of upwind schemes
— both the original first-order Godunov scheme [5] and its higher-order extensions
(see, e.g., [4, 10, 15, 16]) — are based on (approximate) solvers of the (generalized)
Riemann problem. Unfortunately, no Riemann problem solvers are available for
the global flux model (5), and it is therefore unclear how upwind schemes can be
applied to it.

On the contrary, central schemes are based on the integration of conservation
laws over the space-time control volumes that are selected so that each Riemann
fan is entirely contained in its own control volume (this is achieved thanks to the
finite speed of propagation). Thus, no (approximate) Riemann problem solver is
needed, and therefore central schemes can be extended to problems for which the
solution of the Riemann problem is unknown. The first-order Lax-Friedrichs (LxF)
scheme [3, 14] is a prototype of central schemes. It is probably the most universal
numerical method for time-dependent PDEs, but its resolution is quite low. The
performance of the LxF scheme has been enhanced in [23], where the second-order
central scheme — the Nessyahu-Tadmor (NT) scheme — was constructed by incor-
porating a second-order piecewise polynomial reconstruction into the LxF central
framework.

The numerical dissipation present in the NT scheme can be further reduced if
the contral volumes at every cell interface are taken to be proportional to the local
speeds of propagation (rather than the global, as in the NT scheme). This has been
done in [11, 12, 13], which introduce a new class of Godunov-type central schemes
— the central-upwind (CU) schemes. The CU schemes do not use a staggered grid
and admit a particularly simple semi-discrete form. Also, due to a smaller amount
of numerical dissipation, the CU schemes can be successfully applied to problems
requiring small time-steps and/or large time integration.

In this paper, we extend the NT and CU schemes to the conservation law with the
global flux, (5). The new schemes, derived in §2.1 and §2.2, respectively, are applied
to a number of test problems in §3. In Example 1, we demonstrate robustness and
high resolution, achieved by the proposed method. We also perform a numerical
convergence test, compare solutions of the equations with global and non-global
fluxes, and study the dependence of numerical solutions on the look-ahead distance
γ. Example 2 is designed to numerically study a dispersive effect of the global
flux, which transforms a shock wave into a dispersive “wave package.” Finally, in
Example 3, we numerically investigate a breakdown phenomenon and discover that
when γ is small, the smoothing effect of the global flux seems to be able to prevent
the shock discontinuity formation.

At the end of the paper, we modify the model (2)–(4) by considering a more
realistic, linear interaction potential

J(r) =
1

γ
ϕ

(
r

γ

)
, ϕ(r) =

{
2 − 2r, 0 < r < 1,
0, otherwise,
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that is,

J(r) =






2

γ

(
1 −

r

γ

)
, 0 < r < γ,

0, otherwise.

(6)

Compared with the original potential (4), the new one, (6), seems to be more
realistic, especially in the case of large γ. Indeed, the cars that are visible to a
driver but still far away should have less influence on the driver behavior than the
cars that are nearby. In §4, we extend the NT and CU schemes to the new model
and test them on a number of numerical examples with the same initial data as in
§3. In the case of a good visibility (large γ), the obtained results are qualitatively
different from the ones reported in §3.

2. Derivation of the central schemes. In this section, we derive the staggered
NT and the semi-discrete CU schemes for equation (5).

2.1. Staggered central scheme. We first introduce the following notation: xα =
xmin + (α − 1/2)∆x, tβ = β∆t, where ∆x and ∆t are small spatial and temporal
scales assumed, for simplicity, to be constants throughout the computational domain
[xmin, xmax], divided into the cells Cj := [xj− 1

2
, xj+ 1

2
] so that

xmax = xmin + J∆x and [xmin, xmax] =

J⋃

j=1

Cj .

Let us assume that at a certain time level t = tn, the solution, realized by its cell
averages,

ūn
j :=

1

∆x

∫

Cj

u(x, tn) dx, (7)

is available (we assume that the solution is compactly supported and that the com-
putational domain [xmin, xmax] is sufficiently large so that suppu(·, t) ∈ [xmin, xmax]
for all t ∈ [0, T ], where T is the final time). We then construct its piecewise linear
interpolant

ũn(x) := ūn
j + sn

j (x − xj), x ∈ Cj . (8)

