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Abstract. We discover that the choice of a piecewise polynomial reconstruction is crucial in
computing solutions of nonconvex hyperbolic (systems of) conservation laws. Using semidiscrete
central-upwind schemes, we illustrate that the obtained numerical approximations may fail to con-
verge to the unique entropy solution or the convergence may be so slow that achieving a proper
resolution would require the use of (almost) impractically fine meshes. For example, in the scalar
case, all computed solutions seem to converge to solutions that are entropy solutions for some en-
tropy pairs. However, in most applications, one is interested in capturing the unique (Kruzhkov)
solution that satisfies the entropy condition for all convex entropies. We present a number of nu-
merical examples that demonstrate the convergence of the solutions, computed with the dissipative
second-order minmod reconstruction, to the unique entropy solution. At the same time, more com-
pressive and/or higher-order reconstructions may fail to resolve composite waves, typically present
in solutions of nonconvex conservation laws, and thus may fail to recover the Kruzhkov solution. In
this paper, we propose a simple and computationally inexpensive adaptive strategy that allows us to
simultaneously capture the unique entropy solution and to achieve a high resolution of the computed
solution. We use the dissipative minmod reconstruction near the points where convexity changes and
utilize a fifth-order weighted essentially nonoscillatory (WENO5) reconstruction in the rest of the
computational domain. Our numerical examples (for one- and two-dimensional scalar and systems of
conservation laws) demonstrate the robustness, reliability, and nonoscillatory nature of the proposed
adaptive method.
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1. Introduction. We consider initial-value problems (IVPs) for hyperbolic (sys-
tems of) conservation laws in one and two space dimensions:

ut + ∇x · f(u) = 0,(1.1)

u(x, 0) = u0(x),(1.2)

whose entropy solutions may admit composite waves. Such examples are scalar con-
servation laws with nonconvex fluxes and systems of conservation laws, for which (at
least) one of the structure coefficients, defined in (2.7) in section 2, changes sign.
Further, we refer to all these cases as nonconvex hyperbolic (systems of) conservation
laws.

An important example of such a system is the Euler equations of gas dynamics
with a nonconvex equation of state (EOS). In general, in this case, anomalous wave
structure should be expected near a phase transition, because the wave speed need
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not be monotonic along Hugoniot loci and isentropes, and the usual construction
of the wave curves for the Riemann problem must be modified (see [27] and the
references therein). Another important example of a nonconvex system of conservation
laws is the polymer system used to model polymer flooding processes in enhanced
oil recovery (see, e.g., [29]). The solution of the Riemann problem for these two
systems is known (see, for example, [2], [23], [24], [27], [36], [38], [39], and [11], [13],
respectively). However, designing reliable and robust high-order numerical methods
for general initial data remains a challenging problem.

Many classical numerical schemes have been extended to solve nonconvex (sys-
tems of) conservation laws. We refer the reader to [1], [4], [5], [6], [10], [31], [37], [40]
for several upwind Godunov-type schemes based on both the exact and approximate
Riemann problem solvers. A low dissipative front tracking method for the polymer
system was proposed in [9]. At the same time, note that the “simplest” extensions of
the Roe scheme typically cannot be applied in practice to nonconvex systems of conser-
vation laws. We would also like to point out that many of the aforementioned schemes
may require computationally expensive evaluation of integrals or a very careful esti-
mation of the CFL number, since otherwise the computed solution may converge to
a weak solution that is not the unique entropy solution (see, for example, [19]).

In this paper, we apply the Godunov-type semidiscrete central-upwind schemes
from [15] to numerically solve nonconvex hyperbolic (systems of) conservation laws.
These schemes are an attractive alternative to other existing methods because they
are simple (no Riemann problem solvers are employed), universal, and efficient, and
can be used as a “black-box solver.” They consist of three steps: projection (av-
eraging), a piecewise polynomial reconstruction, and evolution of the reconstructed
interpolant to the next time level according to the integral form of the conservation
law (obtained by integrating (1.1) over the control volume). Assuming the exact av-
eraging and evolution operators are used, the nonoscillatory nature of the computed
solution is guaranteed provided the piecewise polynomial reconstruction is nonoscilla-
tory, which is typically achieved with the help of nonlinear limiters. When solving the
nonconvex problem (1.1)–(1.2) using the semidiscrete central-upwind schemes from
[15], necessary adjustments, related to the estimation of the local speeds of propa-
gation, have to be made. Moreover, it turns out that the choice of reconstruction
is crucial for capturing of the unique entropy solution. One may expect that, as
in the convex case, the use of more compressive and/or higher-order reconstruction
will result in sharper resolution of the computed solution. However, this is not the
case here, where sharper reconstructions may lead to the convergence of the com-
puted solutions toward a weak solution, which satisfies the entropy condition for only
some, but not all, convex entropies. At the same time, the use of more dissipative
reconstructions typically results in computing the unique entropy solution, but with
relatively low resolution. For example, the implementation of the dissipative minmod
reconstruction (see, e.g., [35], [22], [28], [34]) seems to ensure the convergence toward
the unique entropy solution, while more compressible reconstructions based on the
generalized minmod [22], [28], [34] or superbee [22], [30], [34] limiters as well as the
fifth-order essentially nonoscillatory (WENO5) [3], [12], [26], [32], [33] reconstruction
may lead to capturing another weak solution (at least in the case when the mesh is
of the reasonably coarse size typically used in practical computations).

