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INTERFACE TRACKING METHOD FOR COMPRESSIBLE MULTIFLUIDS
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Abstract. This paper is concerned with numerical methods for compressible multicomponent fluids.
The fluid components are assumed immiscible, and are separated by material interfaces, each endowed
with its own equation of state (EOS). Cell averages of computational cells that are occupied by several
fluid components require a “mixed-cell” EOS, which may not always be physically meaningful, and
often leads to spurious oscillations. We present a new interface tracking algorithm, which avoids using
mixed-cell information by solving the Riemann problem between its single-fluid neighboring cells. The
resulting algorithm is oscillation-free for isolated material interfaces, conservative, and tends to produce
almost perfect jumps across material fronts. The computational framework is general and may be used
in conjunction with one’s favorite finite-volume method. The robustness of the method is illustrated
on shock-interface interaction in one space dimension, oscillating bubbles with radial symmetry and
shock-bubble interaction in two space dimensions.
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1. Introduction

We are concerned with flow models describing the dynamics of fluids consisting of several (two) immiscible
fluids. Assuming that all fluid components can be described by a single velocity and a single pressure, the
governing equations are the compressible Euler equations, here written in two space dimensions (2-D):⎛⎜⎜⎝

ρ
ρu
ρv
E

⎞⎟⎟⎠
t

+

⎛⎜⎜⎝
ρu

ρu2 + p
ρuv

u(E + p)

⎞⎟⎟⎠
x

+

⎛⎜⎜⎝
ρv
ρuv

ρv2 + p
v(E + p)

⎞⎟⎟⎠
y

= 0, (1.1)

where ρ is the density of the fluid mixture, u and v are the velocities, E is the total energy, and p is the pressure.
The fluid components are separated by interfaces, and each fluid component is equipped with its own equation
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of state (EOS). For example, the EOS for stiff gases is given by:

ρe =
p + γp∞

γ − 1
, (1.2)

where e denotes the specific internal energy, γ the ratio of specific heats of the fluid component, and p∞ its
stiffness parameter, with p∞ = 0 corresponding to the ideal gas case. The total energy E is then given by
E = ρ[e + 1

2 (u2 + v2)], and the speed of sound is:

c =

√
γ(p + p∞)

ρ
· (1.3)

The fluid components are identified by the variable φ, which may be taken to be a state variable, for
example, the specific heat ratio γ [37] (see also [24]), or any function of γ (e.g., φ = 1

γ−1 was advocated in [2],
and extended to stiff gases in [38–40]). Related models take φ to be the mass fraction of the fluid component in
the fluid mixture [1,2,6,31], or a level-set function, whose zero level-set defines the interface between the fluid
components [10,11,34]. In all cases, φ propagates with the fluid velocity, hence satisfies the equation:

φt + uφx + vφy = 0, (1.4)

which may be combined with the first equation in (1.1) and recast in the conservation form:

(ρφ)t + (ρuφ)x + (ρvφ)y = 0. (1.5)

Within the popular finite-volume (FV) computational framework for conservation laws, numerical solutions
are represented in terms of cell averages. When represented by its cell average, a solution discontinuity located
at the interior of a cell inevitably generates intermediate solution values, and is generally represented as a
diffused front (see, e.g., [15,27,32,43]). In flows involving several fluid components, this diffusion of captured
material fronts separating fluid components makes it necessary to consider the thermodynamics of mixed cells,
even if the fluid components are assumed immiscible. It is well known that if mixed cells are treated naively,
numerical methods produce unphysical pressure oscillations near material fronts (see, for instance, the review
paper [4] and the references therein).

In recent years, numerous FV methods, capable to capture oscillation-free material interfaces, have been
proposed, at the cost of not being strictly conservative, either in all conserved variables [11,16,17,24] or just in
the total energy [3,4,23,25]. Loss of strict conservation compromises numerical convergence theory, and while
the aforementioned methods were demonstrated to be essentially conservative, in that conservation error is
typically proportional to the grid size and goes to zero with mesh refinement, the possibility remains that com-
puted solutions may converge to incorrect weak limits, particularly in higher dimensions. Global conservation
may be respected by using more complete flow models, which solve separately for the individual species ener-
gies [42,46,47] or the full multiphase flow model [5,9,26,38]. However, the individual species equations contain
nonconservative products and do not completely circumvent the nonconservation doubt.

