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Abstract. We present a simple and efficient strategy for the acceleration of explicit Eu-
lerian methods for multidimensional hyperbolic systems of conservation laws. The
strategy is based on the Galilean invariance of dynamic equations and optimization of
the reference frame, in which the equations are numerically solved. The optimal refer-
ence frame moves (locally in time) with the average characteristic speed of the system,
and, in this sense, the resulting method is quasi-Lagrangian. This leads to the accelera-
tion of the numerical computations thanks to the optimal CFL condition and automatic
adjustment of the computational domain to the evolving part of the solution. We show
that our quasi-Lagrangian acceleration procedure may also reduce the numerical dis-
sipation of the underlying Eulerian method. This leads to a significantly enhanced
resolution, especially in the supersonic case. We demonstrate a great potential of the
proposed method on a number of numerical examples.
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1 Introduction

We study numerical methods for hyperbolic systems of conservation laws, which, in the
one-dimensional (1-D) case, read:

ut+f(u)x =0, (1.1)

where u(x,t):=(u(1)(x,t),u(2)(x,t),. . . ,u(N)(x,t))T is an N-dimensional vector of unknowns
and f(u(x,t)) := ( f (1)(u(x,t)), f (2)(u(x,t)),. . . , f (N)(u(x,t)))T is the flux function. We re-
strict our consideration to initial value problems (IVP) and initial-boundary value prob-
lems with periodic boundary conditions.
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There are two big classes of the numerical methods for (1.1): Eulerian and Lagrangian
ones. The main advantage of Eulerian methods is that they employ stationary spatial
grids, which makes numerical flux approximation relatively easy. In the Lagrangian
framework, the grid moves together with the medium, which typically leads to a very
high resolution of contact waves, but makes the computation of numerical fluxes sub-
stantially more involved.

Another drawback of Lagrangian methods is a lack of control of the developed grid
structure: the grid, which is moving with the fluid, may become highly irregular. This
would affect both the efficiency of the method and its accuracy. One of the ways to
overcome this difficulty is to use ALE methods (see, e.g., [1,16,19] and references therein),
in which the computed solution is projected onto the regular grid after each time step
or after every few time steps so that one makes sure that the mesh does not become
highly irregular. Another way of fixing the problem of irregular grid formation while
enjoying the main advantage of Lagrangian methods—automatic adaptivity of the grid
to the structure of the computed solution—is to use the adaptive moving mesh methods
(see, e.g., [6, 7, 15, 22] and references therein). In these methods, the mesh is moving not
with the fluid, but according to a moving mesh PDE, [6,7,22], or the estimated local errors
in the computed solution, [15].

In this paper, we only study Eulerian methods and focus on two specific issues: their
efficiency and numerical dissipation. It is well-known that the CFL condition, related to
the spectral radius of the Jacobian ∂f/∂u, is a fundamental stability restriction on the size
of time steps in Eulerian methods. We propose a general strategy for reduction of the CFL
number for any given Eulerian method. The main idea is to use the Galilean invariance of
the system (1.1), which allows one to choose, at each time step, the reference frame with
the least restrictive CFL condition. The entire mesh is then shifted to stay in the selected
frame. Notice, however, that unlike the case of Lagrangian or moving mesh methods, the
structure of the mesh does not change at all by the proposed mesh shift.

In a nutshell, the strategy works as follows. At each time step, we add a linear advec-
tion term −σux to the left-hand side of (1.1) and solve the resulting system

ut+f(u)x−σux =0, (1.2)

where σ is a constant. Obviously, solutions of (1.2) are obtained from the corresponding
solutions of (1.1) by the change of variables x→ x−σt. However, the constant σ provides
us with an additional degree of freedom, and a wise choice of σ may help to improve both
efficiency and resolution, achieved by the numerical method applied to (1.2) instead of
(1.1). Our approach can be viewed as quasi-Lagrangian since σ is chosen so that the refer-
ence frame moves at the average characteristic velocity, as quantified in §2. We note that
the proposed method is not a moving mesh method, but rather a “moving framework”
one. It resembles a more sophisticated hybrid Eulerian-Lagrangian method from [24].
However, unlike the method from [24], our approach retains the simplicity of Eulerian
methods. We would also like to mention that adding the linear convection term −σux as
it is done in (1.2) resembles the artificial wind method from [21]. However, we add the
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linear convection term to make the largest and the smallest eigenvalues of the Jacobian to
be different in sign but close by the amplitude to improve efficiency and reduce numeri-
cal dissipation, while in [21] the linear convection term is added to make all eigenvalues
to be of the same sign to simplify upwinding.

