
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. NUMER. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 45, No. 6, pp. 2408–2441

A NEW STICKY PARTICLE METHOD FOR PRESSURELESS GAS
DYNAMICS∗

ALINA CHERTOCK† , ALEXANDER KURGANOV‡ , AND YURII RYKOV§

Abstract. We first present a new sticky particle method for the system of pressureless gas
dynamics. The method is based on the idea of sticky particles, which seems to work perfectly well
for the models with point mass concentrations and strong singularity formations. In this method, the
solution is sought in the form of a linear combination of δ-functions, whose positions and coefficients
represent locations, masses, and momenta of the particles, respectively. The locations of the particles
are then evolved in time according to a system of ODEs, obtained from a weak formulation of the
system of PDEs. The particle velocities are approximated in a special way using global conservative
piecewise polynomial reconstruction technique over an auxiliary Cartesian mesh. This velocities
correction procedure leads to a desired interaction between the particles and hence to clustering
of particles at the singularities followed by the merger of the clustered particles into a new particle
located at their center of mass. The proposed sticky particle method is then analytically studied. We
show that our particle approximation satisfies the original system of pressureless gas dynamics in a
weak sense, but only within a certain residual, which is rigorously estimated. We also explain why the
relevant errors should diminish as the total number of particles increases. Finally, we numerically test
our new sticky particle method on a variety of one- and two-dimensional problems as well as compare
the obtained results with those computed by a high-resolution finite-volume scheme. Our simulations
demonstrate the superiority of the results obtained by the sticky particle method that accurately
tracks the evolution of developing discontinuities and does not smear the developing δ-shocks.
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1. Introduction. We consider the Euler equations of pressureless gas dynamics:

(1.1) wt + ∇x · (u ⊗ w) = 0.

Here, x := (x, y, . . .) is an n-dimensional vector of spatial variables, u := (u, v, . . .)
is the corresponding velocity vector, and w ≡ (w1, w2, w3, . . .)T := (ρ, ρu, ρv, . . .)T is
the (n + 1)-dimensional vector of unknown function, where ρ is the density.

This system arises in the modeling of the formation of large-scale structures in the
universe [24]. It can be formally obtained as the limit of the isotropic Euler equations
of gas dynamics as pressure tends to zero or as the macroscopic limit of a Boltzmann
equation when the Maxwellian has zero temperature.
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Even in the simplest one-dimensional (1-D) case, the system (1.1), which can be
rewritten as

(1.2)

{
ρt + (ρu)x = 0,
(ρu)t + (ρu2)x = 0,

is mathematically challenging since it is nonstrictly hyperbolic and its Jacobian is not
diagonalizable. For smooth solutions, the system (1.2) is equivalent to

ρt + (ρu)x = 0,(1.3)

ut + uux = 0.(1.4)

Notice that (1.4) is the inviscid Burgers equation, which is, in fact, decoupled from
(1.3). It is well known that the solution of the initial-value problem associated with
(1.4), as long as it stays smooth, can be easily obtained by the method of charac-
teristics. The density ρ can then be determined from (1.3), which becomes a linear
transport equation. However, if the initial velocity u(x, 0) is not monotone increas-
ing, the characteristics will intersect within a finite time, and the solution will lose
its initial smoothness, and thus it must be understood in a weak sense. As in the
general theory of weak solutions of hyperbolic systems of conservation laws, one has
to introduce discontinuity lines. Let x = ξ(t) be such a line and assume that the
solution accepts finite values u± := u(ξ(t) ± 0, t) and ρ± := ρ(ξ(t) ± 0, t) from both
sides of discontinuity. The jumps then must satisfy the Rankine–Hugoniot conditions,
namely, {

ξ′(t) (ρ+ − ρ−) = ρ+u+ − ρ−u−,

ξ′(t) (ρ+u+ − ρ−u−) = ρ+ (u+)
2 − ρ− (u−)

2
.

After eliminating ξ′ from this system, one obtains ρ+ρ− (u+ − u−)
2

= 0, which implies
u+ = u−. Therefore, in order to support the shock discontinuity in the velocity field,
the density must have a stronger (than a shock) singularity at x = ξ′(t). Since in the
Burgers equation, the characteristic lines impinge each other and thus, as part of the
system (1.2), cause a mass concentration at the velocity discontinuity line, resulting
in the formation of a δ-type singularity in the density field there.

The two-dimensional (2-D) version of (1.1) reads as

(1.5)

⎧⎨⎩
ρt + (ρu)x + (ρv)y = 0,
(ρu)t + (ρu2)x + (ρuv)y = 0,
(ρv)t + (ρuv)x + (ρv2)y = 0.

Compared to the 1-D case, solutions of the 2-D system have a similar but essentially
more sophisticated mechanism of singularities formation due to the dimensionality
factor: strong singularities may now be formed either along surfaces or at separate
points (we expect that in the three space dimensions the situation is even more com-
plex). The system (1.5) has been intensively studied at the theoretical level (see, e.g.,
[2, 4, 6, 7, 8, 20, 21]). However, no more or less complete analytical results concerning
the existence and uniqueness of solutions in the 2-D case are available. This is pri-
marily related to the difficulties in the theoretical description of the collision of 2-D
shocks. (See section 3.2 for an extensive numerical study of this phenomenon.)

Formation and further evolution of singular shocks, their interactions as well as
the emergence of vacuum states, make development of numerical methods for the
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system (1.1) a challenging problem. A numerical method based on the movement of a
system of particles was introduced in [19]. Several finite-volume [17], kinetic [2, 3, 5],
and relaxation [1] methods have been recently proposed. These methods are able to
reasonably accurately capture δ-shocks, but their applicability is rather limited; for
example, most of these methods do not work well for problems where the velocities
change sign in regions where the density varies smoothly [17].

We develop a simple, efficient, and low-dissipative sticky particle method for pres-
sureless gas dynamics. The derivation of our method is based on a weak formulation of
the system (1.5) and can be viewed as a practical implementation of the sticky particle
method from [4]. We first approximate w by a collection of N particles, located at
(xN

i (t), yNi (t)), i = 1, . . . , N , at time t, and carrying fixed masses and momenta. The
particle locations are then evolved according to the corresponding system of ODEs,
derived by plugging the particle approximation into a weak form of (1.1). In order to
prevent the situation, in which approaching particles simply pass by each other with-
out any interaction (such an undesirable situation is obviously impossible in the 1-D
case, but is almost unavoidable in the 2-D case), we divide the computational domain
into a set of auxiliary cells and compute the total mass and momenta in each cell.
The particle velocities are then approximated using the global conservative piecewise
polynomial interpolants of ρ, ρu, and ρv, constructed over an auxiliary Cartesian
mesh. This way an interaction of all particles located in the same cell is guaranteed.
When the particles get even closer to each other, we unite them into a new particle,
located at the center of mass of the original clustered particles. The mass (momen-
tum) of the new particle is simply the sum of the masses (corresponding momenta) of
the replaced particles, and the velocities of the new particle are uniquely determined
from the conservation requirements. This particle merger procedure results in mass
concentration, which is an essential property of pressureless gases.

We would like to note that our 2-D sticky particle method can be extended to
any number of space dimensions in a rather straightforward manner. In this paper,
we restrict our consideration to the 1-D and 2-D cases only, since, to the best of our
knowledge, no analytical results on three-dimensional (3-D) pressureless gas dynamics
system are available, and it is therefore hard to set up convincing 3-D numerical
experiments.

We test our method on a number of 1-D and 2-D numerical examples, in which we
compare the results obtained by the new (nondissipative) sticky particle method and
by the (dissipative) second-order central-upwind scheme from [11]. The latter scheme
is a high-resolution Godunov-type finite-volume method that belongs to a family of
central schemes, which may serve as “black-box” solvers for multidimensional hy-
perbolic systems of conservation laws. The prototype of modern central schemes is
the first-order Lax–Friedrichs scheme [9, 16], which is the most universal method for
solving (multidimensional systems of) time-dependent PDEs. However, its excessive
numerical dissipation prevents sharp resolution and therefore in practice one has to
use higher-order schemes. The first high-resolution nonoscillatory central scheme—the
second-order Nessyahu–Tadmor scheme—was proposed in [18]. The amount of numer-
ical dissipation present in projection-evolution central schemes was further reduced
by incorporating some more upwinding information on local speeds of propagation
into the evolution step [12, 14] (the resulting schemes thus have been referred to as
central-upwind schemes) and, more recently, by enhancing the accuracy of the pro-
jection step [11, 13]. We note that the only upwinding information required by the
central-upwind schemes is the eigenvalues of the Jacobians, and therefore application
of these schemes to nonstrictly hyperbolic systems like (1.5) is straightforward.
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The paper is organized as follows. We start in section 2 by introducing the new
sticky particle method for the system (1.5). We then describe, in section 2.1, the
velocity correction procedure and, in section 2.2, an algorithm of the unification of
clustering particles. The main analytical result in section 2.3 is Theorem 2.1, where
we show that even though our particle solution fails to satisfy (1.1) in a weak sense
defined in [21], the relevant errors can be rigorously estimated. We then provide a
heuristic justification why these errors tend to zero as N → ∞. We conclude in
section 3 with several 1-D and 2-D numerical examples and demonstrate that the new
method accurately tracks the evolution of developing discontinuities. We also compare
solutions computed by the sticky particle method with the corresponding solutions
computed using the second-order semidiscrete central-upwind scheme, developed in
[11, 12, 14]. A brief description of the central-upwind scheme for the pressureless gas
dynamics system (1.5) is provided in Appendix A.