In this paper, we introduce a simple scheme adaption strategy for solving noncon-
vex problems, which utilizes the advantages of both the compressive/high-order and
the dissipative reconstructions, namely, computing the entropy solution with high



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ADAPTIVE SCHEMES FOR NONCONVEX CONSERVATION LAWS 2383

resolution. This is achieved by the proposed adaptive semidiscrete central-upwind
scheme. In the new scheme, the choice of reconstruction is based on the so far com-
puted solution and switches adaptively from one type to another at or near the points
where the flux convexity changes.

The paper is organized as follows. In section 2, we briefly describe the semi-
discrete central-upwind schemes. Several piecewise polynomial reconstructions and
their impact on the computed solutions are discussed in section 3. Our scheme
adaption strategy is presented in section 4. The numerical examples are shown in
section 5, where we test our method on one-dimensional (1-D) and two-dimensional
(2-D) nonconvex conservation laws, including scalar equations, the Euler equations of
gas dynamics, and the polymer system.

2. Semidiscrete central-upwind schemes—an overview. In this section,
we briefly describe the semidiscrete central-upwind schemes proposed in [15]. Here
we emphasize the details needed for their implementation for nonconvex conservation
laws.

For simplicity, we will focus on the 1-D case, where we consider a uniform spatial
grid xα = αΔx, and assume that the computed cell averages of the solution at some
time level t,

ūj(t) ≈
1

Δx

∫ x
j+ 1

2

x
j− 1

2

u(x, t) dx,

are already available. Using these values, we reconstruct a (nonoscillatory) piece-
wise polynomial interpolant (from now on, we will omit the time-dependence of all
computed and reconstructed quantities),

∑
j pj(x)χj(x), where χj is the characteris-

tic function of [xj− 1
2
, xj+ 1

2
] and pj(x) are the corresponding polynomial pieces. For

example, conservative linear pieces have the following form:

pj(x) = ūj + sj(x− xj).(2.1)

Piecewise polynomial reconstructions are, in general, discontinuous at the cell inter-
faces, x = xj+ 1

2
, and therefore their evolution is locally described by the solutions

of generalized Riemann problems. The sizes of the corresponding Riemann fans are
determined by the right- and left-sided local speeds of propagation, {a±

j+ 1
2

}, which

can be estimated as follows:

a+
j+ 1

2

:= max
ω∈C(u−

j+ 1
2

,u+

j+ 1
2

)

{
λN

(
∂f

∂u
(ω)

)
, 0

}
,

a−
j+ 1

2

:= min
ω∈C(u−

j+ 1
2

,u+

j+ 1
2

)

{
λ1

(
∂f

∂u
(ω)

)
, 0

}
.

(2.2)

Here, λ1 < · · · < λN are the eigenvalues of the Jacobian ∂f
∂u , and C(u−

j+ 1
2

, u+
j+ 1

2

) is the

curve in the phase space that connects the left and right values of the reconstruction
at x = xj+ 1

2
:

u−
j+ 1

2

:= pj(xj+ 1
2
), u+

j+ 1
2

:= pj+1(xj+ 1
2
).(2.3)
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The cell averages {ūj} are then evolved in time according to the semidiscrete
central-upwind scheme:

d

dt
ūj(t) = −

Hj+ 1
2
(t) − Hj− 1

2
(t)

Δx
,(2.4)

where the numerical fluxes Hj+ 1
2

are

Hj+ 1
2
(t) =

a+
j+ 1

2

f(u−
j+ 1

2

) − a−
j+ 1

2

f(u+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
u+
j+ 1

2

− u−
j+ 1

2

]
.(2.5)

Notice that a practical implementation of (2.4)–(2.5) requires the following:
(i) A stable, preferably a strong stability preserving (SSP) [7], solver for the

ODE system (2.4). In all numerical experiments presented below, we have used the
third-order SSP Runge–Kutta method. To guarantee that no wave interaction occurs
during each time step, the CFL number has been set to 0.5.

(ii) A choice of a piecewise polynomial reconstruction (see the discussion in sec-
tion 3). Notice that the spatial order of the resulting scheme is determined by the
order of the reconstruction.

(iii) A practical version of formula (2.2) for computing the one-sided local speeds
of propagation. It is well known that in the convex case, they can be computed by

a+
j+ 1

2

= max

{
λN

(
∂f

∂u
(u−

j+ 1
2

)

)
, λN

(
∂f

∂u
(u+

j+ 1
2

)

)
, 0

}
,

a−
j+ 1

2

= min

{
λ1

(
∂f

∂u
(u−

j+ 1
2

)

)
, λ1

(
∂f

∂u
(u+

j+ 1
2

)

)
, 0

}
.

(2.6)

In the nonconvex case, however, this simple formula is incorrect if the flux convexity
changes near u±

j+ 1
2

, and one has to use a more accurate estimate of a±
j+ 1

2

there.