The proposed quasi-Lagrangian strategy can be straightforwardly extended to any
number of space dimensions. The efficiency improvement as well as the enhanced reso-
lution is demonstrated via the numerical viscosity analysis in §3 and on a number of one-
and two-dimensional (2-D) examples in §4.

2 Description of the Method

We describe our quasi-Lagrangian approach on an example of finite-volume methods for
the 1-D system (1.1). In the finite-volume setting, the computed quantities at time level
t= tn are solution cell averages:

un
j ≈

xn
j+ 1

2∫

xn
j− 1

2

u(x,tn)dx.

Here, for the sake of simplicity, we consider a uniform spatial grid with xn
j+ 1

2
−xn

j− 1
2
≡∆x.

The numerical solution is evolved to the next time level tn+1 := tn+∆tn according to the
scheme, which can be typically written in the flux form:

un+1
j =un

j −λn
[

Hj+ 1
2
−Hj− 1

2

]
, λn :=

∆tn

∆x
.

Here, Hj+ 1
2
:=Hj+ 1

2
(. . . ,un

j ,un
j+1,. . .) are numerical fluxes, which are supposed to be consis-

tent (Hj+ 1
2
(. . . ,u,u,. . .)= f(u)) and sufficiently accurate. A high order of accuracy can be

achieved in several different ways (see, e.g., [2, 3, 8, 14, 23]). We will focus on Godunov-
type approach, in which the computed solution is globally approximated by a piecewise
polynomial interpolant

ũn(x)=Pn
j (x) for xn

j− 1
2
< x< xn

j+ 1
2
,

where Pn
j are polynomials. This reconstruction must be conservative, non-oscillatory

and sufficiently accurate since it is used to compute the numerical fluxes, which typically
inherit these properties from the interpolant.

For a given Godunov-type scheme, one may establish a time-step stability restriction,
which requires ∆tn to be proportional to ∆x/an , where an is the largest characteristic
speed:

an =max
x

{
ρ

(
∂f
∂u

(ũn(x))

)}
. (2.1)
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Here, ρ(·) is a spectral radius of the Jacobian and the maximum is taken over the
entire computational domain. Note that formula (2.1) can be rewritten as:

an =max{an
max,−an

min},

where

an
max :=max

x

{
λN

(
∂f
∂u

(ũn(x))

)}
, an

min :=min
x

{
λ1

(
∂f
∂u

(ũn(x))

)}
,

and λ1 ≤λ2 ≤ . . .≤λN are the eigenvalues of the Jacobian. The terms an
max and an

min have
a clear meaning: global maximal and minimal characteristic speeds. Globally, the entire
wave structure moves at the average characteristic speed

σn =
an

max+an
min

2
.

If σn is not zero, the CFL number can be reduced by switching to the new coordinate
system (t,x−σnt), in which the average characteristic velocity will be zero (locally in
time, i.e., for t∈ [tn,tn+∆tn)). In the new coordinates, we numerically solve the modified
system

ut+f(u)x−σnux =0, t∈ [tn,tn+∆tn), (2.2)

for which the CFL number, compared to the CFL number for the original system (1.1), is
reduced by a factor βn given by

βn =
an

an−|σn|
. (2.3)

Summary of the quasi-Lagrangian acceleration strategy: we begin at t = tn with the cell
averages un

j , which are evolved to t = tn+1 numerically solving (2.2). We then shift all
spatial grid points xn

j to the new locations xn+1
j =xn

j +σn
∆tn so that the computed solution

is translated by σn
∆tn. This completes one time step of the resulting method.