2. Derivation of the sticky particle method. We consider the system (1.1)
subject to the compactly supported (or periodic) initial data,

(2.1) w(x, 0) ≡ (ρ(x, 0), ρu(x, 0), ρv(x, 0))T , x := (x, y)T ,

and look for the solution of the initial-value problem (1.1), (2.1) in the particle form,

(2.2) wN(x, t) =

N∑
i=1

αi(t)δ(x − xN
i (t)), xN

i := (xN
i , yNi )T, αi = (mi,miui,mivi)

T .

Here, N is a total number of particles, xN
i (t) is the location of the ith particle at time

t, and mi,miui, and mivi are its mass, the x-, and the y-momenta, respectively.
In order to study the particle time evolution, we plug (2.2) into the weak formu-

lation of the system (1.1),

(2.3)

∫ ∞

0

∫∫
R2

{
wN · [ϕt + uϕx + vϕy]

}
dxdt−

∫∫
R2

wN (x, 0) ·ϕ(x, 0) dx = 0,

where ϕ is an arbitrary C1
0 test function. As a result, (2.3) reduces to

(2.4)
N∑
i=1

∫ ∞

0

αi(t) ·
{
ϕt + uϕx + vϕy

} ∣∣∣∣∣
(x,t)=(xN

i (t),t)

dt−
N∑
i=1

αi(0) ·ϕ(xN
i (0), 0) = 0,

which should be satisfied for any ϕ. Evolving particle locations according to the
following system of ODEs:

(2.5)
dxN

i (t)

dt
= u(xN

i (t), t),
dyNi (t)

dt
= v(xN

i (t), t), i = 1, . . . , N,

and integrating by parts, we rewrite (2.4) as

N∑
i=1

∫ ∞

0

dαi(t)

dt
·ϕ(xN

i (t), t) dt = 0.

The last equation implies

(2.6)
dαi(t)

dt
= 0, i = 1, . . . , N,
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that is, the particle weights remain constant in time. Thus, the weights can be
determined from the initial conditions, for instance, in the following manner. We
divide the computational domain Ω into N subdomains Ωi, i = 1, . . . , N , and place
an ith particle with

αi :=

∫∫
Ωi

w(x, 0) dx

into the center of Ωi, denoted by xN
i (0) ≡ (xN

i (0), yNi (0)), which will serve as initial
data for the ODE system (2.5).

2.1. Particle velocities. In order to be able to solve the system of ODEs (2.5),
one would need to recover the particle velocities at any given time moment. The
simplest (and the least dissipative) way to compute the velocities is to divide the
corresponding particle momenta by its mass, that is, by taking

(2.7) ui ≡ u(xN
i (t), t) :=

miui

mi
, vi ≡ v(xN

i (t), t) :=
mivi
mi

.

In fact, this means that every particle travels with constant velocity until it collides
with another particle (see section 2.2). This approach can be rigorously justified
through the weak formulation (2.3) and it seems to work perfectly in the 1-D case,
in which collision of approaching particles is unavoidable. However, in the 2-D case,
the probability of collision of two particles approaching the same singularity curve
is zero unless a special symmetry in initial particle locations has been imposed (see
Example 5 in section 3.2).

We propose an alternative way of particle velocities reconstruction, which is in-
dependent of an initial placement of particles. Our approach is based on a global
piecewise polynomial reconstruction technique, which is widely used in finite-volume
framework (see Appendix A and the references therein). To adopt this technique to a
mesh-free particle method we introduce an auxiliary Cartesian grid (which may vary
in time). The grid should be adapted to the particle distribution so that the number
of particles in every cell is about the same. In our numerical experiments, we have
used the simplest strategy: we have adapted the auxiliary grid to the initial (uniform)
particle distribution only by taking the size of the cells to be twice larger than the
distance between the particles. A more sophisticated adaptation strategy may lead to
more accurate results, but its optimization may substantially increase the complexity
of the proposed sticky particle method.

Taking a simple uniform auxiliary grid, xj ≡ jΔx, yk ≡ kΔy, we first compute
the cell averages of the conserved quantities at time t,

(2.8) w̄j,k(t) =
1

ΔxΔy

∑
i:xN

i (t)∈Ij,k

αi, Ij,k = [xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
].

Using these cell averages, we then reconstruct a nonoscillatory piecewise polynomial
interpolant of an appropriate order of accuracy, denoted by

w̃(x, t) := (w1(x, t), w2(x, t), w3(x, t))T ,

which is used to compute the particle velocities,

(2.9) ui :=
w̃2(xN

i (t), t)

w̃1(xN
i (t), t)

, vi :=
w̃3(xN

i (t), t)

w̃1(xN
i (t), t)

.
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Notice that in order to ensure that no mass (momentum) is artificially lost (created)
at this step, the reconstruction must be performed in a conservative manner, namely,
one should guarantee that ∑

i:xN
i (t)∈Ij,k̃

w(xN
i (t), t) = w̄j,k(t).

We achieve the conservation (in fact, while the mass is conserved exactly, only ap-
proximate momentum conservation is guaranteed; see the computation in section 2.3)
by taking w̃ to be a second-order accurate piecewise linear reconstruction centered at
the center of mass of the particles located in the Ij,k cell,

w̃(x, y, t) = w̄j,k + (sx)j,k(x− xCM
j,k (t))

+ (sy)j,k(y − yCM
j,k (t)) for (x, y) ∈ Ij,k,(2.10)

where the coordinates of the center of mass are

(2.11) xCM
j,k (t) :=

∑
i:xN

i (t)∈Ij,k

mix
N
i (t)

∑
i:xN

i (t)∈Ij,k

mi

, yCM
j,k (t) :=

∑
i:xN

i (t)∈Ij,k

miy
N
i (t)

∑
i:xN

i (t)∈Ij,k

mi

,

and the slopes (sx)j,k and (sy)j,k are (at least) first-order approximations of the

derivatives wx(xCM
j,k (t), yCM

j,k (t)) and wy(x
CM
j,k (t), yCM

j,k (t)), respectively.

Finally, in order to ensure a nonoscillatory nature of the reconstruction (2.10),
the slopes (sx)j,k and (sy)j,k should be computed using a nonlinear limiter. In our
numerical experiments, we have used the minmod limiter applied in the following way.

Let us take, for example, the first component of w (density) and consider the four
planes, denoted by πNE

j,k , π
NW
j,k , πSE

j,k, π
SW
j,k , that pass through the following four triplets

of points:

(2.12)

πNE
j,k :

{
(xCM

j,k , yCM
j,k , w̄1

j,k), (xCM
j,k+1, y

CM
j,k+1, w̄

1
j,k+1), (xCM

j+1,k, y
CM
j+1,k, w̄

1
j+1,k)

}
,

πNW
j,k :

{
(xCM

j,k , yCM
j,k , w̄1

j,k), (xCM
j,k+1, y

CM
j,k+1, w̄

1
j,k+1), (xCM

j−1,k, y
CM
j−1,k, w̄

1
j−1,k)

}
,

πSE
j,k :

{
(xCM

j,k , yCM
j,k , w̄1

j,k), (xCM
j,k−1, y

CM
j,k−1, w̄

1
j,k−1), (xCM

j+1,k, y
CM
j+1,k, w̄

1
j+1,k)

}
,

πSW
j,k :

{
(xCM

j,k , yCM
j,k , w̄1

j,k), (xCM
j,k−1, y

CM
j,k−1, w̄

1
j,k−1), (xCM

j−1,k, y
CM
j−1,k, w̄

1
j−1,k)

}
(the dependence of {xCM

j,k } and {yCM
j,k } on t has been omitted here for briefness). We

then denote the gradients of these planes by ((πx)NE
j,k , (πy)

NE
j,k )T , ((πx)NW

j,k , (πy)
NW
j,k )T ,

etc., and take the first component of the slopes in (2.10) to be

(2.13)

(s1
x)j,k = minmod

(
(πx)NE

j,k , (πx)NW
j,k , (πx)SE

j,k, (πx)SW
j,k

)
,

(s1
y)j,k = minmod

(
(πy)

NE
j,k , (πy)

NW
j,k , (πy)

SE
j,k, (πy)

SW
j,k

)
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2414 A. CHERTOCK, A. KURGANOV, AND YU. RYKOV

where the minmod function is defined by

(2.14) minmod(c1, c2, . . .) :=

⎧⎨⎩
min(c1, c2, . . .) if ci > 0 ∀i,
max(c1, c2, . . .) if ci < 0 ∀i,
0 otherwise.

The reconstructions for the other two fields of w (momenta) are obtained in a similar
way.

Remarks.
1. It may happen that one of the planes in (2.12) is perpendicular to the (x, y)-

plane or is not uniquely determined. Then this plane is not taken into account,
and its gradient is excluded from the formulae for the slopes in (2.13).

2. As was mentioned in section 1, our velocity recovery procedure ensures that
there is an interaction between the particles, located inside the same auxiliary
grid cell. As is illustrated in our numerical experiments (see section 3.2), this
leads to the desired clustering of particles at the singularities.

2.2. Unification of clustering particles. A major drawback of particle meth-
ods is that, in general, their resolution and efficiency significantly deteriorate when
too many particles cluster near the same point at the singularity. To prevent such an
undesired situation, we unite clustering particles according to the following algorithm.
We choose a certain critical distance dcr and as soon as the distance between any two
particles gets smaller than the critical distance, we unite them into a new “heavier”
particle.

Let us assume that at some time t, the distance between the ith and the jth
particles, |xi(t)−xj(t)|, is smaller than dcr. We then replace these two particles with
a new one of the following total mass and momenta:

(2.15) αnew = αi + αj ,

located at the center of mass of the replaced particles, namely,

(2.16) xN
new =

mix
N
i + mjx

N
j

mi + mj
.