This reconstruction is (formally) second-order provided the slopes sn
j are (at least)

first-order approximations of the derivatives ux(xj , t
n). A non-oscillatory nature of

the interpolant (8) is achieved by computing the slopes with the help of a nonlinear
limiter. A library of such limiters is available (see, e.g., [4, 10, 15, 16, 17, 23, 26]),
and one can compute the numerical derivatives using one’s favorite limiter. In
our numerical experiments, we have used the generalized minmod reconstruction
[15, 17, 23, 26] with:

sn
j = minmod

(
θ
ūn

j − ūn
j−1

∆x
,

ūn
j+1 − ūn

j−1

2∆x
, θ

ūn
j+1 − ūn

j

∆x

)
, θ ∈ [1, 2], (9)

where the minmod function is defined as:

minmod(z1, z2, ...) :=





minj{zj}, if zj > 0 ∀j,
maxj{zj}, if zj < 0 ∀j,
0, otherwise,

and the parameter θ can be used to control the amount of numerical viscosity
present in the resulting scheme. It is well-known (see, e.g., [17]) that larger values
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of θ correspond to less dissipative but, in general, more oscillatory reconstructions.
In our numerical experiments, we have used θ = 2.

The reconstructed solution, ũn(x), is then evolved to the next time level t = tn+1

by integrating equation (5) over the space-time control volumes [xj , xj+1]×[tn, tn+1],
which, after division by ∆x, results in:

ūn+1
j+ 1

2

=
1

∆x

xj+1∫

xj

ũn(x) dx

−
1

∆x

tn+1∫

tn

[
F (u(xj+1, t), U(xj+1, t)) − F (u(xj , t), U(xj , t))

]
dt. (10)

The first integral on the right-hand side (RHS) of (10) can be computed exactly.
The flux integrals on the RHS of (10) should be computed using the (approximate)
solution of the initial value problem (IVP) (5), (8) on the time interval t ∈ (tn, tn+1)
with the initial data prescribed at t = tn. Due to the finite speed of propagation,
the solution of this IVP remains smooth at x = xj for all j provided the following
CFL condition is satisfied:

λa ≤
1

2
, λ :=

∆t

∆x
,

where a is the largest local speed that can be estimated by

a ≤ Vm max
0≤u≤1

|1 − 2u| = Vm.

Therefore, the flux integrals in (10) can be “safely” approximated by the mid-point
quadrature leading to

ūn+1
j+ 1

2

=
ūj + ūj+1

2
+

∆x

8
(sn

j − sn
j+1)

− λ
[
F (u(xj+1, t

n+ 1
2 ), U(xj+1, t

n+ 1
2 )) − F (u(xj , t

n+ 1
2 ), U(xj , t

n+ 1
2 ))
]
, (11)

where the values of both the solution u and its antiderivative U at the intermediate
time level t = tn+ 1

2 can be approximated using the Taylor expansion, namely:

u(xj , t
n+ 1

2 ) ≈ ũn(xj)+
∆t

2
ut(xj , t

n), U(xj , t
n+ 1

2 ) ≈ Ũn(xj)+
∆t

2
Ut(xj , t

n). (12)

In order to use these formulae, we need to provide the details on evaluating their
RHSs. First, from equation (8) we have

ũn(xj) = ūn
j ,

and by integrating equation (8) from xmin to x we obtain the piecewise quadratic
approximation of the antiderivative U :

Ũn(x) =

x∫

xmin

ũn(ξ) dξ = ∆x

j−1∑

i=0

ūn
i +

x∫

x
j− 1

2

ũn(ξ) dξ

= ∆x

j−1∑

i=0

ūn
i + ūn

j (x − xj− 1
2
) +

sn
j

2
(x − xj− 1

2
)(x − xj+ 1

2
), x ∈ Cj , (13)
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and, in particular, its point-values used in (12):

Un
j := Ũn(xj) = ∆x

j−1∑

i=0

ūn
i +

∆x

2
ūn

j −
(∆x)2

8
sn

j . (14)

The time derivative ut in (12) is evaluated with the help of equation (2):

ut(xj , t
n) = −Fx(u(xj , t

n), U(xj , t
n)), (15)

and the space derivative Fx in (15) is computed using the minmod limiter:

Fx(u(xj , t
n), U(xj , t

n)) = minmod

(
θ

F (ūn
j , Un

j ) − F (ūn
j−1, U

n
j−1)

∆x
,

F (ūn
j+1, U

n
j+1) − F (ūn

j−1, U
n
j−1)

2∆x
, θ

F (ūn
j+1, U

n
j+1) − F (ūn

j , Un
j )

∆x

)
. (16)

Finally, we integrate equation (15) with respect to x to obtain

Ut(xj , t
n) = −F (u(xj , t

n), U(xj , t
n)) = −F (ūn

j , Un
j ), (17)

needed to complete the evaluation of u and U at the intermediate time level in (12).