Front-tracking algorithms are able to represent discontinuities as sharp fronts, and thus avoid the need to
consider the mixed cell EOS. They are easy to implement in the one-dimensional (1-D) case, but far less trivial
to implement in several space dimensions [7,12–14,44]. Moving mesh techniques have been proposed as a way
of keeping solution discontinuities sharp [20]. This is particularly appealing in the context of multifluid flows,
as the need to consider mixed cells does not arise if the material front happens to coincide with a cell boundary.
This observation is used in [8], where a locally moving mesh strategy ensures that the material interface always
coincides with the moving cell boundary. The locally moving mesh algorithm works well for isolated material
interfaces, but shock-interface interactions may produce spurious oscillations. Like front-tracking algorithms,
moving mesh techniques are best suited for 1-D flows, and do not easily generalize for multi space dimensions.
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In this paper, we propose an algorithm of a hybrid flavor. Of special relevance to the present work is [10],
in which a level-set function is used to track the material front, and the Riemann problem solver is locally
modified across the tracked interface in order to ensure oscillation-free propagation of the material front. The
resulting algorithm yields a sharp resolution of the material front, but is non-conservative in all flow variables
due to the interface procedure. The present algorithm carefully tracks material interfaces and respects the FV
computational philosophy on a multi-cell block, for example, on a two-cell block in 1-D, as shown in Figure 3.
The algorithm conserves total mass, momentum and energy, and yields sharp resolution of material interfaces,
characteristic of front-tracking algorithms. The proposed computational framework is general and may be
used in conjunction with one’s favorite FV scheme. Away from the interface, characteristic information is less
crucial, and a Riemann-problem-solver-free FV scheme may be used. In this paper, we have used the second-
order central-upwind scheme developed in [28–30]. This Godunov-type scheme enjoys all major advantages of
non-oscillatory central schemes and, at the same time, have a certain “built-in” upwind nature.

The paper is organized as follows. In Section 2, we derive the interface tracking method in 1-D, Section 2.1.1
presents the algorithm for the stiffened EOS (ideal fluids included), and Section 2.1.2 discusses its implementa-
tion to the Tait EOS. The algorithm is extended to “one-and-a-half” space dimensions radially symmetric flows
in Section 2.2 and to 2-D in Section 2.3. Numerical results in 1-D are presented in Section 3.1, the dynamics
of a compressible oscillating bubble is shown in Section 3.2. We conclude with two examples simulating the
interaction of a shock wave with a bubble. The cases of Helium and R22 (freon) bubbles in air are shown.

2. The interface tracking method

2.1. One-dimensional method

We begin with a description of a general semi-discrete finite-volume framework. The essential part of the
interface tracking method is presented in Sections 2.1.1 and 2.1.2.

We consider the 1-D version of the system (1.1):

wt + f(w)x = 0, w := (ρ, ρu, E)T , f(w) := (ρu, ρu2 + p, u(E + p))T , (2.1)

closed with the EOS (1.2). For simplicity, we assume a uniform spatial grid, xα = αΔx, and denote by wj(t)
the cell averages of w(·, t) over the corresponding intervals Ij = (xj− 1

2
, xj+ 1

2
):

wj(t) :=
1

Δx

∫
Ij

w(x, t) dx. (2.2)

Integrating (2.1) over Ij and dividing by Δx results in:

d
dt

wj(t) = − f(w(xj+ 1
2
, t)) − f(w(xj− 1

2
, t))

Δx
· (2.3)

A semi-discrete FV scheme is obtained by approximating the fluxes at x = xj± 1
2

on the right-hand side (RHS)
of (2.3), and can be written as:

d
dt

wj(t) = −
Hj+ 1

2
(t) − Hj− 1

2
(t)

Δx
, (2.4)

where Hj+ 1
2
(t) = H(w−

j+ 1
2
(t),w+

j+ 1
2
(t)) is a numerical flux function. Here, w+

j+ 1
2
(t) := Pj+1(xj+ 1

2
, t) and

w−
j+ 1

2
(t) := Pj(xj+ 1

2
, t) are the right and the left values at x = xj± 1

2
of a conservative, (essentially) non-

oscillatory, piecewise polynomial interpolant,

w̃(x, t) = Pj(x, t), xj− 1
2

< x < xj+ 1
2
, ∀j, (2.5)

which is reconstructed at each time step from the previously computes cell averages, {wj(t)}.
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The formal spatial order of accuracy of the resulting scheme depends on the order of the piecewise polynomial
reconstruction (2.5). We will restrict our consideration to second-order schemes that are typically based on
a piecewise linear reconstruction which can be written as:

Pj(x, t) = wj + (wx)j(x − xj), xj− 1
2

< x < xj+ 1
2
, ∀j. (2.6)