The velocities of the new particle are determined according to the procedure in sec-
tion 2.1. After completing the replacement process (2.15)–(2.16), we check whether
any other two particles are to be united, and if not, the remaining set of particles is
further evolved in time according to (2.2), (2.5), (2.9) until another particle clustering
occurs. Then, the unification procedure is repeated, and so forth.

Remark. The critical distance dcr should be chosen experimentally. In all our
numerical examples, except for Example 4, this distance was taken a quarter of a
minimal initial distance between the particles (note that the initial distribution of
particles is rather uniform in every numerical example below). In Example 4, dcr was
made proportional to the size of the shrinking support of the solution.

We would also like to stress that our numerical experiments clearly indicate that
the presented sticky particle method does not seem to be sensitive to the choice of dcr.

2.3. On convergence of the sticky particle method. In previous sections,
a sequence of approximate solutions {wN}∞N=1 of the system (1.1) for a fixed time
interval [0, T ] has been constructed based on the dynamics of moving particles. In
this section, we show that the measures wN do not satisfy (1.1) in a weak sense.
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Nevertheless, in Theorem 2.1, we obtain rigorous estimates for relevant errors and
further discuss the heuristic justification why these errors tend to zero as N → ∞.

In order to exactly formulate the theorem, let us first describe the interactions of
moving particles in detail. Consider a time interval [t1, t2] ⊂ [0, T ], some number p
of moving particles, and a time moment t0 such that the particles evolve according
to the ODE system (2.5)–(2.6) for t ∈ [t1, t0) and t ∈ (t0, t2], while at time t0 the
particles either coalesce (Case I) or change the velocities according to (2.9) (Case II).

For the considered group of p particles, P, with the total mass

M :=
∑
i∈P

mi,

we introduce the following notation.
• Prior to t = t0 we denote by
αi = (mi,miui,mivi)

T
: weights of the particles,

(xi(t), yi(t)): their locations at time t < t0,
(x0

i , y
0
i ) = (xi(t0), yi(t0)): final locations of the particles at time t = t0.

• At t = t0 the considered p particles either
− coalesce (Case I) and then we denote by
α = (M,MU,MV ): weights of the newly formed particle of mass M ,

U =

∑
i∈P miui∑
i∈P mi

and V =

∑
i∈P mivi∑
i∈P mi

: its x- and y-velocities,

(X0, Y0) = (X(t0), Y (t0)): its initial position at time t = t0,
(X(t), Y (t)): its location at time t > t0;
or
− undergo the velocities correction (Case II) and then we denote by

α̃i = (mi,miũi,miṽi)
T
: new weights of the original p particles,

(xi(t), yi(t)): their locations, which are not instantaneously affected by the
velocities correction procedure and thus change continuously.

We also denote by
(
xCM(t), yCM(t)

)
the location of the center of mass of the

considered group of p particles,

(2.17) xCM(t) =

∑
i∈P

mixi(t)∑
i∈P

mi
, yCM(t) =

∑
i∈P

miyi(t)∑
i∈P

mi
.

Let us call by the event with respect to Case I the situation when some number
of particles coalesce at some time moment and at some location. Suppose EC1 is the
set of such events, and denote by NC1 the number of such events that take place in
the computational domain within the specified time interval. It is obvious that, in
general, NC1 is less than the initial number of particles N since each possible merging
reduces the number of particles by at least one.

Let us call by the event with respect to Case II the situation when the velocities
of a particle change according to (2.9) at some time moment. Suppose EC2 is the
set of such events, and denote by NC2 the number of such events that take place in
the computational domain within the specified time interval. Notice that all existing
particles, whose total number is always less than or equal to N , can undergo the
velocity correction procedure at every time step. The minimal distance between the
particles is controlled by the particle unification procedure and is thus proportional
to 1/

√
N . Due to the CFL condition, the size of each time step is proportional to the
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minimal distance between the particles. Therefore, the total number of time steps in
our 2-D sticky particle method is proportional to

√
N , and hence NC2 � N3/2.

We are now ready to formulate the following theorem.
Theorem 2.1. Let R be the residual of the particle solution wN , that is, let wN

satisfy the equation

wt + (uw)x + (vw)y = R(x, y, z)

in the weak sense defined in [21, Definition 1] for any time interval [t1, t2] ⊂ [0, T ].
If the slopes (sx)j,k and (sy)j,k in the piecewise linear reconstruction (2.9) are set

to be 0 in all cells Ij,k, then the size of the residual can be estimated by

(2.18) |R| ≤ Cε
∑

EC1∪EC2

⎛⎝
∑
i<l

miml (|ui − ul| + |vi − vl|)∑
l

ml
+ ε

∑
i

mi (1 + |ui| + |vi|)

⎞⎠ ,

where the summation is taken over the particles that participate in the specific event
from EC1 or EC2, and ε :=

√
(Δx)2 + (Δy)2 is the diameter of the auxiliary grid cell,

which is assumed to tend to 0 as N → ∞.
In the case where the slopes (sx)j,k and (sy)j,k in (2.9) are defined according to

formulae (2.10)–(2.12), the estimate (2.18) is also true, provided the following bound

(2.19)
∣∣(srx)j,k

(
xi − xCM

j,k

)
+ (sry)j,k

(
yi − yCM

j,k

)∣∣ ≤ Cεw̄r
j,k, r = 1, 2, 3,

is true at each auxiliary Ij,k cell and for each particle such that (xi, yi) ∈ Ij,k. Here,
xCM
j,k and yCM

j,k , given by (2.11), are the coordinates of the center of mass of the par-
ticles, located in Ij,k at the time moment when the velocity correction procedure is
performed.

Remark. The conditions (2.19) are rather technical. It is clear that for the
reconstruction (2.10)–(2.14) they hold in smooth parts of the solution (away from
vacuum), where all the slopes are bounded. In the nonsmooth parts of the solution
and near vacuum, the conditions (2.19) represent a certain nonoscillatory requirement,
which may or may not be satisfied by the reconstruction (2.10)–(2.14).

Proof. We start by observing that there is a finite number (which may be propor-
tional to N) of time moments in the interval [0, T ] at which some particle velocities
change according to either Case I or Case II. Therefore, it is enough to consider such
time intervals [t1, t2] that contain only a single moment t = t0 of the velocities change.

Let us next fix a test function, ψ ≡ (ψ1, ψ2, ψ3)T ∈ C1
0 (R2) and consider the

following two sets of time moments:

T1 := {t1i ∈ [t1, t0], i = 1, . . . , q1} and T2 := {t2i
∈ [t0, t2], i = 1, . . . , q2} ,

such that some particle either enters or leaves the domain

(2.20) Φ := suppψ1 ∪ suppψ2 ∪ suppψ3

at these times.
Notice that it suffices to consider the sets T1 and T2 to be finite. If not, then

the supports of functions ψi, i = 1, 2, 3, can be placed into larger convex sets Λi and
the functions ψi can be extended to Λi by zero. As has been mentioned above, there
is only a finite number of time moments in the interval [0, T ] at which some particle
velocities change according to either Case I or Case II. Between these time moments



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARTICLE METHOD FOR PRESSURELESS GAS DYNAMICS 2417

all the particles freely move along straight lines and, due to the convexity of Λi, they
can intersect the boundaries of Λi at most twice. Therefore, replacing suppψi with
Λi in (2.20) will make T1 and T2 finite.

The conservation laws are thus satisfied in any time interval [t1i , t1i+1 ] or [t2k
, t2k+1

]
since no velocities correction procedures are performed and since the test function ψ
vanishes at the points where particles enter or leave the domain Φ. Hence, it is enough
to consider only the particles dynamics in the time interval [maxi t1i

,mink t2k
], such

that at time t = maxi t1i
there are p particles (from P) inside the domain Φ and no

particles enter or leave Φ until t = mink t2k
. In order to simplify the notation, we

again denote such interval by [t1, t2].
Case I. First, we suppose that the particle formed at the time moment t = t0

stays inside the domain Φ. We then plug the particle solution (2.2) into the weak
formulation (in the sense of [21, Definition 1]) of (1.1) over the time interval [t1, t2] to
compute the residuals for the equations of mass and momenta conservation.

• From the mass conservation equation we obtain∫ t0

t1

{∑
i∈P

[
ψ1
x(xi(τ), yi(τ))miui + ψ1

y(xi(τ), yi(τ))mivi
]}

dτ

+

∫ t2

t0

{
ψ1
x(X(τ), Y (τ))MU + ψ1

y(X(τ), Y (τ))MV
}
dτ

=

∫ t0

t1

d

dτ

∑
i∈P

miψ
1(xi(τ), yi(τ)) dτ +

∫ t2

t0

d

dτ
Mψ1(X(τ), Y (τ)) dτ

= Mψ1(X(t2), Y (t2)) −
∑
i∈P

miψ
1(xi(t1), yi(t1)) + R1,

where

(2.21) R1 =
∑
i∈P

miψ
1(x0

i , y
0
i ) −Mψ1(X0, Y0).