Remark 1. Notice that a global approximation of U at time level tn, given by
(13), allows one to easily compute the global flux

F (ūn
j , Un

j ) = Vmūn
j (1 − ūn

j ) exp

(
−

Ũn(xj + γ) − Ũn(xj)

γ

)
,

even if xj + γ is not a grid node.

Remark 2. In practice, it is convenient to compute the point values of Un
j recur-

sively, that is, replacing (14) with:

Un
j = Un

j−1 +
∆x

2
(ūn

j−1 + ūn
j ) +

(∆x)2

8
(sn

j−1 − sn
j ).

Remark 3. The obtained second-order NT scheme for (5) is given by (11), (8)–(9),
(12)–(17). It reduces to the first-order staggered LxF scheme if all the slopes are set
to zero and the mid-point quadrature, used in the evaluation of the flux integrals
in (10), is replaced with the left-sided rule. The resulting first-order scheme is:

ūn+1
j+ 1

2

=
ūj + ūj+1

2
− λ
[
F (un

j+1, U
n
j+1) − F (un

j , Un
j )
]
.

Remark 4. Since the derived schemes use alternating, staggered grids, one has to
distinguish between the “odd” and “even” time steps. The formulae (11), (8)–(9),
(12)–(17) describe the “odd” steps. The “even” steps are obtained by shifting the
indexes in the aforementioned equations by 1

2 . Obviously, the computational do-

main should be extended by ∆x
2 from both sides at every “even” step. This requires

a careful implementation of the given boundary conditions. In our numerical exam-
ples, the solution was constant at the edges of the computational domain so that
we used these constant values at the computational cells near the boundary.
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2.2. Semi-discrete central-upwind scheme. We now proceed with the devel-
opment of the CU scheme for equation (5). Equipped with the NT-type evolution
operator for piecewise linear functions, which was derived in §2.1, we can simply
follow the derivation of the fully discrete CU scheme carried out in [11]. Assume
that a piecewise linear approximation of the solution is available at a certain time
level tn. We first construct non-uniform space-time control volumes, the sizes of
which depend on the one-sided local speeds of propagation (the Riemann fans ap-
pearing at cell interfaces are always contained inside the control volumes). We then
evolve the solution to the next time level using the NT technique, that is, without
(approximately) solving a generalized Riemann problem. Finally, we project the
obtained solution back onto the original grid (see [11] for details). The only missing
component is an estimate of the local speeds, which, for a scalar conservation law
with a nonglobal flux f(u), are computed using f ′(u), see [11]. For a global flux
function, it may be not so easy to estimate the local speeds. However, the flux
(5) contains the global exponential factor, which is nonnegative and always smaller
than 1. Therefore, the upper/lower bounds for the right/left-sided local speeds for
equation (5) are

a+
j+ 1

2

= max(1−2u+
j+ 1

2

, 1−2u−

j+1
2

, 0), a−

j+ 1
2

= min(1−2u+
j+ 1

2

, 1−2u−

j+1
2

, 0), (18)

where, u+
j+ 1

2

and u−

j+ 1
2

are the right- and left-sided values of the piecewise linear

interpolant (8), respectively:

u+
j+ 1

2

= ūn
j+1 −

∆x

2
sn

j+1, u−

j+ 1
2

= ūn
j +

∆x

2
sn

j . (19)

Notice that having the upper and lower bounds on the local speeds is enough to
ensure that all possibly nonsmooth nonlinear waves will remain inside the corre-
sponding control volumes.

We then pass to the semi-discrete limit as ∆t → 0 along the lines of [11] and
obtain the semi-discrete CU scheme for (5):

d

dt
ūj(t) = −

Hj+ 1
2
− Hj− 1

2

∆x
, (20)

where the numerical flux Hj+ 1
2

is given by

Hj+ 1
2

:=
a+

j+ 1
2

F (u−

j+ 1
2

, Uj+ 1
2
) − a−

j+ 1
2

F (u+
j+ 1

2

, Uj+ 1
2
)

a+
j+ 1

2

− a−

j+ 1
2

+ a+
j+ 1

2

a−

j+ 1
2

[
u+

j+ 1
2

− u−

j+ 1
2

a+
j+ 1

2

− a−

j+ 1
2

− qj+ 1
2

]
. (21)