Remarks.
1. The proposed acceleration strategy may be implemented with any explicit Eulerian
method, not necessarily with a Godunov-type finite-volume scheme.
2. An additional advantage of the proposed method is automatic adjustment of the com-
putational domain to the location of the computed waves. This is important for solving
initial value problems, for which the infinite spatial domain is artificially truncated so
that the “action” happens inside the computational domain. Our method minimizes its
size, which leads to an additional efficiency gain.
3. Our approach is easily extended to a higher number of space dimensions. Consider,
for example, a 2-D hyperbolic system of conservation laws:

ut+f(u)x +g(u)y =0. (2.4)
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To apply our method to this system, one will first need to use the solution, computed at
time t = tn to evaluate the largest and the smallest characteristic speeds in both x- and
y-directions:

an
max :=max

x,y

{
λN

(
∂f
∂u

(ũn(x,y))

)}
, an

min :=min
x,y

{
λ1

(
∂f
∂u

(ũn(x,y))

)}
,

bn
max :=max

x,y

{
λN

(
∂g
∂u

(ũn(x,y))

)}
, bn

min :=min
x,y

{
λ1

(
∂g
∂u

(ũn(x,y))

)}
.

Here, λ1(·)≤λ2(·)≤ . . .≤λN(·) are the eigenvalues of the Jacobians ∂f
∂u and ∂g

∂u , ũn(x,y) is
a global interpolant of computed discrete solution, and the maximum and minimum are
taken over the entire computational domain. Then, instead of solving (2.4), we numeri-
cally solve the modified equation:

ut+f(u)x +g(u)y−σnux−δnuy =0, t∈ [tn,tn+∆tn),

where the linear advection coefficients are:

σn =
an

max+an
min

2
, δn =

bn
max+bn

min
2

.

Finally, we shift both the mesh and the computed solution at time level t = tn+1 by
(σn

∆tn,δn
∆tn)T.

3 Numerical Viscosity Analysis

The implementation of our quasi-Lagrangian acceleration strategy clearly changes the
amount of numerical dissipation present at an underlying method, which, in turn, may
have an influence on the achieved resolution. It is hard (if at all possible) to estimate
this change in the case of a general Eulerian method applied to a general system of con-
servation laws, especially when a high-order method is applied to a nonlinear system.
It is instructive, however, to study the change in the dissipation of first-order schemes
applied to simple 1-D linear systems.

Recall that the first-order numerical flux can be written in the viscosity form:

Hj+ 1
2
=

f(un
j )+f(un

j+1)

2
−

1
2

Qj+ 1
2
(un

j+1−un
j ), (3.1)

where Qj+ 1
2

is a numerical viscosity matrix (see, e.g., [3]). We consider the simplest (yet
nontrivial†) case of a linear 2×2 diagonal system with constant coefficients:

ut+f(u)x =0, f(u)=Λu, Λ=

(
λ2 0
0 λ1

)
, λ1 <λ2, (3.2)

†This case is nontrivial since we apply nonlinear numerical methods to the linear system (3.2) and its modi-
fication.
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where λ1 and λ2 are constants. According to our acceleration strategy, we modify (3.2) to
obtain:

ut+
1
2

(
λ2−λ1 0

0 λ1−λ2

)
ux =0. (3.3)

We consider two particular examples of the Rusanov [17] and the Harten-Lax-van
Leer (HLL) [5] schemes. Our choice is motivated by numerical experiments, presented
in §3, where the second-order central-upwind schemes [9–11] have been used (the first-
order version of the scheme from [11] is the Rusanov scheme, while the first-order reduc-
tion of the scheme from [10] is the HLL scheme).

Example 3.1—the Rusanov Scheme

We begin with the Rusanov scheme, whose numerical flux can be written in the viscosity
form (3.1) with

QRus
j+ 1

2
= aj+ 1

2
I, aj+ 1

2
:=max

{
ρ

(
∂f
∂u

(un
j )

)
,ρ

(
∂f
∂u

(un
j+1)

)}
,

where I is the identity matrix. When the Rusanov scheme is applied to the linear system
(3.2), the numerical viscosity becomes:

QRus
j+ 1

2
= aj+ 1

2
I, aj+ 1

2
=max{|λ2|,|λ1|}.

Now, when we numerically solve (3.3) instead of the original linear system, the numerical
viscosity of the Rusanov scheme clearly reduces to:

QRus
j+ 1

2
= aj+ 1

2
I, aj+ 1

2
=

λ2−λ1

2
. (3.4)

Notice that the numerical viscosity becomes smaller by a factor of

2max{|λ2|,|λ1|}

λ2−λ1
,

which is also the acceleration factor, see (2.3).