Rewriting (2.21), using the Taylor expansion about (X0, Y0) and taking into account
(2.17) for t = t0, we arrive at

R1 =
∑
i∈P

mi

[
ψ1(x0

i , y
0
i ) − ψ1(X0, Y0)

]
=
∑
i∈P

mi

[
ψ1
x(X0, Y0)

(
x0
i −X0

)
+ ψ1

y(X0, Y0)
(
y0
i − Y0

)
+ O(ε2)

]
= ψ1

x(X0, Y0)

[∑
i∈P

mix
0
i −MX0

]
+ ψ1

y(X0, Y0)

[∑
i∈P

miy
0
i −MY0

]
+ M · O(ε2)

= M · O(ε2).(2.22)

• From the x-momentum conservation equation we obtain∫ t0

t1

{∑
i∈P

[
ψ2
x(xi(τ), yi(τ))ui ·miui + ψ2

y(xi(τ), yi(τ))vi ·miui

]}
dτ

+

∫ t2

t0

{
ψ2
x(X(τ), Y (τ))U ·MU + ψ2

y(X(τ), Y (τ))V ·MU
}
dτ
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=

∫ t0

t1

d

dτ

∑
i∈P

miuiψ
2(xi(τ), yi(τ)) dτ +

∫ t2

t0

d

dτ
MUψ2(X(τ), Y (τ)) dτ

= MUψ2(X(t2), Y (t2)) −
∑
i∈P

miuiψ
2(xi(t1), yi(t1)) + R2,

where

(2.23) R2 =
∑
i∈P

miuiψ
2(x0

i , y
0
i ) −MUψ2(X0, Y0).

We now rewrite (2.23) and use the Taylor expansion about (X0, Y0) and (2.17) to
obtain

R2 =
∑
i∈P

miui

[
ψ2(x0

i , y
0
i ) − ψ2(X0, Y0)

]
=
∑
i∈P

miui

[
ψ2
x(X0, Y0)

(
x0
i −X0

)
+ ψ2

y(X0, Y0)
(
y0
i − Y0

)
+ O(ε2)

]
= ψ2

x(X0, Y0)

[∑
i∈P

miuix
0
i −MUX0

]
+ ψ2

y(X0, Y0)

[∑
i∈P

miuiy
0
i −MUY0

]
+ MU · O(ε2)

= ψ2
x(X0, Y0)

⎡⎢⎣∑
i∈P

miuix
0
i −

∑
i∈P

miui ·
∑
l∈P

mlx
0
l∑

l∈P
ml

⎤⎥⎦
+ ψ2

y(X0, Y0)

⎡⎢⎣∑
i∈P

miuiy
0
i −

∑
i∈P

miui ·
∑
l∈P

mly
0
l∑

l∈P
ml

⎤⎥⎦+ MU · O(ε2).

Then, taking into account that

∑
i∈P

miuix
0
i −

∑
i∈P

miui ·
∑
l∈P

mlx
0
l∑

l∈P
ml

=

∑
i,l∈P

(
mlmiuix

0
i −mimluix

0
l

)
∑
l∈P

ml

=

∑
i,l∈P

mimlui

(
x0
i − x0

l

)
∑
l∈P

ml
=

∑
i,l∈P:i<l

[
mimlui

(
x0
i − x0

l

)
+ mlmiul

(
x0
l − x0

i

)]
∑
l∈P

ml

=

∑
i,l∈P:i<l

miml

(
x0
i − x0

l

)
(ui − ul)∑

l∈P
ml

,

we end up with

R2 = ψ2
x(X0, Y0)

∑
i,l∈P:i<l

miml(x
0
i − x0

l )(ui − ul)∑
l∈P

ml

+ ψ2
y(X0, Y0)

∑
i,l∈P:i<l

miml(y
0
i − y0

l )(ui − ul)∑
l∈P

ml
+ MU · O(ε2).(2.24)
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• In a similar manner, we consider the third component of the residual,

(2.25) R3 =
∑
i∈P

miviψ
3(x0

i , y
0
i ) −MV ψ3(X0, Y0),

and then from the y-momentum conservation equation derive

R3 = ψ3
x(X0, Y0)

∑
i,l∈P:i<l

miml(x
0
i − x0

l )(vi − vl)∑
l∈P

ml

+ ψ3
y(X0, Y0)

∑
i,l∈P:i<l

miml(y
0
i − y0

l )(vi − vl)∑
l∈P

ml
+ MV · O(ε2).(2.26)

Finally, combining formulae (2.22), (2.24), and (2.26) and using the fact that the
distance between (x0

i , y
0
i ) and (x0

l , y
0
l ) is less than dcr < ε, we immediately conclude

with the desired estimate (2.18).
Remark. Recall that formulae (2.22), (2.24), and (2.26) were derived under the

assumption that the particle formed at t = t0 stays inside the domain Φ. If not, then
ψ(X0, Y0) = 0 and all the particles from P lie within the distance dcr < ε from the
boundary of ψ. Thus the estimate (2.18) follows (as can be seen from formulae (2.21),
(2.23), and (2.25)) since ψ ∈ C1

0 (R2) and |ψ(x0
i , y

0
i )| < Cε2 for all (x0

i , y
0
i ) ∈ P.

Case II. As in Case I, we plug the particle solution (2.2) into the weak formulation
(in the sense of [21, Definition 1]) of (1.1) over the time interval [t1, t2] to compute
the corresponding residuals. However, since the set of particles participating in the
velocities correction procedure at time t = t0, described in section 2.1, coincides (in
general) with the set of all existing particles (including the ones lying outside the
domain Φ), the residuals computation is carried out as follows.

• From the mass conservation equation we obtain∫ t0

t1

{∑
i∈P

[
ψ1
x(xi(τ), yi(τ))miui + ψ1

y(xi(τ), yi(τ))mivi
]}

dτ

+

∫ t2

t0

{∑
i∈P

[
ψ1
x(xi(τ), yi(τ))miũi + ψ1

y(xi(τ), yi(τ))miṽi
]}

dτ

=

∫ t0

t1

d

dτ

∑
i∈P

miψ
1(xi(τ), yi(τ)) dτ +

∫ t2

t0

d

dτ

∑
i∈P

miψ
1(xi(τ), yi(τ)) dτ

=
∑
i∈P

miψ
1(xi(t2), yi(t2)) −

∑
i∈P

miψ
1(xi(t1), yi(t1)).

Unlike Case I, the particle trajectories are now continuous within the time interval
[t1, t2] because only particle velocities may change at t = t0. Therefore, the first
component of the residual is

(2.27) R1 =
∑
i∈P

miψ
1(x0

i , y
0
i ) −

∑
i∈P

miψ
1(x0

i , y
0
i ) = 0.

• From the x-momentum conservation equation we obtain∫ t0

t1

{∑
i∈P

[
ψ2
x(xi(τ), yi(τ))ui ·miui + ψ2

y(xi(τ), yi(τ))vi ·miui

]}
dτ
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+

∫ t2

t0

{∑
i∈P

[
ψ2
x(xi(τ), yi(τ))ũi ·miũi + ψ2

y(xi(τ), yi(τ))ṽi ·miũi

]}
dτ

=

∫ t0

t1

d

dτ

∑
i∈P

miuiψ
2(xi(τ), yi(τ)) dτ +

∫ t2

t0

d

dτ

∑
i∈P

miũiψ
2(xi(τ), yi(τ)) dτ

=
∑
i∈P

miũiψ
2(xi(t2), yi(t2)) −

∑
i∈P

miuiψ
2(xi(t1), yi(t1)) + R2,

where

(2.28) R2 =
∑
i∈P

ψ2(x0
i , y

0
i )(miui −miũi).

Note that the summation in (2.28) is taken over the particles located in the domain
Φ, which consists of a certain number of auxiliary cells (or their parts) Ij,k. Thus,
the residual R2 can be written as the sum of residuals in each cell Ij,k that contains
(at least) one particle and has a nonempty intersection with Φ. Let us now consider
such a cell, denote the set of particles, located in it at time moment t = t0, by Pj,k,
and the residual in this cell by R2

j,k.

Applying the Taylor expansion about the center of mass (xCM
j,k , yCM

j,k ) given by
(2.11) yields

R2
j,k =

∑
i∈Pj,k

[
ψ2
(
xCM
j,k , yCM

j,k

)
+ ψ2

x

(
xCM
j,k , yCM

j,k

) (
x0
i − xCM

j,k

)
+ψ2

y

(
xCM
j,k , yCM

j,k

) (
y0
i − yCM

j,k

)
+ O(ε2)

]
mi(ui − ũi)

=
[
ψ2
(
xCM
j,k , yCM

j,k

)
+ O(ε2)

] ∑
i∈Pj,k

mi(ui − ũi)

+ψ2
x

(
xCM
j,k , yCM

j,k

) ∑
i∈Pj,k

mi(ui − ũi)
(
x0
i − xCM

j,k

)
+ψ2

y

(
xCM
j,k , yCM

j,k

) ∑
i∈Pj,k

mi(ui − ũi)
(
y0
i − yCM

j,k

)
.(2.29)

Next, we consider each sum on the right-hand side (RHS) of (2.29) separately. For
the first sum, use formulae (2.8)–(2.10) to rewrite

∑
i∈Pj,k

mi(ui − ũi) =
∑

i∈Pj,k

mi

⎡⎣ui −
w̄2

j,k + (s2
x)j,k

(
x0
i − xCM

j,k

)
+ (s2

y)j,k

(
y0
i − yCM

j,k

)
w̄1

j,k + (s1
x)j,k

(
x0
i − xCM

j,k

)
+ (s1

y)j,k

(
y0
i − yCM

j,k

)
⎤⎦

=
∑

i∈Pj,k

mi

{
ui −

1

w̄1
j,k

[
w̄2

j,k + (s2
x)j,k

(
x0
i − xCM

j,k

)
+ (s2

y)j,k
(
y0
i − yCM

j,k

)]

×

⎡⎣1 +
(s1

x)j,k

(
x0
i − xCM

j,k

)
+ (s1

y)j,k

(
y0
i − yCM

j,k

)
w̄1

j,k

⎤⎦−1
⎫⎪⎬⎪⎭ .(2.30)

Taking into account (2.19), the last term in (2.30) is equal to

1 −
(s1

x)j,k

(
x0
i − xCM

j,k

)
+ (s1

y)j,k

(
y0
i − yCM

j,k

)
w̄1

j,k

+ O(ε2),
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and thus ∑
i∈Pj,k

mi(ui − ũi) =
1

w̄1
j,k

{
w̄1

j,k

∑
i∈Pj,k

miui

−
∑

i∈Pj,k

mi

[
w̄2

j,k −
w̄2

j,k

w̄1
j,k

(
(s1

x)j,k
(
x0
i − xCM

j,k

)
+ (s1

y)j,k
(
y0
i − yCM

j,k

))

+ (s2
x)j,k

(
x0
i − xCM

j,k

)
+ (s2

y)j,k
(
y0
i − yCM

j,k

)
+ w̄2

j,kO(ε2)

]}
.