In the scalar case, the speeds in (2.2) can be easily evaluated exactly:

a+
j+ 1

2

= max
u∈[umin

j+ 1
2

,umax

j+ 1
2

]
{f ′(u), 0}, a−

j+ 1
2

= min
u∈[umin

j+ 1
2

,umax

j+ 1
2

]
{f ′(u), 0},

where umin
j+ 1

2

= min{u−
j+ 1

2

, u+
j+ 1

2

} and umax
j+ 1

2

= max{u−
j+ 1

2

, u+
j+ 1

2

}.
In the case of a system, we follow the approach in [37] if the structure coefficients,

κi = ∇uλi · ri, i = 1, . . . , N,(2.7)

change sign near u±
j+ 1

2

(here ri is the ith right eigenvector, corresponding to the ith

eigenvalue λi). The left and right local speeds are then estimated by

a+
j+ 1

2

= max

{
λN

(
∂f

∂u
(u−

j+ 1
2

)

)
, λN

(
∂f

∂u
(u+

j+ 1
2

)

)
, H̃N , 0

}
,

a−
j+ 1

2

= min

{
λ1

(
∂f

∂u
(u−

j+ 1
2

)

)
, λ1

(
∂f

∂u
(u+

j+ 1
2

)

)
, H̃1, 0

}
.

(2.8)
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Here, the notation is

H̃N := max
σ∈[0,1]

H(λN (u−
j+ 1

2

), λN (u+
j+ 1

2

), κ−
N , κ+

N ;σ),

H̃1 := min
σ∈[0,1]

H(λ1(u
−
j+ 1

2

), λ1(u
+
j+ 1

2

), κ−
1 , κ

+
1 ;σ),

where

κ±
i := ∇uλi(u

±
j+ 1

2

) · ri(umid
j+ 1

2
), umid

j+ 1
2

=
u+
j+ 1

2

+ u−
j+ 1

2

2
, i = 1, N,(2.9)

are the left and right structure coefficients at xj+ 1
2
, and H(a, b, a′, b′;σ) is the unique

Hermite cubic polynomial that satisfies the following interpolation conditions:

H(a, b, a′, b′; 0) = a, H(a, b, a′, b′; 1) = b, H′(a, b, a′, b′; 0) = a′, H′(a, b, a′, b′; 1) = b′.

Away from the regions where the convexity changes, the local speeds are computed
by (2.6).

Remark. In the 2-D case, we use a higher-order version of the central-upwind
scheme from [15], where a fourth-order central-upwind numerical flux was obtained.
Proceeding along the lines of the numerical flux derivation in [15] and replacing Simp-
son’s rule with the 3-point Gaussian quadrature in the evaluation of the spatial flux
integrals, we arrive at the following semidiscrete central-upwind scheme:

d

dt
ūj,k(t) = −

Hx
j+ 1

2 ,k
(t) − Hx

j− 1
2 ,k

(t)

Δx
−

Hy

j,k+ 1
2

(t) − Hy

j,k− 1
2

(t)

Δy
,(2.10)

where the numerical fluxes are

(2.11)

Hx
j+ 1

2 ,k
:=

a+
j+ 1

2 ,k

18(a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)

[
5f(uE1

j,k) + 8f(uE2
j,k) + 5f(uE3

j,k)
]

−
a−
j+ 1

2 ,k

18(a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)

[
5f(uW1

j+1,k) + 8f(uW2
j+1,k) + 5f(uW3

j+1,k)
]

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

18(a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)

×
[
5(uW1

j+1,k − uE1
j,k) + 8(uW2

j+1,k − uE2
j,k) + 5(uW3

j+1,k − uE3
j,k)

]
and

(2.12)

Hy

j,k+ 1
2

:=
b+
j,k+ 1

2

18(b+
j,k+ 1

2

− b−
j,k+ 1

2

)

[
5g(uN1

j,k) + 8g(uN2
j,k) + 5g(uN3

j,k)
]

−
b−
j,k+ 1

2

18(b+
j,k+ 1

2

− b−
j,k+ 1

2

)

[
5g(uS1

j,k+1) + 8g(uS2
j,k+1) + 5g(uS3

j,k+1)
]
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+
b+
j,k+ 1

2

b−
j,k+ 1

2

18(b+
j,k+ 1

2

− b−
j,k+ 1

2

)

×
[
5(uS1

j,k+1 − uN1
j,k) + 8(uS2

j,k+1 − uN2
j,k) + 5(uS3

j,k+1 − uN3
j,k)

]
.

Here, the Cartesian grid is assumed to be uniform with xα = αΔx, yβ = βΔy; the
point values uEi

j,k, i = 1, 2, 3, are the values of the polynomial piece over the cell

[xj− 1
2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
], evaluated at the corresponding Gaussian nodes along the

eastern edge (x = xj+ 1
2
, yk− 1

2
< y < yk+ 1

2
); the point values uNi

j,k, i = 1, 2, 3, are
the values of the polynomial piece over the same cell evaluated at the corresponding
Gaussian nodes along the northern edge (xj− 1

2
< x < xj+ 1

2
, y = yk+ 1

2
); and the

rest of the point values, uWi
j,k , uSi

j,k, i = 1, 2, 3, are calculated at the Gaussian nodes

along the remaining two edges. Recall that the Gaussian nodes Gi, i = 1, 2, 3, on
an arbitrary segment AB with A = (a1, a2) and B = (b1, b2) have the following
coordinates: G1 = (α+a1 + α−a2, α+b1 + α−b2), G2 = ((a1 + a2)/2, (b1 + b2)/2), and
G3 = (α−a1 + α+a2, α−b1 + α+b2), where α± = 1

2 (1 ±
√

3/5).