Here, the built-in “anti-diffusion” term is

qj+ 1
2

= minmod

(
u+

j+ 1
2

− uint
j+ 1

2

a+
j+ 1

2

− a−

j+ 1
2

,
uint

j+ 1
2

− u−

j+ 1
2

a+
j+ 1

2

− a−

j+ 1
2

)
, (22)

where the intermediate value uint
j+ 1

2

is

uint
j+ 1

2

=
a+

j+ 1
2

u+
j+ 1

2

− a−

j+ 1
2

u−

j+ 1
2

−
{
F (u+

j+ 1
2

, Uj+ 1
2
) − F (u−

j+ 1
2

, Uj+ 1
2
)
}

a+
j+ 1

2

− a−

j+ 1
2

. (23)
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Formulae (21)–(23) are almost identical to the corresponding formulae for conser-
vation laws with nonglobal fluxes (compare (21)–(23) with (3.3)–(3.5) in [11]). The
only difference is in the dependence of the flux function F on Uj+ 1

2
, which is calcu-

lated using (19) and Ũ (given by (13)):

F (u±

j+ 1
2

, Uj+ 1
2
) := Vmu±

j+ 1
2

(1 − u±

j+ 1
2

) exp

(
−

Ũ(xj+ 1
2

+ γ) − Ũ(xj+ 1
2
)

γ

)
.

Notice that in the semi-discrete formulation above, the cell averages, (7), the
slopes, (9), the piecewise quadratic antiderivative (13), and all quantities in (21)
are functions of time t, which is continuous at this stage. To obtain a fully discrete
scheme one has to discretize the ODE system (20) using a stable and sufficiently
accurate ODE solver. In all numerical experiments, we have used the third-order
strong stability preserving (SSP) Runge-Kutta method, see [6].

3. Numerical examples. In this section, we demonstrate the performance of the
proposed central schemes for equation (5) on a number of test problems. In all
numerical examples, the CFL number is 0.475, Vm = 4, and the computational
domain is taken large enough so that no waves reach its boundary within the final
computational time.

Example 1—red light traffic. We consider equation (5) with different γ’s subject to
the following initial data:

u(x, 0) =

{
1, 4 < x < 6,
0, otherwise.

(24)

This corresponds to a situation in which the traffic light is located at x = 6 and it
is turned from red to green at the initial time moment.

We apply the proposed central schemes to the IVP (5), (24) and compute its
solutions for different values of γ at time t = 1. We first fix γ = 1 and study the
behavior of the VT and CU schemes. The solutions, computed on two uniform
grids with ∆x = 1/5 and ∆x = 1/10, together with the reference solution, obtained
by the CU scheme on a much finer uniform mesh with ∆x = 1/400, are plotted in
Figure 1. The resolution of the shock, achieved by the CU scheme, is slightly better
than the one obtained by the NT scheme. The numerical convergence of the CU
scheme is demonstrated in Figure 2: the mesh is further refined to ∆x = 1/20 and
∆x = 1/40, and the solution seems to converge to the reference solution. We note
that due to the numerical diffusion, there are nonzero densities behind the shock
(look at the area x ∈ [3.9, 4] in Figure 2 (right)). This corresponds to (unphysical)
backward movement of the cars. One can also see that as the mesh is further refined,
no backward moving cars appear in the computed solution.

We also study the experimental convergence rate of the proposed schemes in the
L1-norm (the reference solution here has been computed by the CU scheme on a
uniform grid with ∆x = 1/800). The obtained results are reported in Table 1.

We then compare the computed solutions of the IVP (5), (24) and of a similar
problem, but with non-global flux: (1), (24). Both solutions are obtained by the
NT scheme on the same uniform mesh with ∆x = 1/20. The solutions are shown
in Figure 3 (left). One can clearly see the effect of the global flux that models the
look-ahead dynamics. The effect is more prominent at the back end of the wave:
the density wave corresponding to the global case clearly lags behind that of the
non-global one. This can be explained by the awareness of traffic ahead. At the
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Figure 1. Numerical solutions of the IVP (5), (24) obtained by
the NT and CU schemes on two different uniform grids
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Figure 2. Numerical solutions of the IVP (5), (24) obtained by
the CU scheme on two finer uniform grids (left); zoom at the shock
area (right)