Finally, using the definition of cell averages (2.8) and the fact that the center of mass
(xCM

j,k , yCM
j,k ) satisfies (2.11), we obtain

∑
i∈Pj,k

mi(ui − ũi) =
1

w̄1
j,k

{ ∑
i∈Pj,k

mi

(
x0
i − xCM

j,k

) [ w̄2
j,k

w̄1
j,k

(s1
x)j,k − (s2

x)j,k

]

+
∑

i∈Pj,k

mi

(
y0
i − yCM

j,k

) [ w̄2
j,k

w̄1
j,k

(s1
y)j,k − (s2

y)j,k

]
+ w̄2

j,kO(ε2)
∑

i∈Pj,k

mi

}

= ΔxΔyw̄2
j,kO(ε2) =

∑
i∈Pj,k

miui · O(ε2).(2.31)

Remark. Note that if (sx)j,k = (sy)j,k = 0, then the RHS of (2.31) vanishes

and
∑

i∈Pj,k
mi(ui − ũi) = 0. Otherwise, one has an approximate x-momentum

conservation only.
We next consider the second sum on the RHS of (2.29) and in a similar manner

obtain ∑
i∈Pj,k

mi(ui − ũi)
(
x0
i − xCM

j,k

)
=

1

w̄1
j,k

{
w̄1

j,k

∑
i∈Pj,k

miui

(
x0
i − xCM

j,k

)
−

∑
i∈Pj,k

mi

(
x0
i − xCM

j,k

)(
w̄2

j,k +

[
(s2

x)j,k −
w̄2

j,k

w̄1
j,k

(s1
x)j,k

] (
x0
i − xCM

j,k

)
+

[
(s2

y)j,k −
w̄2

j,k

w̄1
j,k

(s1
y)j,k

] (
y0
i − yCM

j,k

)
+ w̄2

j,kO(ε2)

)}
=

∑
i∈Pj,k

miui

(
x0
i − xCM

j,k

)
+

∑
i∈Pj,k

miui · O(ε2).(2.32)

Then, using the definition of the center of mass (2.11) we rewrite the first term on
the RHS of (2.32) as

∑
i∈Pj,k

miui

(
x0
i − xCM

j,k

)
=

∑
i∈Pj,k

miuix
0
i −

∑
i∈Pj,k

miui

∑
l∈Pj,k

mlx
0
l∑

l∈Pj,k

ml

=

∑
i,l∈Pj,k

(
mlmiuix

0
i −mimluix

0
l

)
∑

l∈Pj,k

ml
=

∑
i,l∈Pj,k:i<l

miml

(
x0
i − x0

l

)
(ui − ul)∑

l∈Pj,k

ml
,
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and conclude with
(2.33)

∑
i∈Pj,k

mi(ui−ũi)
(
x0
i − xCM

j,k

)
=

∑
i,l∈Pj,k:i<l

miml

(
x0
i − x0

l

)
(ui − ul)∑

l∈Pj,k

ml
+
∑

i∈Pj,k

miui·O(ε2).

The estimate on the third sum on the RHS of (2.29) is completely analogous:
(2.34)

∑
i∈Pj,k

mi(ui−ũi)
(
y0
i − yCM

j,k

)
=

∑
i,l∈Pj,k:i<l

miml

(
y0
i − y0

l

)
(ui − ul)∑

l∈Pj,k

ml
+
∑

i∈Pj,k

miui·O(ε2).

We now substitute (2.31), (2.33), and (2.34) into (2.29) and sum up all R2
j,k to end

up with the following estimate:

(2.35) |R2| ≤ Cε
∑
j,k

⎛⎜⎝
∑

i,l∈Pj,k:i<l

miml|ui − ul|∑
l∈Pj,k

ml
+ ε

∑
i∈Pj,k

mi|ui|

⎞⎟⎠ .

• A similar estimate on R3 is obtained from the y-momentum conservation equa-
tion,

(2.36) |R3| ≤ Cε
∑
j,k

⎛⎜⎝
∑

i,l∈Pj,k:i<l

miml|vi − vl|∑
l∈Pj,k

ml
+ ε

∑
i∈Pj,k

mi|vi|

⎞⎟⎠ .

Finally, adding up (2.27), (2.35), and (2.36), and considering velocity corrections
occurring in different auxiliary cells to be different events from the set EC2, we obtain
the estimate (2.18) in Case II.

This completes the proof of the theorem since in our 2-D sticky particle method
the only contributions to the residual R come from the particle interactions enforced
by the merger (Case I) and velocity correction (Case II) procedures.

Remark. Note that as has been shown in the proof (see the estimate (2.31) and the
remark after it), the use of the second-order reconstruction (2.10) results in additional
errors in momenta conservation equations compared with the first-order ((sx)j,k =
(sy)j,k = 0 for all j, k) approach. However, a more accurate velocity reconstruction
typically leads to a more accurate particle dynamics, while the momenta conservation
errors and their contributions to the corresponding residuals (the second terms on the
RHS of (2.35) and (2.36)) are relatively small.

We conclude this section with a brief discussion of the result established in The-
orem 2.1, which provides us with an estimate on the size of the residual. We view
this result as a step toward the convergence proof of the proposed 2-D sticky particle
method. Completing the proof would require obtaining more precise estimates on the
residual, which, in general, may be rather difficult. However, according to the conjec-
ture in [21], the following scenario of mass concentration occurs. Let us first mention
that the system (1.5) has straight bicharacteristic lines, which usually intersect at
some time moment (analogously to the 1-D case) and form curves in the (x, y)-plane
(their representation in the (t, x, y)-space is not a characteristic surface, but a surface
defined by a generalization of the Hugoniot relations) with a finite mass distributed
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along the curves as a δ-function. These curves then start to impinge each other and
form the singularities with finite masses at separate points. The collisions of the
curves take place, in general, transversally, but no rigorous theoretical description of
such a solution behavior is available. Assuming now that solutions of (1.5) have such
a structure (this assumption has also been supported by the numerical experiments
reported in section 3.2, Examples 7, 8a, and 8b), it is possible to show that |R| → 0
as N → ∞.

Indeed, following the above scenario when particles coalesce (Case I) they form
curves with finite masses. In this case, the differences |ui − ul| and |vi − vl| are finite,
the considered cluster of particles P merges into a particle with mass ∼ ε, while
other, nonclustered, particles have masses ∼ ε2. Also, ml ∼ ε2 and |P| ∼ 1/ε. Thus,∑

l∈P ml ∼ ε,
∑

i,l∈P:i<l miml ∼ ε3, and hence one gets |R| ∼ ε3 · NC1. Finally,

NC1 < C/ε2 since it is bounded by the total number of particles N , and thus we
obtain that |R| ∼ ε, which tends to zero as N tends to infinity.

We now consider the situation of “pure” Case 2, when only the velocities cor-
rection procedure is performed and no particles coalesce. In this case, taking into
account that the corrected velocities are also close and masses of particles are of order
ε2, one has |R| ∼ ε4 ·NC2. But, as has been mentioned before, NC2 ∼ N3/2 ∼ 1/ε3,
and thus we obtain that |R| ∼ ε in Case II as well.

We hope that the presented heuristic convergence arguments can be “upgraded”
to a rigorous convergence proof and we plan to do so in forthcoming papers.

3. Numerical examples. In this section, we test the new sticky particle (SP)
method presented in section 2 on a number of 1-D and 2-D numerical examples.
We also compare solutions computed by the particle method with the corresponding
solutions computed using the second-order semidiscrete central-upwind (CU) scheme,
developed in [11, 12, 14]. A brief description of the CU scheme for the pressureless
gas dynamics system (1.5) is provided in Appendix A. Numerical time integration
has been performed using the strong stability preserving Runge–Kutta method [10].

Note that in all the examples below, we do not reconstruct point values of the
computed density from its particle distribution at the final time but rather plot the
total mass m of each particle. For the purpose of fair comparison, the solutions
computed by the finite-volume CU scheme are always presented in a similar way, that
is, we plot the total mass in each cell rather than the corresponding cell averages.

3.1. One-dimensional examples. The following four examples are devoted to
the 1-D system (1.2). A 1-D version of our SP method can be easily deduced from its
2-D formulation in section 2.

Example 1. In the first numerical test, taken from [5], we solve the system (1.2)
subject to the following Riemann initial data:

(3.1) (ρ(x, 0), u(x, 0)) =

{
(1.00, 0.5) if x < 0,
(0.25,−0.4) if x > 0.

In this example, a δ-shock develops immediately and propagates with speed 0.2.
We take Δx = 0.005 for the CU scheme and the initial uniform distribution

of particles, placed Δx away from each other, for the SP method. In Figure 1,
the particle/cell masses and the corresponding velocities, computed by both the SP
method and the CU scheme, are plotted at time t = 0.5. Note that because of the
point mass concentration occurring at the δ-shock, the masses are presented in the
logarithmic scale so that a more detailed structure of the solution can be seen.
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Fig. 1. Solution of (1.2), (3.1) computed by the SP method and the CU scheme.