The local speeds of propagation in the x- and y-direction, a±
j+ 1

2 ,k
and b±

j,k+ 1
2

,

respectively, are computed at the midpoint of each cell interface in a dimension-by-
dimension manner according to the above 1-D recipe.

If the point values in (2.11)–(2.12) are computed using an rth-order piecewise
polynomial reconstruction, the resulting spatial order of the semidiscrete central-
upwind scheme (2.10)–(2.12) will be min(r, 6) due to the accuracy limitation of the
Gaussian formula. When a second-order piecewise linear reconstruction is utilized, the
sixth-order fluxes (2.11)–(2.12) can be replaced by their simpler second-order versions
(see, e.g., [15], [17]).

3. Piecewise polynomial reconstructions. In this section, we discuss the
effect of different piecewise polynomial reconstructions on the numerical solution,
computed by the central-upwind schemes. We will consider several second-order re-
constructions and the fifth-order WENO5 reconstruction, each of which will be ap-
plied to the conservative variables componentwise (therefore, all the variables used in
this section are scalar). In the nonconvex case, the choice of reconstruction is particu-
larly important for computing the unique entropy solution, especially when composite
waves are present.

In general, in order to achieve high resolution, the piecewise polynomial recon-
struction should be of an appropriate order of accuracy and nonoscillatory. For
second-order piecewise linear reconstructions (see (2.1)), the first requirement can
be easily achieved by ensuring sj = ux(xj , t)+O(Δx), while to satisfy the nonoscilla-
tory property, the reconstruction has to utilize a nonlinear limiter. A library of such
reconstructions is available (see, e.g., [35], [19], [8], [22], [28], [30], [34]). In the numer-
ical experiments, reported in section 5, we have tested several well-known limiters,
such as the generalized minmod limiter ([8], [22], [28], [34]),

sj = minmod

(
θ
ūj − ūj−1

Δx
,
ūj+1 − ūj−1

2Δx
, θ

ūj+1 − ūj

Δx

)
, θ ∈ [1, 2],(3.1)
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where the minmod function is defined by

minmod(z1, z2, . . .) :=

⎧⎪⎪⎨⎪⎪⎩
minj{zj} if zj > 0 ∀j,

maxj{zj} if zj < 0 ∀j,

0 otherwise,

and the superbee limiter ([19], [22], [30], [34]),

sj =
ūj − ūj−1

Δx
max {0,min(2r, 1),min(r, 2)} , r =

ūj+1 − ūj

ūj − ūj−1
.(3.2)

Note that the generalized minmod limiter (3.1) with θ = 1 reduces to the standard
(dissipative) minmod limiter, which will be referred to as the MM1 limiter. The other
limiting case (θ = 2) corresponds to the most compressive minmod limiter, which
from now on, will be denoted by MM2. The superbee limiter will be denoted by SB.

In many cases, especially when smooth parts of the solution have a complicated
structure, it may be advantageous to use higher (than second)-order reconstructions.
We refer the reader to [3], [16], [19], [20], [21], [25] for numerous examples of higher-
order reconstructions. A very popular family of such reconstructions are the so-called
WENO reconstructions. They were first introduced in [26] and since have been ex-
tended to higher orders, multiple numbers of dimensions, and finite-difference setting
(see, e.g., [3], [12], [32], [33] and the references therein). In our numerical exper-
iments, we have used the fifth-order finite-volume WENO5 reconstruction, applied
componentwise and extended to the 2-D case in a dimension-by-dimension manner as
described in [32].

In practice, the reconstruction selection depends on the problem at hand. When
the entropy solution does not admit composite waves, the implementation of a com-
pressive second-order reconstruction or a higher-order one typically results in a high
quality numerical solution, since both smooth and discontinuous (shocks, contacts)
parts of the solution are approximated more accurately than by a more dissipative
reconstruction, such as the MM1 one. However, the situation is more complicated
in the nonconvex case, in which a formation of composite waves is possible. This
problem is best understood in the case of a 1-D scalar equation, which is the simplest
conservation law whose solutions admit composite waves.

3.1. One-dimensional scalar conservation laws. Composite waves (see [19])
consist of a sequence of joined rarefactions and shocks. A generic case is a shock ad-
jacent to a rarefaction wave, in the computation of which the reconstruction selection
seems to be crucial. As we illustrate below, a numerical scheme that uses the general-
ized minmod limiter (3.1) with θ > 1 or even the more compressive SB may result in
capturing a numerical solution that converges to a weak solution, consisting of a shock,
adjacent to an artificial constant state, followed by a rarefaction wave. Moreover, the
rarefaction may be completely missing (see Figure 3.4), and the shock location and
strength may be totally different from those in the unique entropy solution.