∆x
NT Scheme CU Scheme

L1-error Rate L1-error Rate
1/10 2.30e-02 – 1.19e-02 –
1/20 9.55e-03 1.27 4.12e-03 1.53
1/40 3.39e-03 1.49 8.84e-03 2.22
1/80 9.79e-04 1.79 3.29e-04 1.43

Table 1. L1-errors and experimental convergence rates.

same time, since the interaction potentials vanish for vehicles at the front of the
wave, the global and non-global solutions are almost identical there. To clarify the
look-ahead effect, we show the global and non-global fluxes, F (u, U) and f(u), at
time t = 1 (see Figure 3 (right)). As one can see, the difference between the fluxes
is almost zero near x = 10 and it is largest at the back end of the wave. Notice the
effect of the numerical diffusion: it smears u and, as a result, leads to an oscillatory
behavior of the fluxes near the shock.
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Figure 3. An impact of the look-ahead dynamics: numerical so-
lutions of the global, (5), (24), and non-global, (1), (24), red light
traffic models (left) and the corresponding fluxes (right)

We finally demonstrate the dependence of the computed solution on the look-
ahead distance γ. The solutions, obtained by the NT scheme for γ = 0.1, 0.2, 0.5,
1, and on the same uniform grid with ∆x = 1/40 are presented in Figure 4. As one
can clearly see there, the dependence on γ is significant: as γ decreases, the drivers
can see less, that is, their sensitivity to interaction is lowered and the original traffic
jam dissipates more slowly. On the contrary, when γ is very large, the effect of the
global flux is negligibly small. In this context, it is instructive to look at the formal
limits of the global flux in (5) as γ → ∞ and γ → 0. Clearly, when γ → ∞ the

global factor exp
(
−U(x+γ)−U(x)

γ

)
→ 1 assuming the total number of cars on the

freeway is bounded. Therefore,

F (u, U) −→ f(u) = Vmu(1 − u) as γ → ∞,

that is, the global model reduces to the original, non-global one. On the other hand,

when γ → 0, one has
(

U(x+γ)−U(x)
γ

)
→ Ux(x) = u(x) and thus,

F (u, U) −→ f(u)e−u = Vmu(1 − u)e−u as γ → 0. (25)

The factor e−u is a “slow down” factor in the limiting low visibility case.

Example 2—traffic jam on a busy freeway. In the second example, we consider a
different initial car density distribution:

u(x, 0) =

{
1, 16 < x < 18,
0.75, otherwise,

(26)

and study the behavior of the solutions of the IVP (5), (26) for different γ’s. Our
numerical experiments clearly demonstrate convergence of the computed solutions
as the grid is refined. We therefore omit the numerical convergence demonstration.
All of the results presented in this example were obtained with the NT and CU
schemes on one particular uniform grid with ∆x = 1/40 (except the last figure,
where the smoothness of the solution is numerically investigated using finer grids).

The dispersive effect, which could have been observed in Example 1, becomes
much more prominent here since the waves are moving in the direction opposite to
the vehicles’ velocity. Even in the case of a relatively large γ = 10, the solution
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Figure 4. Dependence of the solution of the IVP (5), (24) on γ

of the IVP (5), (26) (Figure 6) is significantly different from the solution of the
corresponding IVP with a non-global flux (1), (26) (Figure 5). We then take a
smaller γ = 5 and obtain quite similar solutions, though with dispersive waves
meeting by time t = 10, see Figure 7.

We further decrease γ and discover a very interesting behavior of the solution.
The results for γ = 3 are plotted in Figure 8 (note that the x-scaling is different
in this figure from that used in Figures 5–7). Even though the waves are still
initially separated, the larger waves catch the smaller ones much faster, forming a
dispersive “wave package” at about t = 3. When the look-ahead distance reduces
to γ = 1, no separate waves are formed, but a dispersive “wave package” develops
immediately and later transforms into a single wave, see Figure 9 (notice that the
x-scaling has been changed once again). When γ is reduced to 0.5, the dispersive
effect can be observed at small times only (Figure 10), and for even smaller γ = 0.1,
no dispersive effect can be observed (Figure 11). In the latter case, the global flux
leads to a certain smoothing effect though our fine mesh calculations suggest that
the solution still contains a sub-shock at the left edge (front) of the wave, see Figure
12.