Remark. We would like to point out that unless the λ2 =−λ1, our approach guaran-
tees both efficiency improvement and reduction of numerical dissipation for the Rusanov
scheme. The improvement factor, however, is especially large when λ1 and λ2 are close
to each other and sgn(λ1)=sgn(λ2).

Example 3.2—the HLL Scheme

The numerical flux of the HLL scheme is given by:

HHLL
j+ 1

2
=

a+
j+ 1

2
f(un

j )−a−
j+ 1

2
f(un

j+1)

a+
j+ 1

2
−a−

j+ 1
2

+
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
−a−

j+ 1
2

(un
j+1−un

j ), (3.5)
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where a+
j+ 1

2
and a−

j+ 1
2

are the largest and the smallest local signal speeds, respectively,
see [5]. In the case of a linear flux (3.2), the local speeds are independent of j and are
equal to:

a+
j+ 1

2
=max{λ2,0}, a−j+ 1

2
=min{λ1,0}.

Rewriting (3.5) in the numerical viscosity form (3.1), we obtain (in the linear 2×2 case
(3.2)):

QHLL
j+ 1

2
=

(
|λ2| 0

0 |λ1|

)
.

Notice, that in the case of a symmetric Riemann fan, the HLL scheme reduces to the
Rusanov scheme. Therefore, when the HLL scheme is applied to the modified system
(3.3), its numerical viscosity is:

QHLL
j+ 1

2
=

1
2

(
λ2−λ1 0

0 λ2−λ1

)
,

which is identical to (3.4).
Unlike the Rusanov scheme, the numerical viscosity of the HLL scheme may or may

not reduce by applying the scheme to the modified system. This depends upon the re-
lation between λ2 and λ1. If λ2 ≥ 3λ1 > 0 or λ1 ≤ 3λ2 < 0, then the numerical viscosity
coefficients will become smaller for both components of the system. Otherwise, one of
the viscosity coefficients will increase. This indicates that in the case of the system with
both slow and fast moving waves, with the slow waves being “significant” ones, our ac-
celeration method may lead to deterioration in achieved resolution. At the same time,
when all the “significant” waves are of about the same speed, our approach would pro-
vide both efficiency and resolution improvements.

4 Numerical Examples

In this section, we demonstrate a great potential of the proposed quasi-Lagrangian strat-
egy on a number of 1-D and 2-D gas dynamics test problems. The underlying scheme
used in all the examples below, is the second-order semi-discrete central-upwind scheme
from [9]. We have implemented it with a piecewise linear generalized minmod recon-
struction with the minmod parameter θ = 1.3 in the 1-D examples and θ = 1 in the 2-D
one (see, e.g., [9] for details). The time integration has been performed by the third-order
strong stability preserving Runge-Kutta solver [4].

In the following, we will refer to the central-upwind scheme and to its quasi-Lagrangian
modification as CU and QLCU, respectively. A time step size, used by the QLCU scheme
is typically much larger than the time step used by the CU scheme to solve the same
problem. We will refer to the ratio between the average QLCU time step and the average
CU time step as the average CFL acceleration factor.
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Example 4.1—Three Variations of the Sod Problem

We consider the 1-D Euler equations of gas dynamics:



ρ
ρu
E




t

+




ρu
ρu2+p

u(E+p)




x

=0, (4.1)

where ρ, u, p, and E are the density, velocity, pressure, and the total energy, respectively.
The system is complete through the equation of state for the ideal gas:

E=
p

γ−1
+

ρu2

2
, γ=1.4. (4.2)

We numerically solve three supersonic variations of the Sod shock-tube problem [20].
The first set of initial data is:

(ρ(x,0),u(x,0),p(x,0))T =

{
(1.000,10,1.0)T , x<0.5,
(0.125,10,0.1)T , x>0.5.

(4.3)

This data is obtained from the Sod data‡ by adding 10 to the initial velocity.
Numerical solutions at time t = 0.25, computed by both the QLCU and CU schemes

are presented in Figures 1–2. In both cases, we use a uniform grid with ∆x =1/100 (the
reference solution is computed by the QLCU scheme with ∆x=1/1000). One may clearly
see the superiority of the resolution achieved by the QLCU scheme. This is also con-
firmed by Table 1, where we compare the L1-errors in the density field for four different
grids. As expected, both the QLCU and CU schemes are first-order accurate in the pres-
ence of the discontinuities, but the QLCU errors are about 3 times smaller than the CU
ones. In addition, the QLCU scheme is much faster in this example and the average CFL
acceleration factor is 7.