We now consider a particular example: a Riemann problem for the 1-D scalar
equation

ut + f(u)x = 0(3.3)
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with the C1 monotone increasing flux, whose convexity changes at u = 1/2:

f(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(1 − u)

4
, u <

1

2
,

1

2
u2 − 1

2
u +

3

16
, u ≥ 1

2
.

(3.4)

While the Kruzhkov entropy solution can be easily obtained for any (nonconvex)
smooth flux function (see, e.g., [18]), numerically solving (3.3) by a high-order scheme
may be quite a challenging problem.

We apply the central-upwind semidiscretization (2.2)–(2.5) to (3.3)–(3.4). Due
to the monotonicity of the flux (3.4), a−

j+ 1
2

= 0, and thus the central-upwind scheme

(2.2)–(2.5) reduces to a simple semidiscrete upwinding:

d

dt
ūj(t) = −

f(u−
j+ 1

2

) − f(u−
j− 1

2

)

Δx
.(3.5)

We first solve (3.3)–(3.4) subject to the initial condition:

u(x, 0) =

{
0, x < 0.25,
1, 0.25 < x.

(3.6)

In Figure 3.1, we show the solutions computed at time t = 1 on a uniform grid
with Δx = 1/1600 using the second-order upwind scheme (3.5), (2.1), (2.3) with com-
pressive MM2 and SB reconstructions. One can clearly see that in both cases, the
captured solution is not the Kruzhkov entropy solution, which consists of a shock,
located at x = (

√
6 − 1)/4, followed by a rarefaction wave. Moreover, we have per-

formed a numerical convergence study which clearly indicates that both numerical
approximations fail to converge to the entropy solution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3  0.4  0.5  0.6  0.7  0.8

EXACT

MM2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3  0.4  0.5  0.6  0.7  0.8

EXACT

SB

Fig. 3.1. Solutions of (3.3)–(3.4), (3.6) computed with MM2 (left) and SB (right).

At the same time, we observe that the same method, but with the dissipative
MM1 reconstruction, leads to the convergence of the computed solutions toward the
unique entropy solution; see Figure 3.2 (left) and Figure 3.2 (right), where a mesh
refinement study is performed.

In this example, the evolution step is performed using the semidiscrete upwind
scheme (3.5), (2.1), (2.3) and the third-order SSP Runge–Kutta ODE solver. A nat-
ural question to ask is whether the observed effect is due to the particular spatial
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Fig. 3.2. Solutions of (3.3)–(3.4), (3.6) computed with MM1 (left) and its convergence test
(right, zoom at the composite wave area).

discretization and time integration used or is a consequence of the implemented re-
construction. It turns out that if we start with a compressive piecewise linear re-
construction at time t = tn and evolve it exactly to the next time level t = tn+1,
according to the integral formulation of (3.3),

(3.7)

ūj(t
n+1) = ūj(t

n) − 1

Δx

[∫ tn+1

tn
f(u(xj+ 1

2
, τ)) dτ −

∫ tn+1

tn
f(u(xj− 1

2
, τ)) dτ

]
,

the same behavior persists. Here, we only need to exactly compute the temporal
integrals in (3.7), which can be done analytically when Δt ≤ 0.5Δx, since the formulae
for both the flux function and the exact solution are available (we have taken Δt =
0.5Δx, but smaller time steps lead to the same results).

Snapshots at times t = 0.1, 0.2, . . . , 1.0 of the exactly evolved solutions of the
IVP (3.3)–(3.4), (3.6) are presented in Figure 3.3, where the MM1 and MM2 recon-
structions are used. In the case of the MM2 reconstruction, the wrong shock location
as well as the formation of an artificial constant state between the shock and the rar-
efaction wave can be clearly seen, while the MM1 solution accurately approximates
the composite wave.

Here, the implementation of the MM2 reconstruction (or another compressive
reconstruction, for example, the generalized minmod with any θ > 1 or the SB) leads
to an initial overshoot in a single cell—the last cell with a cell-average value less than
1. As time progresses, the overshoot persists and, because of the error propagation,
spreads over neighboring cells. At the same time, the moving shock cannot balance
the effect of the overshoot, because (i) the overshoot speed is higher than the shock
speed, and (ii) the large jumps from the shock feed the overshoot and thus oppose
its smearing by the rarefication process and the numerical diffusion. As a result, an
artificial constant state between the shock and rarefaction wave is formed. In the case
of a generalized minmod reconstruction, its value depends on the value of θ and the
size of the initial shock.

The above problem seems to get resolved if we use the dissipative MM1 recon-
struction. The successful resolution of composite waves in this case is due to the fact
that the smaller of the jumps, ūj+1 − ūj or ūj − ūj−1, is used to determine the cor-
responding slope sj in (2.1). The calculation of the new local cell averages over/near
the border between the shock and rarefaction is mostly based on the information from
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Fig. 3.3. Exact evolution of the MM1 and MM2 reconstructions; Δx = 1/2000.

the rarefaction part of the computed solution (where the jumps are smaller), and thus
the shock impact on the evaluation of these averages is substantially reduced.

