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Abstract. We design a new well-balanced central-upwind scheme for compressible two-

phase flows. The new scheme is an extension of the semi-discrete central-upwind scheme

proposed in5. The novelty of the presented method is in a special discretization of non-

conservative product terms, which are exactly balanced with the numerical fluxes when the

method is applied to void waves. The new scheme is simpler than its predecessor and

extends the applicability of central-upwind schemes to several important test problems that

remained out of reach in5.

1 INTRODUCTION

We consider a two-phase model that describes liquid suspensions or bubbly flows, where
one is not interested in following the dynamics of individual droplets/bubbles, but rather
in following the average dynamics of the fluid mixture. Following3,5,14, we assume that the
mixture consists of two compressible fluid components, described by their own pressure
and velocity functions. The advantage of such an approach is that the resulting model is
hyperbolic — a property which is lost if one fluid is assumed incompressible. To account
for the fact that on the scale of interest, pressure differences between fluid components
is not sustainable, infinitely fast pressure relaxation terms are included in the studied
model.

In the one-dimensional case, the governing equations are:


αgρg

αgρgug

αgEg

α`ρ`

α`ρ`u`

α`E`




t

+




αgρgug

αg(ρgu
2
g + pg)

αgug(Eg + pg)

α`ρ`u`

α`(ρ`u
2
` + p`)

α`u`(E` + p`)




x

=




0

Pi(αg)x + λ(u` − ug)

UiPi(αg)x + µPi[p` − pg] + λUi(u` − ug)

0

Pi(α`)x − λ(u` − ug)

UiPi(α`)x − µPi[p` − pg] − λUi(u` − ug)




, (1)
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coupled with the equation for the volume fraction:

(αg)t
+ Ui(αg)x

= −µ[p` − pg], αg + α` = 1. (2)

Here, µ is a relaxation parameter, with µ → ∞ corresponding to instantaneous relaxation,
λ is a velocity relaxation parameter, αk is the volume fraction of the k-th phase, k ∈
{`, g}, and ρk, uk and Ek are its density, velocity and total energy, respectively. Near
incompressibility of liquids is incorporated into the model by using a stiff equation of
state (EOS):

Ek =
1

2
ρku

2
k +

pk + γkP∞,k

γk − 1
, (3)

where P∞,k is a stiffness parameter, which is equal to zero for the non-stiff ideal gases.
The closure equations for the interface pressure Pi and the interface velocity Ui are:

Pi = αgpg + α`p`, Ui =
αgρgug + α`ρ`u`

αgρg + α`ρ`

. (4)

Notice that equation (2) can be combined with the first and the fourth equations in (1)
and replaced with:

(αgρ)
t
+ (αgρUi)x

= −µρ[p` − pg], (5)

where ρ = αgρg + α`ρ` is the total density.
While hyperbolic, the system (1),(3)–(5) is inherently nonconservative due to mo-

mentum and energy exchange terms between the phases. Computing solutions of this
two-phase flow model introduces challenges due to the nonconservative form and stiffness
of the governing equations and because the volume fractions (and hence, partial pres-
sures/densities) may vanish. Several numerical methods have been recently developed
for such 2-pressure 2-velocity models including the kinetic scheme3 and finite-volume up-
wind schemes1,5,14 . Godunov-type central schemes (including their recent semi-discrete
central-upwind modifications7,8,9) are appealing Riemann-problem-solver-free alternatives
to the above methods. In5, a second-order central-upwind scheme has been applied to
the system (1), while the transport equation (2) has been treated as a Hamilton-Jacobi
equation (central-upwind schemes for Hamilton-Jacobi equations have been developed
in2,8,10). Such a hybrid scheme guarantees positivity of partial densities and usually does
not produce negative partial pressures. The discretization of nonconservative exchange
terms in5 was rather straightforward, and the resulting scheme worked pretty well for
several sedimentation problems (in which the gas and liquid phases separate due to the
gravity terms added to the studied model) and the water faucet problem from13. It failed,
however, to produce a reliable solution in the multifluid limiting case, in which a certain
region is occupied by the liquid (αg ∼ 0), while the rest of the domain is filled with the
gas (αg ∼ 1).
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In this paper, we present a new version of the semi-discrete central-upwind scheme
applied to the system (1),(3)–(5), which is written in the divergence form. The non-
conservative products on the right-hand side (RHS) of this system are treated as a part
of the source term, whose cell average is computed using a special quadrature designed
to ensure a perfect numerical balance between the nonconservative terms and the corre-
sponding part of the fluxes. This results in a well-balanced central-upwind scheme, which
resembles the well-balance central-upwind scheme for the Saint-Venant system of shallow
water equations proposed in6.