Figure 1 demonstrates that both schemes are able to capture the δ-shock with
the correct propagation speed, but one can clearly see the superiority of the results
obtained by the SP method, which does not smear the δ-shock.

Example 2. We consider a test problem of the collision of two compactly sup-
ported clouds. The initial data, prescribed at t = −1, are taken from [17],

(3.2) (ρ(x,−1), u(x,−1)) =

⎧⎨⎩
(2, 1) if −2 < x < −1,
(1,−1) if 1 < x < 5,
(0, 0) otherwise.

The two clouds collide at time t = 0. The left cloud is fully accelerated into the δ-wave
at about t ≈ 1.21 and the right cloud is fully accelerated at about t ≈ 4.25. We use a
uniform spatial grid with Δx = 0.0125 for the CU scheme. The SP method is started
with 400 particles, placed only in the intervals [−2,−1] and [1, 5], where the dust is
initially present. Figures 2 and 3 show the particle/cell masses (in the logarithmic
scale) at times t = −1, −0.5, 0, 0.5, 1, 1.5, 3.5, and 6. As one can observe, both
methods give the same correct location of the δ-wave. However, both the δ-wave and
the contact discontinuities computed by the CU scheme are smeared over a number
of cells, while the resolution achieved by the SP method is almost perfect. We note
that the mass computed by the SP method is concentrated in a single point by time
t = 6.

Example 3. In this example, we demonstrate an interaction of two singular
shocks by numerically solving the system (1.2) subject to the following initial data:

(3.3) (ρ(x, 0), u(x, 0)) =

⎧⎪⎪⎨⎪⎪⎩
(0.25, 1.00) if −2.75 < x < −0.75,
(0.25, 0.50) if −0.75 < x < 0.5,

(1.00,−1.00) if 0.5 < x < 1.5,
(0.00, 0.00) otherwise.

In Figure 4, we plot the particle/cell masses (in the logarithmic scale) computed by
both the SP method and the CU scheme at times t = 0, 0.5, 1, 1.5, 2, and 2.5. We start
the SP method with N = 425 particles, which are uniformly distributed in the interval
[−2.75, 1.5]. For the CU scheme, we use a uniform spatial grid with Δx = 0.01. Again,
one can clearly see that the SP method outperforms the finite-volume CU scheme by
far.
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Fig. 2. Solution (masses) of (1.2), (3.2) computed by the SP method and the CU scheme.

Example 4. The last 1-D example is devoted to a problem where the velocity
u changes its sign in the region with varying density. This significantly increases
the level of complexity of the problem due to a special way the singularity forms, as
demonstrated below.

We consider the system (1.2) subject to the smooth initial data:
(3.4)

ρ(x, 0) =

{
2 − sinx if −π ≤ x ≤ π,

0 otherwise,
u(x, 0) =

{
1 − x if −π ≤ x ≤ π,

0 otherwise,

for which the exact solution can be found analytically as follows. A continuous part
of the solution is obtained by the method of characteristics:

(3.5) u(X(t), t) = 1 − x0, ρ(X(t), t) =
2 − sinx0

1 − t
,

where

(3.6) X(t) = x0 + t(1 − x0)

is the characteristic line starting at x = x0. Obviously, the solution (3.5)–(3.6) is
valid in the domain bounded by the characteristics X−(t) = −π + t(1 + π) and
X+(t) = π + t(1 − π) and thus exists until t = 1 only; see Figure 5.

As t approaches 1, the density tends to infinity, more and more mass is con-
centrated near the point x = 1, and therefore one can anticipate a massive particle
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Fig. 3. Solution (masses) of (1.2), (3.2) computed by the SP method and the CU scheme.

formation at this point. In order to determine a singular part of the solution of (1.2),
(3.4) we use the variational representation of the generalized solution of pressureless
gas dynamics equations introduced in [8]. To this end, we consider the function

F (x0) ≡ F (x0;x, t) :=

∫ x0

0

[s− x + t u(s, 0)] ρ(s, 0) ds(3.7)

=

∫ x0

0

[s− x + t (1 − s)] (2 − sin s) ds,

and according to [8], the smoothness of the solution depends on a number of points
at which the global minimum of F is attained. If F has only one global minimum
point, then the solution is continuous at (x, t); otherwise the solution develops a shock
discontinuity in velocity and a δ-shock in density there. In the latter case, suppose
that there exists a set of points

{
x1

0, x
2
0, . . .

}
at which F assumes its global minimum,

and denote x−
0 := min

{
x1

0, x
2
0, . . .

}
and x+

0 := max
{
x1

0, x
2
0, . . .

}
. Then the left and

right values of ρ and u at (x, t) are computed from (3.5) with x0 = x−
0 and x0 = x+

0 ,
respectively. In addition, the δ-function singularity at this point (“a massive particle”)
has the following mass and momentum:

(3.8) M =

∫ x+
0

x−
0

ρ(s, 0) ds, I =

∫ x+
0

x−
0

u(s, 0)ρ(s, 0) ds,

and according to mass and momentum conservation, the speed of the massive particle
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Fig. 4. Solution (masses) of (1.2), (3.3) computed by the SP method and the CU scheme.

is

(3.9)
dX

dt
=

I

M
.

For the problem under consideration, the singularity is first formed at the point
(x, t) = (1, 1), and for t ≥ 1, the global minimum of F is attained at two points
only: x−

0 = −π and x+
0 = π. Therefore, by t = 1 all the mass is concentrated in

one massive particle with the mass M = 4π and the momentum I = 6π (according
to (3.8)), and the movement of this particle is described, according to (3.9), by the
formula X(t) = (3t− 1)/2, t ≥ 1; see Figure 5.
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Fig. 5. Characteristics diagram for the initial-value problem (1.2), (3.4).

−2 0 2

0.02

0.03

0.04

0.05
mass

t=0
t=0.5
t=0.97

1 1.5 2 2.5
0

2

4

6

8

10

12

14
mass

t=1
t=1.02
t=1.03
t=1.5
t=2

Fig. 6. Solution (masses) of (1.2), (3.4) computed by the SP method for t < 1 (left), when the
solution is smooth inside its shrinking support, and for t ≥ 1 (right), when the total mass M = 4π
is concentrated in one particle, propagating with the constant speed I/M = 3/2. Note that due to
a certain arbitrariness in the selection of the unification parameter dcr, the final collapse of the
numerical solution occurs at a slightly later time t ≈ 1.03.

We now turn to the presentation of our numerical results. We start the SP
simulations with 400 particles uniformly distributed over the interval [−π, π]. In
Figure 6, we plot the particle masses computed by the SP method only, since the CU
scheme could not be applied to this problem at large times (t ∼ 1 and larger). We
note that, as indicated in [17], other finite-volume methods are likely to fail to capture
the solution of the initial-value problem (1.2), (3.4) as well.

3.2. Two-dimensional examples.

Example 5. We start by numerically solving the 2-D analogue of the 1-D problem
considered in Example 1, namely, we solve the system (1.5) in the square domain
[−1, 1] × [−1, 1] subject to the 1-D Riemann initial data, artificially extended to two
space dimensions:

(3.10) (ρ(x, y, 0), u(x, y, 0), v(x, y, 0)) =

{
(1.00, 0.5, 0) if x < 0,
(0.25,−0.4, 0) if x > 0.

The purpose of this simple example is to demonstrate the failure of the “standard”
velocity recovery procedure (2.7) and the ability of the alternative procedure (2.9),
developed in section 2.1, to force the desired interaction of nearby particles.
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Recall that in this example a δ-shock develops immediately at the line x = 0
and then propagates to the right with speed 0.2. As has been already mentioned,
the probability of collision of two particles approaching the same singularity curve in
two dimensions is, in general, zero, and therefore using formula (2.7) for computing
velocities requires a special symmetric setting of the initial locations of particles; see
Figure 7 (left). Obviously, if at time t = 0 the particles are placed as shown in Figure 7
(right) and if the unification parameter is reasonably small (dcr < Δy/2), the particles
moving from the left and from the right will never interact and the δ-shock will not
be captured numerically. We note that for a more complicated, truly 2-D initial data
it may be impossible to impose any kind of symmetry, so the situation with the data
as in Figure 7 (right) is generic.

Fig. 7. Initial locations of particles in Example 5: symmetric (left) and asymmetric (right) cases.

On the other hand, the velocity recovery procedure (2.9) ensures an interaction
between particles independently of their initial placement. In Figures 8 and 9, we
show the masses and x-velocities of the particles at time t = 0.5. They are computed
by the SP method with the initial locations of particles as in Figure 7 (left) and Figure
7 (right), respectively. As one can see, in both cases the SP method combined with
the velocity recovery procedure (2.9) leads to the desired clustering of particles at
the singularity. Moreover, the resolution achieved in the case of asymmetric initial
particle distribution is almost as good as in the symmetric case.