So far, the discussion has been restricted to second-order piecewise linear recon-
structions since in this case one can relatively easily understand the effects of different
reconstructions on the computed solutions. The situation gets much more compli-
cated when a higher-order (for example, the fifth-order WENO5) reconstruction is
employed. In the scalar 1-D case, we were unable to find an example in which the
WENO5 reconstruction leads to capturing a non-Kruzhkov weak solution. However,
our example of a 1-D system (section 5.2) and the 2-D scalar example (section 5.3)
clearly illustrate that the WENO5-based scheme may fail to resolve composite waves;
see Figures 5.4, 5.7, and 5.10, respectively.

We conclude this section with yet another numerical example, which illustrates
that if a compressive reconstruction is employed, a rarefaction part of the composite
wave can be completely missed, while the use of the dissipative MM1 reconstruction
leads to capturing the unique entropy solution. We compute the solution of the same
equation (3.3)–(3.4) subject to different initial data:

u(x, 0) =

{
1, x < 0.25,
0, 0.25 < x.

(3.8)

In Figure 3.4, we show the solutions computed at time t = 2 on a uniform grid
with Δx = 1/1600 using the second-order upwind scheme (3.5), (2.1), (2.3) with
compressive MM2 and SB reconstructions. One can clearly see that in both cases,
the captured solution is a simple shock wave—not the Kruzhkov entropy solution,
which consists of a shock, located at x = (2

√
3− 1)/4, followed by a rarefaction wave.

In Figure 3.5, we present the solution, computed by the same method but with the
dissipative MM1 reconstruction. As in the previous example, one can observe the
convergence of the numerical solutions toward the unique entropy solution.
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Fig. 3.4. Solutions of (3.3)–(3.4), (3.8) computed with MM2 (left) and SB (right).
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Fig. 3.5. Solutions of (3.3)–(3.4), (3.8) computed with MM1 (left) and its convergence test
(right, zoom at the composite wave area).

4. Scheme adaption algorithm. It is a well-known fact that more compressive
second-order and/or higher-order piecewise polynomial reconstructions typically lead
to a higher resolution than the one that can be achieved with the help of the dissipative
MM1 reconstruction. However, as observed in the previous section, the use of higher
resolution reconstructions may be dangerous at the presence of composite waves,
while the use of the MM1 reconstruction seems to ensure the convergence toward
these waves.

We now describe a simple adaption strategy that will utilize the advantages of
higher resolution reconstructions away from the composite waves, which, in turn, will
be locally approximated using the MM1 reconstruction.

• Use the MM1 reconstruction only in the transition zones—in a small number
of cells around points where the flux convexity changes (that is, where f ′′ or one of
the κi’s in (2.9) changes sign).

• Use a higher resolution reconstruction otherwise.

Remarks.

1. In all numerical experiments presented below, we have used the finite-volume
WENO5 reconstruction—applied componentwise to the 1-D systems and in
a dimension-by-dimension manner in the 2-D case—as a higher resolution
component of our adaptive algorithm.

2. Our extensive numerical experiments suggest that in order to ensure conver-
gence to the unique entropy solution, the number of cells where the MM1
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reconstruction is used should be relatively small and could be taken propor-
tional to | ln(Δx)| as the grid is refined.

5. Numerical examples. In this section, we numerically solve nonconvex 1-
D hyperbolic systems of conservation laws and a 2-D scalar conservation law with
nonconvex fluxes. We apply the semidiscrete central-upwind schemes described in
section 2 with different piecewise polynomial reconstructions including the adaptive
reconstruction proposed in section 4.

5.1. One-dimensional Euler equations of gas dynamics. We consider the
1-D Euler equations of gas dynamics,

∂

∂t

⎡⎣ ρ
m
E

⎤⎦ +
∂

∂x

⎡⎣ m
ρu2 + p
u(E + p)

⎤⎦ = 0,(5.1)

with the following nonconvex EOS (see [37]):

p = p(ρ, e) = ((γ − 1)ρ + f(ρ))e, e =
E

ρ
− 1

2
u2, γ = 1.4,(5.2)

where the function f is given by

f(ρ) =

⎧⎨⎩ 10 exp

(
ρ2

1 − 2ρ + 0.75ρ2

)
,

2

3
< ρ < 2,

0 otherwise,
(5.3)

and ρ, u, m = ρu, p, and E are the density, velocity, momentum, pressure, and
total energy, respectively. It can be shown that system (5.1) with the EOS given by
(5.2)–(5.3) is hyperbolic.

The computation of the numerical solution of (5.1)–(5.3), using the scheme (2.4)–
(2.5), (2.3), (2.8), combined with different piecewise polynomial reconstructions re-
quires the calculation of the one-sided local speeds of propagation, and therefore the
computation of the corresponding structure coefficients (2.9). Here, we have

κ±
1 =

(
− m±

(ρ±)2
− c±ρ

)
+

(
1

ρ±
− c±m

)
(umid − cmid)−c±E

(
Emid + pmid

ρmid
− umidcmid

)
,

κ±
3 =

(
− m±

(ρ±)2
+ c±ρ

)
+

(
1

ρ±
+ c±m

)
(umid + cmid)+c±E

(
Emid + pmid

ρmid
+ umidcmid

)
,

where c is the sound speed,

c2 = pρ +
ppe
ρ2

,

and

Rmid :=
R+ + R−

2

for R being ρ, u, c, p, or E. The corresponding partial derivatives are

cm = − m

2ρ2
T, cE =

1

2ρ
T,
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Fig. 5.1. Solutions of (5.1)–(5.4), computed with MM2 (left) and SB (right).

cρ =
m2 − Eρ

2ρ3
T +

1

2T

(
f ′′(ρ) +

(0.8ρ + 2f(ρ))(f ′(ρ)ρ− f(ρ))

ρ3

)
,

where

T =

(
0.4 + f ′(ρ) + (0.4 + f(ρ)ρ−1)2

Eρ−1 − 0.5m2ρ−2

) 1
2

.