The paper is organized as follows. In §2, we provide a brief description of the semi-
discrete central-upwind schemes for hyperbolic systems of conservation and balance laws
and review an operator splitting technique, required to incorporate the relaxation terms
into the resulting numerical method for (1),(3)–(5). In §3, we derive a well-balanced
central-upwind scheme for this system. Finally, in §4, we demonstrate the enhanced
performance of the new central-upwind scheme on the examples of a void wave propagation
and multifluid-fluid limits.

2 CENTRAL-UPWIND SCHEMES FOR THE TWO-PHASE SYSTEM

We first rewrite the system (1),(5) as:

wt + f(w)x = SEx(w) + SRel(w), (6)

where the set of “conservative” variables and the corresponding fluxes are:

w :=




αgρg

αgρgug

αgEg

α`ρ`

α`ρ`u`

α`E`

αgρ




, F(w) :=




αgρgug

αg(ρgu
2
g + pg)

αgu
2
g(Eg + pg)

α`ρ`u`

α`(ρ`u
2
` + p`)

α`u
2
`(E` + p`)

αgρUi




, (7)

and the nonconservative exchange terms SEx and the relaxation terms SRel are:

SEx :=




0

Pi(αg)x

UiPi(αg)x

0

Pi(α`)x

UiPi(α`)x

0




, SRel :=




0

λ(u` − ug)

µPi[p` − pg] + λUi(u` − ug)

0

−λ(u` − ug)

−µPi[p` − pg] − λUi(u` − ug)

−µρ[p` − pg]




. (8)
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Since the studied model includes (infinitely fast) relaxation terms, we apply the oper-
ator splitting technique, and at each time step the solution is evolved according to the
hydrodynamic step:

wt + f(w)x = SEx(w), (9)

followed by the relaxation step:

wt = SRel(w). (10)

The ODE (10) is solved using the method described in §2.1 and §2.2 in5, see also14 and
the hyperbolic system (9) is solved by the central-upwind scheme from7, which is briefly
described below.

We introduce a small spatial scale ∆x and, for simplicity, consider a uniform grid with
xβ = β∆x. Then the cell averages of the solution,

wj(t) ≈

x
j+1

2∫

x
j− 1

2

w(x, t) dx,

are used to reconstruct an (essentially) non-oscillatory piecewise polynomial interpolant
of an appropriate order:

w̃(x) = pj(x), xj− 1

2

< x < xj+ 1

2

, (11)

and to evolve the computed solution in time by solving the system of ODEs,

d

dt
wj(t) = −

Hj+ 1

2

(t) − Hj− 1

2

(t)

∆x
+

1

∆x

x
j+1

2∫

x
j− 1

2

SEx dx, (12)

where Hj+ 1

2

is a numerical flux. A family of central-upwind fluxes from7,8 takes the
following form:

Hj+ 1

2

(t) =
a+

j+ 1

2

f(w−
j+ 1

2

) − a−
j+ 1

2

f(w+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+ a+
j+ 1

2

a−
j+ 1

2




w+

j+ 1

2

− w−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
qj+ 1

2

2



 . (13)

Here, w+
j+ 1

2

:= pj+1(xj+ 1

2

) and w−
j+ 1

2

:= pj(xj+ 1

2

) are the right- and left-sided values

of the piecewise polynomial reconstruction w̃ at x = xj+ 1

2

, respectively. The one-sided

local speeds of propagation, a+
j+ 1

2

(a−
j+ 1

2

), are the positive (negative) part of the largest

(smallest) eigenvalues of the Jacobian, ∂f

∂w
, at x = xj+ 1

2

, namely:

a+
j+ 1

2

= max
k∈{`,g},±

{
max

{
(uk)