The second set of data is obtained from the Sod data by adding 1 to the initial velocity
and multiplying the initial densities by 100:

(ρ(x,0),u(x,0),p(x,0))T =

{
(100,1,1.0)T , x<0.5,
(12.5,1,0.1)T , x>0.5.

(4.4)

We apply the QLCU and CU schemes to the IVP (4.1)–(4.2), (4.4), and the solutions, com-
puted at time t = 4, are shown in Figures 3–4. Once again, we use a uniform grid with
∆x=1/100 and the reference solution computed by the QLCU scheme with ∆x=1/1000.
The results are similar to what has been obtained for the IVP (4.1)–(4.3). As expected, ap-
plication of our acceleration procedure leads to both enhanced resolution and efficiency
improvement (the average CFL acceleration factor is about 7.01 here).

‡The Sod initial data are: (ρ(x,0),u(x,0),p(x,0))T =

{
(1.000,0,1.0)T , x <0.5,
(0.125,0,0.1)T , x >0.5.
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Figure 1: IVP (4.1)–(4.3): density by the QLCU and CU schemes.
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Figure 2: IVP (4.1)–(4.3): velocity (left) and pressure (right) by the QLCU and CU schemes.

The third set of data is obtained from the Sod data by adding a variable function V(x)
to the initial velocity:

(ρ(x,0),u(x,0),p(x,0))T =

{
(1.000,V(x),1.0)T , x<0.5,
(0.125,V(x),0.1)T , x>0.5,

V(x)=10+e−50(x−0.5)2
. (4.5)

The solution of the IVP (4.1)–(4.2), (4.5) develops much more complex wave struc-
ture than the self-similar solution of the Riemann problem (4.1)–(4.3) studied above. In
Figures 5–6, we show the solutions of (4.1)–(4.2), (4.5) at time t = 0.25 computed by the
QLCU and CU schemes on the same uniform grid with ∆x = 1/100 (as before, the ref-
erence solution is computed by the QLCU scheme with ∆x = 1/1000). As one can see
there, the use of our quasi-Lagrangian acceleration approach significantly enhances the
overall resolution. Notice that now the difference between the QLCU and CU results is
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∆x QLCU Scheme CU Scheme

L1-error Rate L1-error Rate
1/100 6.54e-03 – 1.54e-02 –
1/200 3.28e-03 1.00 9.94e-03 0.64
1/400 1.75e-03 0.91 5.24e-03 0.92
1/800 9.94e-04 0.82 2.80e-03 0.90

1/1600 5.37e-04 0.89 1.41e-03 0.99

Table 1: L1-errors and experimental convergence rates.
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Figure 3: IVP (4.1)–(4.2), (4.4): density by the QLCU and CU schemes.

even more pronounced than in the two previously considered Riemann problems. At the
same time, the average CFL acceleration factor is almost as large as before (it is about
about 6.22 now).

Example 4.2—Three Discontinuities Traveling to the Right

In this example, we numerically solve the 1-D Euler equations of gas dynamics (4.1) sub-
ject to the initial data:

(ρ(x,0),u(x,0),p(x,0))T =

{
(5.99924,69.5975,460.894)T , x<0.5,
(5.99924,43.80367,46.095)T , x>0.5,

(4.6)

which is a supersonic modification (50 is added to the initial velocities) of Test 4 from
[23]§.

§Toro’s Test 4 initial data are: (ρ(x,0),u(x,0),p(x,0))T =

{
(5.99924,19.5975,460.894)T , x <0.5,
(5.99924,−6.19633,46.095)T , x >0.5.
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Figure 4: IVP (4.1)–(4.2), (4.4): velocity (left) and pressure (right) by the QLCU and CU schemes.
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Figure 5: IVP (4.1)–(4.2), (4.5): density by the QLCU and CU schemes.