Example 3—numerical breakdown study. Our final example is devoted to the numer-
ical investigation of the smoothing effect of the global flux. As shown in Example
2, the global flux has an apparent dispersive effect for large and intermediate values



12 ALEXANDER KURGANOV AND ANTHONY POLIZZI

−10 0 10

0.8

0.9

1

t=10

−10 0 10

0.8

0.9

1

t=10

−10 0 10

t=6

−10 0 10

t=3

−10 0 10

t=1

Figure 5. Time evolution (from right to left) of the solution of (1), (26)

−10 0 10

0.8

0.9

1

t=10

 

 

NT
CU

−10 0 10

t=6

 

 

NT
CU

−10 0 10

t=3

 

 

NT
CU

−10 0 10

t=1

 

 

NT
CU

Figure 6. Time evolution (from right to left) of the solution of
(5), (26) with γ = 10
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Figure 7. Same as in Figure 6 but with γ = 5
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Figure 8. Same as in Figures 6–7 but with γ = 3
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Figure 9. Same as in Figures 6–8 but with γ = 1
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Figure 10. Same as in Figures 6–9 but with γ = 0.5
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Figure 11. Same as in Figures 6–10 but with γ = 0.1
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Figure 12. Solutions of (5), (26) with γ = 0.1 computed by the
NT (upper row) and the CU (lower row) schemes at t = 10 on two
different fine grids
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of the look-ahead parameter γ, while for small γ’s a smoothing effect seems to dom-
inate. Though a rigorous analysis of the model (5) is unavailable, the nature of the
aforementioned phenomena can be heuristically explained by expanding U(x + γ)
as a Taylor series about x and rewriting equation (5) as follows:

ut +
[
Vm(u − u2)eTS

]
x

= 0, TS := −

(
u +

γ

2
ux +

γ2

6
uxx + . . .

)
. (27)

Obviously, this can be done only for smooth solutions, for which (27) can be written
in an equivalent nonconservative form:

ut + Vm(1 − 3u + u2)eTS ux = Vm(u − u2)eTS

(
γ

2
uxx +

γ2

6
uxxx + . . .

)
, (28)

which suggests that for sufficiently small γ, the (nonlinear) dispersive term on the
RHS of (28) is small compared to the (nonlinear) viscosity term. This leads us to a
conjecture that for small γ initially smooth solutions may remain smooth for all t.
However, since in this case the viscosity coefficient is also small, smooth solutions
may develop sharp gradients.

To check our conjecture, we consider the following smooth initial data:

u(x, 0) = 0.75 + 0.25e−(x−17)2, (29)

and use the NT and CU schemes to compute the solution of the IVP (5), (29) on a
uniform grid with ∆x = 1/80. The final time is t = 10. In Figure 13, we show the
solutions of this IVP for γ = 0.1 and 1. These results suggest that the solution with
γ = 0.1 remains smooth, while the solution with γ = 1 seems to contain a shock
discontinuity at the top part of the front. Since the strength of the shock is very
low, it is quite difficult to capture numerically. A mesh refinement study, performed
on two grids with ∆x = 1/160 and ∆x = 1/320, suggests that when γ = 1 there is
a discontinuity, see Figure 14 (left) and compare it with Figure 14 (right), where a
mesh refinement study of the γ = 0.1 case is performed.

−2 0 2 4 6 8
0.75

0.8

0.85

0.9

0.95

1

NT with ∆ x=1/80
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0.9

0.95

1

CU with ∆ x=1/80

 

 

γ=0.1
γ=1

Figure 13. Solutions of (5), (29) with γ = 0.1 and γ = 1 com-
puted by the NT (left) and the CU (right) schemes

In Figure 15, we demonstrate that, as expected, both the solution of the global
model (5), (29) with large γ = 10 and the solution of the corresponding non-global
problem (1), (29), while being very different in nature, break down in finite time.

To further validate our conjecture of a strong smoothing effect of the global
flux with small γ’s, we demonstrate the time evolution of the computed solution
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Figure 14. Solutions of (5), (29) with γ = 1 (left) and γ = 0.1
(right) computed by the NT (upper row) and the CU (lower row)
schemes—zoom at the finer mesh results
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Figure 15. Solutions of (5), (29) with γ = 10 and of (1), (29),
computed by the NT scheme

of the IVP (5), (29) with γ = 0.1, see Figure 16. As before, the grid is uniform
with ∆x = 1/80, and the solution does not seem to break down at any stage of
its evolution. We have also performed finer grid computations (the results are not
shown here) which fully support our conjecture.