±
j+ 1

2

+ (ck)
±
j+ 1

2

, (uk)
±
j+ 1

2

− (ck)
±
j+ 1

2

, 0
}}

,

a−
j+ 1

2

= min
k∈{`,g},±

{
min

{
(uk)

±
j+ 1

2

+ (ck)
±
j+ 1

2

, (uk)
±
j+ 1

2

− (ck)
±
j+ 1

2

, 0
}}

,
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where the first max
k∈{`,g},±

/ min
k∈{`,g},±

is taken over the corresponding “+” and “−” values of

both gas and liquid components, and the speeds of sound are:

(ck)
±
j+ 1

2

=

√√√√√√
γk

(
(pk)

±
j+ 1

2

+ P∞,k

)

(ρk)
±
j+ 1

2

, k ∈ {`, g}.

Finally, qj+ 1

2

:= q(w±
j+ 1

2

, a±
j+ 1

2

) represents a “build-in” anti-diffusion term7, which was

zero in the original central-upwind scheme in5,8:

qj+ 1

2

= MinMod




w+
j+ 1

2

− w∗
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

,
w∗

j+ 1

2

− w−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2


 , (14)

where

w∗
j+ 1

2

=
a+

j+ 1

2

w+
j+ 1

2

− a−
j+ 1

2

w−
j+ 1

2

−
{
f(w+

j+ 1

2

) − f(w−
j+ 1

2

)
}

a+
j+ 1

2

− a−
j+ 1

2

, (15)

and the minmod function, given by

MinMod{z1, z2, . . .} :=





min(z1, z2, . . .), if zi > 0 ∀i,
max(z1, z2, . . .), if zi < 0 ∀i,
0, otherwise.

is applied component-wise. We note that the presence of the anti-diffusion term (14)–
(15) helps to minimize the amount of numerical diffusion present in the central-upwind
schemes (12)–(13).

Remarks.

1. To complete the construction of the scheme (12), one needs to specify a numerical
quadrature for the last term on the RHS of (12) — the cell average of the exchange terms,
SEx. We would like to stress that selecting this quadrature is a crucial step in designing
a reliable and robust central-upwind scheme for the two-phase system.

2. The system of time-dependent ODEs (12) should be solved numerically by a stable
ODE solver. In our numerical examples, we have used the third-order strong stability
preserving Runge-Kutta (SSP-RK) method4.

3. A spatial order of the semi-discrete scheme (12)–(15) is determined by the order of
the piecewise polynomial reconstruction used in (11). In our numerical experiments, we
have used the second-order piecewise linear generalized minmod reconstruction (see, e.g.,
9,11,12):

pj(x) = wj(t) + (wx)j(x − xj),

where the slopes (wx)j are computed by:

(wx)j = MinMod
{
θ
wj+1 − wj

∆x
,
wj+1 − wj−1

2∆x
, θ

wj − wj−1

∆x

}
, θ ∈ [1, 2].
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3 CONSTRUCTION OF THE WELL-BALANCED SCHEME

In this section, we derive a special quadrature for the cell average of the exchange
terms, which is designed to balance them with the corresponding part of the numerical
fluxes.

We consider a particular situation of a so-called void wave, that is, we assume that
throughout the computational domain ug = u` ≡ u = const and pg = p` ≡ p = const. In
this case, the system (6)–(8) reduces to:

wt + (uw)x +




0

pαg

upαg

0

pα`

upα`

0




x

=




0

p(αg)x

up(αg)x

0

p(α`)x

up(α`)x

0




(16)

In fact, the last term on the left-hand side (LHS) of this equations and the term on its
RHS are identical and thus, the scheme is well-balanced if the numerical discretizations of
these terms coincide on void wave data as well. To guarantee this, we plug the void data
into the flux difference term on the RHS of central-upwind scheme (12). For the second
component (w(2) = αgρgug, f (2) = αg(ρgu

2
g + pg)), we obtain:

H
(2)

j+ 1

2

(t) =
a+

j+ 1

2

f (2)(w−
j+ 1

2

) − a−
j+ 1

2

f (2)(w+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+ a+
j+ 1

2

a−
j+ 1

2




(w(2))+
j+ 1

2

− (w(2))−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
q
(2)

j+ 1

2

2




=
a+

j+ 1

2

(αgρgu
2
g)