The solution is computed at time t=0.035 by the QLCU and CU schemes on a uniform
spatial grid with ∆x =1/100. In Figures 7–8, we plot these numerical solutions together
with the reference solution, obtained by the QLCU scheme on a 10 times finer mesh. The
average CFL acceleration factor is about 3.44. It is smaller here than in Example 4.1, but
the difference in the achieved resolution is still very substantial, especially in the density
field (see Figure 7).
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Figure 6: IVP (4.1)–(4.2), (4.5): velocity (left) and pressure (right) by the QLCU and CU schemes.
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Figure 7: IVP (4.1)–(4.2), (4.6): density by the QLCU and CU schemes.

Example 4.3—Two-Dimensional Riemann Problem

We now consider the 2-D Euler equations of gas dynamics:




ρ
ρu
ρv
E




t

+




ρu
ρu2+p

ρuv
u(E+p)




x

+




ρv
ρuv

ρv2 +p
v(E+p)




y

=0, E=
p

γ−1
+

ρ

2
(u2+v2), γ=1.4, (4.7)
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Figure 8: IVP (4.1)–(4.2), (4.6): velocity (left) and pressure (right) by the QLCU and CU schemes.

where v is the y-component of the velocity. We numerically solve the 2-D Riemann prob-
lem with the following initial data:

(ρ(x,y,0),u(x,y,0),v(x,y,0),p(x,y,0))T =





(4,5.0,4.5,1)T , x>0.5, y>0.5,
(8,5.0,5.5,1)T , x<0.5, y>0.5,
(4,6.5,5.5,1)T , x<0.5, y<0.5,
(12,6.5,4.5,1)T , x>0.5, y<0.5.

(4.8)

This is a supersonic modification of Configuration 5 data taken from [12, 13, 18]: all the
initial densities have been increased by a factor of 4 and all the initial velocities u and v
have been increased by 5.75 and 5, respectively¶.

We compute the solution of the IVP (4.7)–(4.8) at time t=0.2 using the QLCU and CU
schemes. In this problem, the average CFL acceleration factor is about 5.28. In Figure
9, we show the solutions obtained on a uniform grid with ∆x = ∆x = 1/400. The QLCU
solution seems to be much sharper resolved (some of the density structures cannot be
even seen in Figure 9 (right), where the CU solution is plotted), but a little more oscil-
latory. Since the exact solution of the IVP (4.7)–(4.8) is not available, we compare the
obtained solutions with the corresponding solutions computed using a finer mesh with
∆x = ∆y = 1/800, see Figure 10. One may clearly see that some of the solution features,
captured on the coarser grid by the QLCU scheme only, now emerge in the finer mesh

¶The original Configuration 5 data are:

(ρ(x,y,0),u(x,y,0),v(x,y,0),p(x,y,0))T =






(1,−0.75,−0.5,1)T , x >0.5, y>0.5,
(2,−0.75, 0.5,1)T , x <0.5, y>0.5,
(1, 0.75, 0.5,1)T , x <0.5, y<0.5,
(3, 0.75,−0.5,1)T , x >0.5, y<0.5.
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CU computation as well (compare Figure 10 (right) with Figure 9 (left)). However, the
coarser QLCU solution is still better resolved than the finer CU one.

QLCU,  ∆ x=∆ y=1/400

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1.2

1.3

1.4

1.5

1.6

1.7

CU,  ∆ x=∆ y=1/400

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1.2

1.3

1.4

1.5

1.6

1.7

Figure 9: Solution (density) of the IVP (4.7)–(4.8) by the QLCU (left) and CU (right) schemes.

QLCU,  ∆ x=∆ y=1/800

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
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1.7

CU,  ∆ x=∆ y=1/800
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Figure 10: The same as Figure 9, but the computational mesh is refined.

5 Concluding Remarks

We have proposed a very simple quasi-Lagrangian approach for efficiency improvement
of Eulerian methods for general multidimensional hyperbolic systems of conservation
laws. Our method is based on the moving frame idea: the grid, while remaining struc-
tured, is shifted at every time level with the average wave speed. By doing this, the
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maximum speed is reduced and the CFL condition, which restricts the size of time steps
in explicit Eulerian methods, is weakened.

Our strategy is simple and universal—it allows one to accelerate any Eulerian method
without increasing its complexity. The main advantages of the quasi-Lagrangian accel-
eration approach has been demonstrated using the central-upwind scheme from [9], ap-
plied to 1-D and 2-D Euler equations of gas dynamics.
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