16 ALEXANDER KURGANOV AND ANTHONY POLIZZI

−10 0 10

0.8

0.9

1

t=20

 

 

NT
CU

−10 0 10

t=14

 

 

NT
CU

−10 0 10

t=8

 

 

NT
CU

−10 0 10

t=2

 

 

NT
CU

Figure 16. Time evolution (from right to left) of the solution of
(5), (29) with γ = 0.1

4. Linear interaction potential. In this last section, we consider the same “look-
ahead” traffic model, but with a more realistic, linear interaction potential (6)
instead of the constant one (4). In this case,

J ◦ u(x, t) =

∞∫

x

J(y − x)u(y, t) dy =
2

γ

x+γ∫

x

(
1 −

y − x

γ

)
u(y, t) dy.

Using integration by parts, the last formula can be rewritten as

J ◦ u(x, t) =
2

γ



 1

γ

x+γ∫

x

U(y, t) dy − U(x, t)



 . (30)

Note that expanding U(y, t) as a Taylor series about the point y = x + γ
2 , one

obtains that for sufficiently smooth u

J ◦ u(x, t) =
U(x + γ

2 , t) − U(x, t)
γ
2

+
γ

12
ux(ξ(t), t), ξ(t) ∈ (x, x + γ).

This shows that for small look-ahead distance γ, the modified model is not expected
to be much different from the original equation (5) since

J ◦ u(x, t) −→ u(x, t) as γ → 0,

and hence (25) is satisfied. Indeed, when the visibility is very bad, all vehicles
located within the interval (x, x+γ] are expected to have almost the same influence
on the driver of the car located at x.

However, when γ is not too small, the use of the linear interaction potential (6)
is motivated by the fact that the vehicles located further away from x (but still
visible to the driver there) typically have smaller influence on the driver’s behavior
then the vehicles that are nearby.

Formula (30) can be rewritten in a more compact form as

J ◦ u(x, t) =
2

γ

[
U(x + γ, t) − U(x, t)

γ
− U(x, t)

]
,

where U denotes the antiderivative of U :

U(x, t) :=

x∫

−∞

U(ξ, t) dξ.
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Using this notation, the modified version of equation (5) can be written as

ut + F (u, U,U)x = 0,

F (u, U,U) = Vmu(1 − u) exp

(
−

2

γ

[
U(x + γ, t) − U(x, t)

γ
− U(x, t)

])
.

(31)

Though the (global) dependence of the flux F on the solution u is more compli-
cated in (31) than in (5), the central schemes designed in §2 can be still applied
after the proper modification outlined below.

First, we extend the NT scheme. The evolution formula (11) is modified accord-
ing to the new global flux as follows:

ūn+1
j+ 1

2

=
ūj + ūj+1

2
+

∆x

8
(sn

j − sn
j+1)

− λ



F (u, U,U)

∣∣∣∣∣
(xj+1, t

n+ 1
2 )

− F (u, U,U)

∣∣∣∣∣
(xj , t

n+ 1
2 )



 . (32)

Therefore, to complete the description of the NT scheme we need to provide a recipe
for the calculation of the intermediate point values {U(xj , t

n+ 1
2 )}. This can be done

using the Taylor expansion with respect to t (compare with (12)):

U(xj , t
n+ 1

2 ) ≈ U(xj , t
n) +

∆t

2
Ut(xj , t

n). (33)

The approximate values of {U(xj , t
n)} can be obtained by integrating the piecewise

parabolic function Ũn:

U(xj , t
n) =

xj∫

xmin

Ũn(ξ) dξ = ∆x

j−1∑

i=0

wn
i +

∆x

2
wn

j −
(∆x)2

8
ūn

j , (34)

where we use the auxiliary grid variable wn
j defined by

wn
j := ∆x

j−1∑

i=0

ūn
i +

∆x

2
ūn

j −
(∆x)2

12
sn

j .

Remark 5. In principle, integrating the piecewise parabolic reconstruction Ũn,
one can obtain the corresponding piecewise cubic reconstruction for U :

Ũn(x) =

x∫

xmin

Ũn(ξ) dξ = ∆x

j−1∑

i=0

wn
i + wn

j (x − xj− 1
2
) +

ūn
j

2
(x − xj− 1

2
)(x − xj+ 1

2
)

+
sn

j

6
(x − xj− 1

2
)(x − xj)(x − xj+ 1

2
), x ∈ Cj , (35)

but if {xj + γ} are grid nodes, we only need the values of Ũ at the nodes {xj}.