−
j+ 1

2

− a−
j+ 1

2

(αgρgu
2
g)

+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

+ a+
j+ 1

2

a−
j+ 1

2




(w(2))+
j+ 1

2

− (w(2))−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
q
(2)

j+ 1

2

2




+ p
a+

j+ 1

2

(αg)
−
j+ 1

2

− a−
j+ 1

2

(αg)
+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

and hence,

H
(2)

j+ 1

2

(t) − H
(2)

j− 1

2

(t)

∆x
(17)

=
1

∆x





a+
j+ 1

2

(αgρgu
2
g)

−
j+ 1

2

− a−
j+ 1

2

(αgρgu
2
g)

+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

+ a+
j+ 1

2

a−
j+ 1

2




(w(2))+
j+ 1

2

− (w(2))−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
q
(2)

j+ 1

2

2




−
a+

j− 1

2

(αgρgu
2
g)

−
j− 1

2

− a−
j− 1

2

(αgρgu
2
g)

+
j− 1

2

a+
j− 1

2

− a−
j− 1

2

− a+
j− 1

2

a−
j− 1

2




(w(2))+
j− 1

2

− (w(2))−
j− 1

2

a+
j− 1

2

− a−
j− 1

2

−
q
(2)

j− 1

2

2
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+
p

∆x





a+
j+ 1

2

(αg)
−
j+ 1

2

− a−
j+ 1

2

(αg)
+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
a+

j− 1

2

(αg)
−
j− 1

2

− a−
j− 1

2

(αg)
+
j− 1

2

a+
j− 1

2

− a−
j− 1

2



 .

We note that the first four term on the RHS of (17) represent the central-upwind ap-
proximation of the transport term (uw(2))x, appearing on the LHS of (16), while the last
two terms approximate p(αg)x and thus, this is exactly the part of the numerical flux
that should be balanced with the cell average of the corresponding exchange term. This
requirement dictates the following well-balanced quadrature for the second component of
the exchange term SEx:

1

∆x

x
j+1

2∫

x
j− 1

2

S
(2)
Ex dx ≈

Pi

∆x






a+
j+ 1

2

(αg)
−
j+ 1

2

− a−
j+ 1

2

(αg)
+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
a+

j− 1

2

(αg)
−
j− 1

2

− a−
j− 1

2

(αg)
+
j− 1

2

a+
j− 1

2

− a−
j− 1

2




 .(18)

Similarly, we obtain the well-balanced quadratures for the third, fifth, and sixth compo-
nents of SEx:

1

∆x

x
j+1

2∫

x
j− 1

2

S
(3)
Ex dx ≈

UiPi

∆x





a+
j+ 1

2

(αg)
−
j+ 1

2

− a−
j+ 1

2

(αg)
+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
a+

j− 1

2

(αg)
−
j− 1

2

− a−
j− 1

2

(αg)
+
j− 1

2

a+
j− 1

2

− a−
j− 1

2



 ,(19)

1

∆x

x
j+1

2∫

x
j− 1

2

S
(5)
Ex dx ≈

Pi

∆x





a+
j+ 1

2

(α`)
−
j+ 1

2

− a−
j+ 1

2

(α`)
+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
a+

j− 1

2

(α`)
−
j− 1

2

− a−
j− 1

2

(α`)
+
j− 1

2

a+
j− 1

2

− a−
j− 1

2



 , (20)

1

∆x

x
j+1

2∫

x
j− 1

2

S
(6)
Ex dx ≈

UiPi

∆x






a+
j+ 1

2

(α`)
−
j+ 1

2

− a−
j+ 1

2

(α`)
+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
a+

j− 1

2

(α`)
−
j− 1

2

− a−
j− 1

2

(α`)
+
j− 1

2

a+
j− 1

2

− a−
j− 1

2




 .(21)

This completes the derivation and the resulting well-balanced semi-discrete central-
upwind scheme is (12)–(15),(18)–(21).