Example 6. Next, we turn to genuinely 2-D problems. First, consider the system
(1.5) subject to the following initial data:

(3.11) (ρ(x, y, 0), u(x, y, 0), v(x, y, 0)) =

⎧⎨⎩
(2, 2, 1) if (x, y) ∈ Ω,
(0, 0, 0) if (x, y) ∈ ∂Ω,
(1, 0, 0) otherwise,

where Ω = {x < 0, y < 1} ∪
{
x > 0, y > 0, x2 + y2 < 1

}
∪ {y < 0, 0 < x < 1}. The

initial location of the discontinuity ∂Ω is shown in Figure 10. According to [21], the
exact solution of the initial-value problem (1.5), (3.11) develops a δ-shock in density,
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Fig. 8. Side view on the solution of (1.5), (3.10) computed by the SP method. The initial
location of particles is shown in Figure 7 (left).
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Fig. 9. Side view on the solution of (1.5), (3.10) computed by the SP method. The initial
location of particles is shown in Figure 7 (right).

and the evolution of the shock curve is described by the following system of ODEs:

(3.12)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dX

dt
= u−

√
ρ−√

ρ− +
√
ρ+

=
2
√

2√
2 + 1

,

dY

dt
= v−

√
ρ−√

ρ− +
√
ρ+

=

√
2√

2 + 1
,

where (ρ−, u−, v−) := (2, 2, 1) are the initial values inside the domain Ω and ρ+ := 1
is the initial value of the density on the other side of the initial shock curve.

Numerically, we restrict the initial data (3.11) to the finite domain [−4, 4]×[−4, 4]
and consider the following initial-boundary value problem: (1.5), (3.11) together with
the solid wall boundary conditions. The numerical solutions, computed by the SP
method at time t = 2 with 50 × 50 and 100 × 100 initially uniformly distributed
particles, are plotted in Figure 10. The size of each point in the figure is proportional
to the mass accumulated in the particle located there. The exact solution of the
initial-boundary value problem is not known, but in the domain [0, 4] × [−2, 4] it
coincides with the solution of the original initial-value problem (1.5), (3.11), and as
can be clearly seen in Figure 10, the SP method accurately tracks the evolution of
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Fig. 10. Top view on the solution (masses) of (1.5), (3.11) computed by the SP method with
50× 50 (left) and 100× 100 (right) particles. The solid line is obtained from the initial shock curve
(the dashed line) by the evolution according to (3.12).

the corresponding part of the shock curve described by (3.12). Outside the domain
[0, 4] × [−2, 4], the solution is obviously affected by the boundedness of the cloud,
but the obtained numerical solution looks reasonable, as supported by the performed
mesh refinement study.

Example 7. Next, we consider an example with nonzero mass and momenta at
the initial shock curve. We numerically solve the system (1.5) subject to the following
initial data:

(3.13) (ρ(x, 0), u(x, 0), v(x, 0)) =

⎧⎨⎩
(2, 2, 2) if x ∈ Ω,

(10 δ(dist(x, ∂Ω)), 2, 1) if x ∈ ∂Ω,
(2, 0, 0) otherwise,

where x ≡ (x, y) and the domain Ω is the same as in Example 6: Ω = {x < 0, y < 1}∪{
x > 0, y > 0, x2 +y2 < 1

}
∪{y < 0, 0 < x < 1}. In the practical implementation, we

replace the δ-function along the curve ∂Ω with its approximation by a step function;
namely, we take

ρ(x, 0) =

⎧⎪⎪⎨⎪⎪⎩
10
√

2√
(Δx)

2
+ (Δy)

2
if dist(x, ∂Ω) ≤

√
(Δx)

2
+ (Δy)

2

2
√

2
,

2 otherwise.

The numerical solutions at time t = 1.5 obtained using the SP method with
101 × 101 particles (initially uniformly distributed) and the CU scheme with Δx =
Δy = 0.08 are plotted in Figures 11 and 12. Note that the maximal mass value of the
solution obtained by the CU scheme is 0.6299 while the maximal mass obtained by the
SP method is 2.7009. As before, the size of each point in the figures is proportional
to the mass accumulated in the particle located there.

Even though a complete structure of the exact solution of the initial-value problem
(1.5), (3.13) is not available, the obtained solution behavior has been expected (see
the discussion at the end of section 2). It is instructive to compare the computed
numerical solution with theoretical results presented in [21]. According to [21], if
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Fig. 11. Solution (masses) of (1.5), (3.13) computed by the SP method (left) and the CU
scheme (right).
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Fig. 12. Top view on the solution (masses) of (1.5), (3.13) computed by the SP method (left)
and the CU scheme (right). The solid lines are obtained from the initial shock curve (the dashed
line) by the evolution according to (3.14).

initially a shock curve with mass distribution P0 and velocities (U0, V0) is located
along the line x0(l) = C ≡ const, y0(l) = l, then its location at a later time is given
by

(3.14)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x = C +

[
u

2
−
(

1
2u− U0

)
P0

ρut + P0

]
t,

uy − vx =
(uV0 − vU0)P0

ρu
ln

(
1 +

ρut

P0

)
+ ul − vC,

where ρ, u, and v are the density and the corresponding velocities inside the domain.
If we now consider a part of the initial shock curve ∂Ω, namely, x0 = 1, y0 = l,
0 ≤ l ≤ 1, and substitute the corresponding values of P0 = 10, U0 = 2, V0 = 1, and
ρ = u = v = 2 into the first formula in (3.14), we obtain that at time t = 1.5 the shock
line should be located at x = 3.4375. Similarly, it can be shown that the initial shock
line x0 = l, y0 = 1, 0 ≤ l ≤ 1 should move to y = 2.5 by the time t = 1.5. As one can
see from Figure 12, both methods accurately track the evolution of the corresponding
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parts of the shock curve: in this figure, the horizontal solid line (y = 2.5) and the
vertical solid line (x = 3.4375) represent the exact shock locations, while the dots are
used to plot the numerical solution obtained by the SP method (left) and the CU
scheme (right). One can clearly observe a much better resolution of the discontinuity
achieved by the SP method.

Example 8. We now consider the system (1.5) subject to the following initial
data:

(3.15) (ρ(x, 0), u(x, 0), v(x, 0)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2, 2, 1) if x ∈ Ω1,
(2, 1, 2) if x ∈ Ω2,
(2, η, η) if x ∈ Ω3,
(0, 0, 0) if x ∈ ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3,
(1, 0, 0) otherwise,

where Ω1 = {x < 0, x/2 + 1 < y < 1}, Ω2 = {y < 0, y/2 + 1 < x < 1}, and
Ω3 = {x < 0, y < x/2 + 1} ∪ {x > 0, y > 0, x2 + y2 < 1} ∪ {y < 0, x < y/2 + 1}.
The initial locations of the discontinuities are shown in Figures 13 and 16. As in
the previous two examples, we restrict the initial data (3.15) to the finite domain
[−4, 4] × [−4, 4] and supplement the initial-value problem (1.5), (3.15) with the solid
wall boundary conditions.

Example 8a. We first take η = 1 in (3.15). In this case, δ-shocks are immediately
formed along the initial shock curves. Then, they propagate and develop stronger δ-
type singularities at two points, which later merge into a single one in the upper right
corner of the computational domain (as in the previous numerical example, the exact
solution of the initial-value problem (1.5), (3.15) is not available, but the obtained
solution behavior is in line with our expectations; see the discussion at the end of
section 2).

We apply the SP method with initially uniformly distributed 100× 100 particles
and present the solutions, computed at times t = 2 and t = 4, in Figures 13 and
14. Once again, the size of each point in the figures is proportional to the mass
accumulated in the particle located there. For comparison purposes, we also apply
the CU scheme with Δx = Δy = 0.08 to the same initial-boundary value problem.
The obtained solution, presented in Figure 15 (left), clearly demonstrates that the
resolution achieved by the SP method is by far superior. However, since the exact
solution of this test problem is unavailable and since there is a very big discrepancy
between the solutions computed by the SP and CU methods, we also apply the CU
scheme on a much finer grid with Δx = Δy = 0.02. The obtained solution, shown
in Figure 15 (right), looks more like the SP solution in Figure 14 (right), but the
resolution is still not as high as the one achieved by our SP method; compare, for
instance, the maximal mass values—7.2927, 3.9223, and 1.0205—of the solutions,
computed by the SP method, the CU scheme on the fine grid, and the CU scheme on
the coarse grid, respectively.

Example 8b. Next, we take η = 2 − 1/
√

2 in (3.15). In this case, we observe
a more clear structure of the formed δ-shocks, which then interact with two contact
waves. This interaction, as in Example 8a, leads to formation of strong singularities.
Such a structure—strong singularities emerging from δ-shock curves—is anticipated
as a typical one for 2-D pressureless gases; see the discussion at the end of section 2.
See also [21] and the references therein.
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Fig. 13. Top view on the solution (masses) of (1.5), (3.15) with η = 1 at t = 2 (left) and t = 4
(right) computed by the SP method. The dashed lines represent the initial location of discontinuities.
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Fig. 14. Solution (masses) of (1.5), (3.15) with η = 1 at t = 2 (left) and t = 4 (right) computed
by the SP method.
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Fig. 15. Solution (masses) of (1.5), (3.15) with η = 1 at t = 4 computed by the CU scheme
with Δx = Δy = 0.08 (left) and Δx = Δy = 0.02 (right).
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Fig. 16. Top view on the solution (masses) of (1.5), (3.15) with η = 2− 1/
√

2 at t = 1.7 (left)
and t = 3 (right) computed by the SP method. The dashed lines represent the initial shock location.
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Fig. 17. Solution (masses) of (1.5), (3.15) with η = 2−1/
√

2 at t = 1.7 (left) and t = 3 (right)
computed by the SP method.

We apply the SP method with initially uniformly distributed 100× 100 particles
and present the solutions, computed at times t = 1.7 and t = 3, in Figures 16 and
17. As before, the size of each point in these figures is proportional to the mass
accumulated in the particle located there. We compare the SP solution, presented in
Figure 17 (right), with the solution computed by the CU scheme with Δx = Δy =
0.08, which is plotted in Figure 18 (left). One can clearly see the superiority of the
results achieved by the SP method. We also apply the CU scheme on a much finer
grid with Δx = Δy = 0.02. The obtained solution, shown in Figure 18 (right), looks
more like the SP solution in Figure 17 (right), but the resolution is still not as high as
the one achieved by the SP method; compare, as before, the maximal mass values—
2.9529, 1.7261, and 0.4724—of the solutions, computed by the SP method, the CU
scheme on the fine grid, and the CU scheme on the coarse grid, respectively.