We solve the system (5.1)–(5.3) subject to the initial data (see [37]):

(p, ρ, u)L = (0.5, 0.6998, 1), (p, ρ, u)R = (0.5, 0.6998,−1),(5.4)

using the MM1, MM2, SB, and the adaptive reconstruction proposed in section 4.
To apply the adaptive strategy from section 4, we need to know where the structure
coefficients change sign, which in this case is the same as checking where pττ , τ = ρ−1,
changes sign. In this example, pττ has two isolated zeros τ∗ = 1/ρ∗ = 0.862 and
τ∗∗ = 1/ρ∗∗ = 1.21. We perform the adaption in the following way. First, we mark
all cell pairs with indexes j, j + 1, for which either (ρj+1 − ρ∗)(ρj − ρ∗) < 0 or
(ρj+1 − ρ∗∗)(ρj − ρ∗∗) < 0. Then we use the MM1 reconstruction in the marked cells
and in the cells located within KΔx from them, while the WENO5 reconstruction is
used in the rest of the computational domain.

We compare the density profiles of the numerical solutions, calculated at time
t = 1 on a uniform grid with Δx = 1/200, with the profile of a reference solution,
obtained with the “reliable” MM1 limiter and Δx = 1/5000. The results are pre-
sented in Figures 5.1–5.3, where one can clearly see that the composite waves are
incorrectly resolved when a compressive piecewise linear reconstruction (either MM2
or SB) is employed, while the central-upwind scheme based on the dissipative MM1
reconstruction accurately captures their structure. Note that in this example, the
use of the higher-order WENO5 reconstruction also leads to capturing the entropy
solution (see Figure 5.2 (right)). However, the obtained numerical approximation is
quite oscillatory, which, together with the failure of the WENO5-based scheme to
resolve composite waves in the examples from sections 5.2 and 5.3, makes one doubt
the reliability of a pure WENO5 reconstruction.

The solutions, computed by our adaptive central-upwind scheme, are shown in
Figure 5.3. When the adaption constant K = 1, the obtained solution is basically
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Fig. 5.2. Solutions of (5.1)–(5.4), computed with MM1 (left) and WENO5 (right).
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Fig. 5.3. Solutions of (5.1)–(5.4), computed adaptively with K = 1 (left) and K = 2 (right).

as well resolved as that obtained by the WENO5-based scheme, but it still has some
oscillations, which are completely removed when a larger (K = 2) adaption constant
is used. As expected, the adaptive reconstruction offers a better overall resolution of
the numerical solution, and thus the adaptive strategy is preferable.

5.2. The polymer system. We consider the 1-D polymer system

∂

∂t

[
s
b

]
+

∂

∂x

[
f(s, c)
cf(s, c)

]
= 0,(5.5)

where s is the water saturation, c is the polymer concentration in the water, f(s, c)
is the fractional flow function of water, b(s, c) = sc + a(c), and a(c) is the adsorption
function. Here, we take (see, e.g., [9])

f(s, c) =
s2

s2 + (0.5 + c)(1 − s)2
, a(c) =

c

5(1 + c)
.(5.6)

Notice that the system (5.5)–(5.6) can be rewritten in the nonconservative form

ut + A(u)ux = 0,
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where u = (s, c)T and A(u) has eigenvalues λs = fs(s, c) and λc = f(s, c)(s+a′(c))−1

with right eigenvectors rs = (1, 0)T , rc = (fc(s, c), λc − λs)
T for s ∈ (0, 1) and

rc = (0, 1)T for s = 0, 1, respectively. The computation of the one-sided local speeds
of propagation (2.8) requires the calculation of the corresponding structure coefficients

κ±
s = fss(s

±, c±),

κ±
c =

fmid
c (f±

s (s± + a′(c±)) − f±)

(s± + a′(c±))2

+
(fmid(smid + a′(cmid))

−1 − fmid
s )(f±

c (s± + a′(c±)) − a′′(c±)f±)

(s± + a′(c±))2

if smid 	= 0, 1, and

κ±
c =

f±
c (s± + a′(c±)) − a′′(c±)f±

(s± + a′(c±))2

for smid ∈ {0, 1}. Here, we have used the notation Rmid := R(smid, cmid), where
smid := (s+ + s−)/2 and cmid := (c+ + c−)/2, and R± := R(s±, c±) for R being fs,
fc, or f .

We consider the system (5.5)–(5.6) subject to the Riemann initial data taken from
[14]:

(s(x, 0), c(x, 0)) =

{
(0.45, 0), x ≤ 0.252,
(0.20, 1), x > 0.25.