4 NUMERICAL EXAMPLES

We now demonstrate the performance of the well-balanced central-upwind scheme on
three numerical examples taken from5. In Example 1, we compare the results obtained
by the new and original versions of the central-upwind schemes. Examples 2 and 3 are
only solved by the new central-upwind scheme since the scheme from5 is not applicable
in the limiting multifluid case.

Example 1 — Void Wave Propagation

In this example, we consider the initial data that corresponds to a void wave:
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{
(ρg, ρ`, αg) = (2, 1, 0.1), x < 0.5,
(ρg, ρ`, αg) = (1, 2, 0.9), x > 0.5,

(22)

ug = u` = pg = p` = 1, γg = 1.4, γ` = 1.2, P∞,g = P∞,` = 0.

The initial-value problem (IVP) (6)–(8),(22) is solved by both the new well-balanced
central-upwind scheme (12)–(15),(18)–(21) and its original version from5. The obtained
solutions are shown in Figure 1. Both solutions are computed at time t = 0.1 using the
same uniform grid with ∆x = 1/200. One can clearly see that unlike the original central-
upwind scheme, the new one preserves the mechanical equilibrium between the phases,
that is, both ρ, Ui and Pi remain constant.

0 0.5 1

1.099

1.1

1.101

1.102

1.103
ρ

0 0.5 1

0.9995

1

1.0005

1.001

U
 i

0 0.5 1
0.9985

0.999

0.9995

1

P
 i

0 0.5 1

0.2

0.4

0.6

0.8

α
 g

Figure 1: IVP (6)–(8),(22) by the well-balanced (solid line) and original (circles) central-upwind schemes.

Example 2 — Air-Helium Multifluid Limit

Next, we consider a multifluid limiting case when the air and helium are initially
separated by a sharp interface and the mixing is avoided by including both pressure and
velocity instantaneous relaxation rates (λ = µ = ∞). The initial data are:
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{
αg = 10−8 ∼ 0, x < 0.5,
αg = 1 − 10−8 ∼ 1, x > 0.5,

(23)

(ρg, ug, pg, γg, P∞,g) = (4/29, 0, 0.1, 5/3, 0),

(ρ`, u`, p`, γ`, P∞,`) = (1, 0, 1, 1.4, 0).

The solutions, computed by the well-balanced central-upwind scheme (12)–(15),(18)–(21)
on both coarse (∆x = 1/400) and fine (∆x = 1/5000) grids are shown in Figure 2. The
final computational time is t = 0.2. One can observe a superior resolution achieved by
the new scheme and lack of any interface pressure/velocity oscillations.

0 0.5 1

0.2

0.4

0.6

0.8

1

ρ

0 0.5 1
0

0.2

0.4

0.6

0.8

U
 i

0 0.5 1

0.2

0.4

0.6

0.8

1

P
 i

0 0.5 1
0

0.5

1

α
 g

Figure 2: IVP (6)–(8),(23) by the well-balanced central-upwind scheme with ∆x = 1/400 (circles) and
∆x = 1/5000 (solid line).

We note that even though our scheme does not guarantee positivity of computed partial
pressures, αgpg and α`p`, they remained positive even when smaller (than 10−8) values of
αg and α` were used.
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Example 3 — Water-Air Multifluid Limit

Finally, we consider another multifluid limiting case, in which the water (modeled by
the stiff equation of state) and air are initially separated by a sharp interface. As in the
previous example, the relaxation parameters are infinite so that no fluid mixing is allowed.
We solve the system (6)–(8) subject to the following initial data:

{
αg = 10−8 ∼ 0, x < 0.75,
αg = 1 − 10−8 ∼ 1, x > 0.75,

(24)

(ρg, ug, pg, γg, P∞,g) = (65, 0, 105, 1.4, 0),

(ρ`, u`, p`, γ`, P∞,`) = (1000, 0, 109, 4.4, 6 · 108).

The solutions at time t = 0.00025 computed by the well-balanced central-upwind scheme
(12)–(15),(18)–(21) on two different uniform grids are shown in Figure 3. Once again, the
quality of the obtained solutions is high and no pressure/velocity oscillations have been
generated near the material interface. Also notice a very good resolution of the “narrow”
intermediate state, demonstrated in Figure 4.
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