From now on, we will omit the time-dependence of all computed and reconstructed quantities. The second-
order accuracy of the interpolant (2.6) is guaranteed provided (wx)j is (at least) first-order approximation of the
derivative wx(xj , t). In order to ensure that Pj(x, t) is non-oscillatory, one has to use nonlinear limiters when
computing the discrete derivatives (wx)j . A library of such limiters is readily available in the literature (see,
e.g., [15,21,22,27,32,33,35,41,45]). In all our numerical experiments, we have used the multivariable minmod
function (see, e.g., [33,35,41,45]), which gives:

(wx)j = minmod
(

θ
wj − wj−1

Δx
,
wj+1 − wj−1

2Δx
, θ

wj+1 − wj

Δx

)
, θ ∈ [1, 2], (2.7)

where the minmod function is defined as:

minmod(z1, z2, ...) :=

⎧⎨⎩
minj{zj}, if zj > 0 ∀j,
maxj{zj}, if zj < 0 ∀j,
0, otherwise.

(2.8)

Notice that larger θ’s correspond to less dissipative and, in general, more oscillatory limiters.
To complete the semi-discrete formulation of the method one needs to select a formula for the numerical flux

function H. A variety of reliable functions H is available in the literature (see, e.g. [15,27,32,43], and references
therein). In all our numerical experiments, we have used the second-order central-upwind scheme [28,30], whose
brief description can be found in Appendix A.

The resulting semi-discretization (2.4) is a system of time-dependent ODEs. To obtain a fully-discrete
scheme, the system (2.4) should be solved by a stable ODE solver. The formal temporal order of accuracy is
then determined by the order of this solver. In all our numerical simulations, we have used the third-order
strong stability preserving Runge-Kutta (SSP-RK) method [18].

2.1.1. Interface treatment

We focus on the two-fluid case with immiscible components, whose thermodynamics is given by an EOS of
the general form (1.2) with different parameter values of γ and p∞.

We assume that at some time t ≥ 0 the solution, realized by the cell averages of the conserved quantities,
{wj =

(
ρj , (ρu)j , Ej

)T }, is available, and that the position of the material interface xint = xint(t) is known
and is contained in cell J ; that is, xJ− 1

2
≤ xint ≤ xJ+ 1

2
, and γ = γL, p∞ = p∞,L for x < xint and γ = γR,

p∞ = p∞,R for x > xint.
One step of the proposed time evolution algorithm consists of the following stages.
For each j, the computation of the slopes (using (2.7) or an alternative limiter) is based on the values of

the cell averages wj and the cell averages wj−1 and wj+1 in the two neighboring cells. However, the J-th cell
containing the material interface is occupied by both fluids and the corresponding cell averages, while correctly
representing the total amounts of conserved quantities, may not be thermodynamically meaningful which may
consequently cause the algorithm to fail. Our interface algorithm therefore refrains from using cell-averaged
quantities in the mixed cell. This implies that the piecewise linear interpolant (2.6)–(2.7) needs to be modified
in cells j = J − 1, J, J + 1.

To compute the point values w+
J− 1

2
and w−

J+ 1
2

of the numerical solution at cell interfaces xJ± 1
2
, we note that

cells (J ±1) are occupied by single fluids, hence their cell averages are thermodynamically meaningful. We take
lead from [10] and solve the Riemann problem between the cell average values wJ−1 and wJ+1 either exactly
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Figure 1. A typical (shock-contact-shock) self-similar solution of the Riemann problem be-
tween the cell average values wJ−1 and wJ+1, presented in the (x, t)-plane.

or approximately. The solution of this Riemann problem will now be used to determine the states w+
J− 1

2
and

w−
J+ 1

2
at the most left, x = xJ− 1

2
, and right, x = xJ+ 1

2
, points of cell J .

The exact solution of the two-fluid Riemann problem is known (see, e.g., [32] and the references therein).
It consists of two nonlinear acoustic waves (either shocks or rarefactions) and a contact discontinuity which is
also a material interface, as illustrated in Figure 1. We denote by (w∗

L; γL, p∞,L) and (w∗
R; γR, p∞,R) the two

states to the left/right of the contact discontinuity (w∗
L := (ρ∗L, ρ∗Lu∗

L, E∗
L)T , w∗

R := (ρ∗R, ρ∗Ru∗
R, E∗

R)T ), and the
corresponding velocities u∗

L = u∗
R. We note that u∗

L and u∗
R are constant across the contact discontinuity, and

denote their common value by u∗, and the sound speeds c∗L,R given by (1.3).
Once the intermediate states of the Riemann problem solution are available, we proceed along the lines of [10]

to compute the required values at the endpoints of the cell J :

if u∗ − c∗L < 0 then if u∗ + c∗R > 0 then

w+
J− 1

2
= w∗

L, w−
J+ 1

2
= w∗

R,

otherwise otherwise

w+
J− 1

2
= wJ−1, w−

J+ 1
2

= wJ+1.