(5.7)

The exact solution of this IVP is rather complicated and consists of both simple and
composite waves (see [13]).

We numerically solve the IVP (5.5)–(5.7) using the central-upwind scheme (2.4)–
(2.6), (2.8) with different piecewise polynomial reconstructions of the conserved vari-
ables s and b.

For adaption, we check at every grid cell whether a point, where one of the
structure coefficients, either

κs = fss

or

κc =

{
a′′f(s + a′)−3(fs(s + a′) − f), 0 < s < 1,
(s + a′)−2(fs(s + a′) − a′′f), s ∈ {0, 1},

changes sign, is nearby. If this is the case, namely, if the distance between the current
grid point and one of the aforementioned points is smaller than KΔx, then the MM1
reconstruction is used; otherwise the WENO5 reconstruction is used.

In Figure 5.4, we plot the numerical solutions at time t = 1, calculated using
the MM1 reconstruction with Δx = 1/250 and Δx = 1/8000 (the latter is used as a
reference solution in all other figures shown in this section).

In Figure 5.5, we compare the c-component of the numerical solutions, computed
using the MM1, MM2, SB, and WENO5 reconstructions on three different uniform
meshes with Δx = 1/250, 1/500, and 1/1000. As one can clearly see in this figure,
only the MM1 numerical solution recovers the correct structure of the composite
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Fig. 5.4. Solutions of (5.5)–(5.7), computed with MM1; (left) c- and (right) s-components.
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Fig. 5.5. Solutions (c-component) of (5.5)–(5.7), computed with MM1, MM2, SB, and WENO5.

wave, while the MM2, SB, and WENO5 reconstructions consistently fail to achieve
this goal. Note that Δx = 1/1000 is a reasonably small mesh size that one usually uses
in practical computations for such a problem (in the 2-D case, one would have to use
an even coarser grid). To perform a numerical convergence study, we have computed
the solution with even smaller Δx. It turns out that the numerical approximation
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Fig. 5.6. Solutions (c-component) of (5.5)–(5.7), computed adaptively with K = 2 (left) and its
mesh refinement study (right).

obtained with the WENO5 reconstruction seems to slowly converge to the reference
solution, but the values of Δx, required in order to be able to observe this convergence,
are so small that this positive result is not of practical interest. On the other hand,
the results shown in Figure 5.6 demonstrate that our adaptive strategy both achieves
a very high resolution and accurately captures the structure of the composite wave,
and thus it is superior to both the lower resolution MM1 solution and the less reliable
WENO5 solution.

Next, in Figures 5.7–5.8, we present the s-component of the computed solutions.
While the wave structure of the s-component is quite different from that of the c-
component, we observe the same effect as before: The central-upwind scheme based
on either MM2, SB, or WENO5 reconstruction fails to recover the reference solution
even when a very fine mesh with Δx = 1/1000 is used. At the same time, the
schemes based on the MM1 and the adaptive reconstructions perform well. However,
as expected, the overall resolution achieved by the adaptive scheme is higher than
that achieved by the more dissipative MM1 scheme.

5.3. Two-dimensional scalar conservation law. In this section, we numeri-
cally solve the 2-D scalar conservation law

ut + (sinu)x + (cosu)y = 0,(5.8)

subject to the initial data

u(x, y, 0) =

{
3.5π, x2 + y2 < 1,
0.25π, otherwise,

(5.9)

using the scheme (2.10)–(2.12) and the piecewise polynomial reconstructions described
in sections 3 and 4.

We have computed the solution at time t = 1 on a uniform grid with Δx = Δy =
1/100 using the MM1, MM2, SB, WENO5, and the adaptive reconstructions. For
adaption, we mark the cells where the convexity of the flux changes, which occurs
at u = kπ/2, k ∈ Z. In these cells and in all cells located within K max(Δx,Δy)
from them, we use the MM1 reconstruction; otherwise the WENO5 reconstruction is
employed.
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Fig. 5.7. Solutions (s-component) of (5.5)–(5.7), computed with MM1, MM2, SB, and WENO5.
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Fig. 5.8. Solutions (s-component) of (5.5)–(5.7), computed adaptively with K = 2 (left) and its
mesh refinement study (right).
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Fig. 5.9. Solution of (5.8)–(5.9), computed with MM1 (left) and MM2 (right).
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Fig. 5.10. Solution of (5.8)–(5.9), computed with SB (left) and WENO5 (right).

We present our results in Figures 5.9–5.11, where we observe the same effects as
in the 1-D case. The central-upwind schemes based on the MM2, SB, and WENO5
reconstructions fail to resolve the composite wave structure, while the use of the MM1
or the adaptive reconstruction leads to capturing the accurate solution. We would like
to point out that the adaptive strategy does not seem to be sensitive to the choice of
the adaption constant K. We also show (see Figure 5.11 (right)), the areas where the
MM1 (white) and the WENO5 (black) reconstructions were used. It can be clearly
seen that the MM1 limiter is turned on only at or around transition areas.
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Fig. 5.11. Solution of (5.8)–(5.9), computed adaptively with K = 2 (left) and the corresponding
MM1/WENO5 regions (right).
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