Finally, integrating equation (17) from xmin to x, we obtain

Ut(xj , t
n) = −

x∫

xmin

F (u(ξ, tn), U(ξ, tn),U(ξ, tn)) dξ =: −Fn
j , (36)
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where F is an antiderivative of F , whose point values Fn
j can be calculated similarly

to the calculations of Un
j in (14), namely:

Fn
j = ∆x

j−1∑

i=0

F (u, U,U)

∣∣∣∣∣
(xi, t

n)

+
∆x

2
F (u, U,U)

∣∣∣∣∣
(xj , t

n)

−
(∆x)2

8
Fx(u, U,U)

∣∣∣∣∣
(xj , t

n)

. (37)

Here, the numerical derivative Fx is calculated using, for example, the minmod
limiter (16), which, together with the formulae (15) and (17), should be modified
by including the dependence on U into the fluxes F there.

The construction of the NT scheme for equation (31) has thus been completed:
the scheme is given by (32), (9), (12), (33)–(34), (15)–(17), and (36)–(37).

Next, we generalize the CU scheme for (31). It can be done in a straightforward
manner, and the resulting semi-discrete scheme is (20) with the modified numerical
flux given by

Hj+ 1
2

:=
a+

j+ 1
2

F (u−

j+ 1
2

, Uj+ 1
2
,Uj+ 1

2
) − a−

j+ 1
2

F (u+
j+ 1

2

, Uj+ 1
2
,Uj+ 1

2
)

a+
j+ 1

2

− a−

j+ 1
2

+ a+
j+ 1

2

a−

j+ 1
2

[
u+

j+ 1
2

− u−

j+ 1
2

a+
j+ 1

2

− a−

j+ 1
2

− qj+ 1
2

]
,

where

qj+ 1
2

= minmod

(
u+

j+ 1
2

− uint
j+ 1

2

a+
j+ 1

2

− a−

j+ 1
2

,
uint

j+ 1
2

− u−

j+ 1
2

a+
j+ 1

2

− a−

j+ 1
2

)
,

uint
j+ 1

2

=
a+

j+ 1
2

u+
j+ 1

2

− a−

j+ 1
2

u−

j+ 1
2

−
{

F (u+
j+ 1

2

, Uj+ 1
2
,Uj+ 1

2
) − F (u−

j+ 1
2

, Uj+ 1
2
,Uj+ 1

2
)
}

a+
j+ 1

2

− a−

j+ 1
2

,

and the flux function F is evaluated using (19), (13), and (35):

F (u±

j+ 1
2

, Uj+ 1
2
,Uj+ 1

2
) :=

Vmu±

j+ 1
2

(1 − u±

j+ 1
2

) exp

(
−

2

γ

[
Ũ(xj+ 1

2
+ γ) − Ũ(xj+ 1

2
)

γ
− Ũ(xj+ 1

2
)

])
.

Finally, we use the developed NT and CU schemes to perform several numerical
experiments to compare the new model (31) with the original one (5).

Example 4 — Traffic Jam on a Busy Freeway (Revised). We consider the same
initial data (26) as in Example 2, which correspond to a traffic jam on a busy
freeway, and numerically solve the IVP (31), (26) for different values of the look-
ahead distance γ. We use the same grid size (∆x = 1/40) and the same set of γ’s
(10, 5, 3, 1, 0.5, and 0.1) as in Example 2. The solutions computed by the NT and
CU schemes at times t = 1, 3, 6, and 10, are shown in Figures 17–22.

As expected, the solutions of the IVPs (31), (26) and (5), (26) are significantly
different for the large values of γ (10, 5, and 3) and quite different for the inter-
mediate γ = 1 — compare Figures 17–20 with Figures 6–9 for the corresponding
γ’s.
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For γ = 10, 5, and 3, one can notice that, unlike the case of the constant interac-
tion potential, the car density behind the traffic jam starts increasing from the very
beginning — this is an effect of the linear interaction potential. As time progresses,
the solutions develop dispersive wave structures, but these are less prominent and
seem more realistic than the ones appearing in the solutions of the model with the
constant interaction potential.

For the small γ’s (0.5 and 0.1), the solutions of the model with the constant and
linear interaction potentials are very similar (compare Figures 21–22 with Figures
10–11), especially at larger times.
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Figure 17. Time evolution (from right to left) of the solution of
(31), (26) with γ = 10.
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Figure 18. Same as in Figure 17 but with γ = 5.
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Figure 19. Same as in Figures 17–18 but with γ = 3.
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