Example 9. Finally, we consider the system (1.5) subject to the initial data
taken from [1, 23]. In this example, ρ(x, 0) is a Gaussian field, shown in Figures 19
and 20 (a detailed description of its generation can be found in [23, section 5.1]) and
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Fig. 18. Solution (masses) of (1.5), (3.15) with η = 2 − 1/
√

2 at t = 3 computed by the CU
scheme with Δx = Δy = 0.08 (left) and Δx = Δy = 0.02 (right).

the initial velocity vector is the solution of the following elliptic problem:

(3.16)

⎧⎨⎩
u = −φx,
v = −φy,
Δφ = 4πG(ρ− ρ̄) in Ω = [0, 251] × [0, 251],

where G is the gravitational constant and ρ̄ = 1
|Ω|

∫
Ω
ρ dx dy. All the boundary condi-

tions are assumed to be periodic. These 2-D physical data are derived from large-scale
structure simulations related to the cosmological model of Zeldovich [24]. In Figures
19 and 20, we observe the formation of the large-scale structures computed by the
SP method and the CU scheme, respectively. We use a uniform spatial grid with
Δx = Δy = 1 for the CU scheme and the uniform initial distribution of 251 × 251
particles. In order to compare the results, the total mass of each cell computed by the
CU scheme has been recalculated at the location of particles. Again, the size of each
point in Figures 19 and 20 is proportional to the total mass at this point, that is, big-
ger points correspond to larger masses. As one can see, for small times both schemes
produce very similar results, while for larger times a numerical diffusion present in
the CU scheme “takes over” (compare the corresponding results at times t = 4000
and t = 15000 in Figures 19 and 20). In fact, the maximum mass accumulated at one
point by the SP method is about 15 times larger than the one accumulated by the CU
scheme. We also would like to point out that, as a result of unification of clustering
particles, the number of particles is decreasing in time and therefore the efficiency of
the SP method is increasing. For instance, the number of particles at times t = 1000,
4000, and 15000 is 2767, 1068, and 454, respectively, while computations using the
CU scheme are being performed on a 251× 251 grid for all times. This also results in
much smaller runtime for the SP method compared to the CU scheme.

4. Concluding remarks. We have presented a new sticky particle (SP) method
for the system of Euler equations of pressureless gas dynamics that arises in the mod-
eling of the formation of large-scale structures in the universe. The main feature of
interest in this problem is the formation of strong singularities (δ-functions along the
surfaces as well as at separate points) and the emergence of vacuum states, and there-
fore particle methods seem to be a natural choice for numerical simulations of such
models. The proposed SP method has been studied both analytically and numerically.
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Fig. 19. Top view on the solution (masses) of (1.5), (3.16) computed by the SP method at
different times.

It has been shown that the particle approximation satisfies the original system of pres-
sureless gas dynamics in a weak sense, but only within a certain residual, which has
been rigorously estimated. It has also been explained why the relevant errors should
diminish as the total number of particles increases. Numerical experiments in one
and two space dimensions have been performed (3-D extension of the SP method is
out of scope of this paper, but it can be carried out rather straightforwardly). The
SP method has been compared to the second-order CU scheme. Our numerical ex-
periments clearly demonstrate the superiority of results obtained by the SP method,
which seems to be a robust, accurate, and efficient alternative to existing numerical
methods for pressureless gas dynamics.

Appendix A. Semidiscrete central-upwind schemes for pressureless gas
dynamics. Here, we briefly describe semidiscrete CU schemes for the 2-D system
of pressureless gas dynamics (1.5), which can be written in the following flux-vector
form:

wt + f(w)x + g(w)y = 0,
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Fig. 20. Top view on the solution (masses) of (1.5), (3.16) computed by the CU scheme at
different times.

where

w :=

⎛⎝ ρ
ρu
ρv

⎞⎠ , f(w) :=

⎛⎝ ρu
ρu2

ρuv

⎞⎠ , g(w) :=

⎛⎝ ρv
ρuv
ρv2

⎞⎠ .

We consider a uniform spatial grid xμ := μΔx, yν := νΔy, and denote the
computed quantities, the cell averages, by

w̄j,k(t) :=
1

ΔxΔy

∫∫
Ij,k

w(ξ, η, t) dη dξ, Ij,k := [xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
].

The cell averages are evolved in time according to the semidiscrete CU scheme

d

dt
w̄j,k(t) = −

Hx
j+ 1

2 ,k
(t) −Hx

j− 1
2 ,k

(t)

Δx
−

Hy

j,k+ 1
2

(t) −Hy

j,k− 1
2

(t)

Δy
,
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where the numerical fluxes Hx
j+ 1

2 ,k
and Hy

j,k+ 1
2

are given by (see [11] for the derivation)

(A.1)

Hx
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
f(wE

j,k) − a−
j+ 1

2 ,k
f(wW

j+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

[
wW

j+1,k − wE
j,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

− qx
j+ 1

2 ,k

]

and
(A.2)

Hy

j,k+ 1
2

=
b+
j,k+ 1

2

g(wN
j,k) − b−

j,k+ 1
2

g(wS
j,k+1)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+b+
j,k+ 1

2

b−
j,k+ 1

2

[
wS

j,k+1 − wN
j,k

b+
j,k+ 1

2

− b−
j,k+ 1

2

− qy

j,k+ 1
2

]
.

Note that all the quantities in (A.1) and (A.2) depend on t, but we will omit this
dependence in order to simplify the notation.

In (A.1)–(A.2), the point values wE(W,S,N) are to be computed from a conserva-
tive, nonoscillatory piecewise polynomial reconstruction of an appropriate order. For
example, the second-order CU scheme would employ a piecewise linear reconstruction

(A.3) w̃(x, y, t) = w̄j,k(t) + (wx)j,k(x− xj) + (wy)j,k(y − yk) for (x, y) ∈ Ij,k,

and the corresponding point values will be

w
E(W)
j,k := w̄j,k(t) ±

Δx

2
(wx)j,k, w

N(S)
j,k := w̄j,k(t) ±

Δy

2
(wy)j,k.

To ensure a nonoscillatory property of this reconstruction and thus of the second-
order CU scheme, the slopes in (A.3) should be computed with the help of a nonlinear
limiter. In our numerical experiments, we have used a one-parameter family of the
minmod limiters [15, 18, 22]:

(wx)j,k = minmod

(
θ
w̄j+1,k − w̄j,k

Δx
,
w̄j+1,k − w̄j−1,k

2Δx
, θ

w̄j,k − w̄j−1,k

Δx

)
,

(wy)j,k = minmod

(
θ
w̄j,k+1 − w̄j,k

Δy
,
w̄j,k+1 − w̄j,k−1

2Δy
, θ

w̄j,k − w̄j,k−1

Δy

)
,

where θ ∈ [1, 2], and the multivariate minmod function is defined by (2.14). Notice
that larger θ’s correspond to less dissipative but, in general, more oscillatory limiters
(we have used θ = 1.5 in all the reported numerical experiments).

Since all the eigenvalues of the Jacobians ∂f
∂w and ∂g

∂w are of multiplicity 3 and
are equal to u and v, respectively, the one-sided local speeds in (A.1)–(A.2) are easy
to estimate:

a+
j+ 1

2 ,k
:= max

{
uW
j+1,k, u

E
j,k, 0

}
, a−

j+ 1
2 ,k

:= min
{
uW
j+1,k, u

E
j,k, 0

}
,

b+
j,k+ 1

2

:= max
{
vS
j,k+1, v

N
j,k, 0

}
, b−

j,k+ 1
2

:= min
{
vS
j,k+1, v

N
j,k, 0

}
.

Finally, qx
j+ 1

2 ,k
and qy

j,k+ 1
2

are the “antidiffusion” terms that help to reduce numerical

dissipation present at nonoscillatory central schemes [11]:

qx
j+ 1

2 ,k
= minmod

(
wNW

j+1,k − wint
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,
wint

j+ 1
2 ,k

− wNE
j,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,

wSW
j+1,k − wint

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,
wint

j+ 1
2 ,k

− wSE
j,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)
,
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qy

j,k+ 1
2

= minmod

(
wSW

j,k+1 − wint
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

,
wint

j,k+ 1
2

− wNW
j,k

b+
j,k+ 1

2

− b−
j,k+ 1

2

,

wSE
j,k+1 − wint

j,k+ 1
2

b+
j,k+ 1

2

− b−
j,k+ 1

2

,
wint

j,k+ 1
2

− wNE
j,k

b+
j,k+ 1

2

− b−
j,k+ 1

2

)
,

where

wint
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
wW

j+1,k − a−
j+ 1

2 ,k
wE

j,k −
{
f(wW

j+1,k) − f(wE
j,k)

}
a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,

wint
j,k+ 1

2
=

b+
j,k+ 1

2

wS
j,k+1 − b−

j,k+ 1
2

wN
j,k −

{
g(wS

j,k+1) − g(wN
j,k)

}
b+
j,k+ 1

2

− b−
j,k+ 1

2

,

and the point values at the cell corners are

w
NE(NW)
j,k := w̄j,k(t) ±

Δx

2
(wx)j,k +

Δy

2
(wy)j,k,

w
SE(SW)
j,k := w̄j,k(t) ±

Δx

2
(wx)j,k − Δy

2
(wy)j,k.
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