(2.9)

The point values w+
J− 1

2
and w−

J+ 1
2

are then used to reconstruct conservative linear pieces (2.6) at the neighboring
cells IJ−1 and IJ+1. The reconstruction is made non-oscillatory by computing the derivatives (wx)J−1 and
(wx)J+1 with the help of the minmod limiter, applied to the cell averages at these cells and to the corresponding
point values, already computed at the endpoints of the cells IJ−2, IJ , and IJ+2:

(wx)J−1 = minmod

(
wJ−1 − w−

J− 3
2

Δx/2
,
w+

J− 1
2
− wJ−1

Δx/2

)
, (2.10)

(wx)J+1 = minmod

(
wJ+1 − w−

J+ 1
2

Δx/2
,
w+

J+ 3
2
− wJ+1

Δx/2

)
, (2.11)

where the minmod function, given by (2.8), is applied componentwise, see Figure 2.
With the values {w±

j+ 1
2
} at hand, the cell averages {wj} are evolved from time t to time t + Δt according to

the FV scheme (2.4).
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Figure 2. Special minmod reconstruction in cells (J + 1) and (J − 1).

The solution of the Riemann problem between the cell average values wJ−1 and wJ+1 is also used for
propagating the material interface by numerically solving the ODE

dxint

dt
= u∗.

Going from time t to t + Δt, two scenarios are possible: the interface, xint(t + Δt), either remains in cell J
or crosses over to one of its neighboring cells (J ± 1) (due to the CFL condition, the interface may not move by
more than Δx per one time step).

If xint(t + Δt) remains in cell J , the evolution step is complete and we proceed to the next time step.
Else, we follow [10] and use the solution of the Riemann problem between the cell average values wJ−1 and

wJ+1 once again and overwrite wn+1
J by either w∗

L or w∗
R depending on the sign of u∗. This step in itself affects

the overall conservation balance. To maintain global conservation, the new mixed cell (either the (J + 1)-st
or (J − 1)-st one) is used as a conservation “storage” cell – its value is corrected so that the resulting method
remains globally conservative. The correction procedure is summarized in the following algorithm:

if xint(t + Δt) ∈ IJ+1 then if xint(t + Δt) ∈ IJ−1 then

wnew
J = w∗

L, wnew
J = w∗

R,

wnew
J+1 = wJ + wJ+1 − wnew

J , wnew
J−1 = wJ−1 + wJ − wnew

J .

(2.12)

Here, all the w quantities are taken at time t + Δt.
Notice that this correction procedure (2.12) ensures a local conservation over a double-cell (either (J, J + 1)

or (J − 1, J) depending on the direction of the interface propagation) since only the values in this double-cell
are getting corrected and since either wnew

J+1 + wnew
J = wJ+1 + wJ or wnew

J + wnew
J−1 = wJ + wJ−1, respectively.

This is illustrated in Figure 3.
This completes one evolution step of the proposed Interface Tracking Method.

Remark 2.1. The interface tracking algorithm may be implemented using an approximate Riemann problem
solution instead of the exact one. Since the solution of the Riemann problem is only used to interpolate between
the states wJ−1 and wJ+1 near the material interface, the exact solver does not have a particular advantage
over an approximate one as long as the latter does not produce unphysical values of the interpolated quantities
(our numerical experiments below clearly demonstrate this). Moreover, the approximate solver may be the only
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Figure 3. Typical interface propagation and double-cell conservation.

option if the exact one is unavailable (see, for example, the radially symmetric problem studied in Sect. 2.2).
In our numerical experiments, we have used both the exact and the linearized Roe-type solver proposed in [24].

2.1.2. Modeling liquids using the Tait equation of state

We are interested in modeling liquid components of multifluids by compressible Euler equations. This can
be done in several ways. For example, one may use the full gas dynamics system (2.1) subject to the stiff EOS:
(1.3) with a large value of p∞. Alternatively, the liquid component can be modeled by the isentropic Euler
equations: {

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,
(2.13)

closed with the Tait EOS:

p = B

(
ρ

ρ0

)γ

− B + A, (2.14)

where γ, A, B, and ρ0 are constants, see [48].
If the liquid is modeled by the full gas dynamics system with the stiff EOS, our interface tracking method

can be applied straightforwardly to the liquid-gas multifluid. However, when the alternative approach is used,
the interface treatment should be slightly modified.

First, notice that the number of equations in liquid and gas areas is different. As for the mixed cell J , which
is served as a “conservation storage” cell, it would make sense to “store” there the density and momentum only
since the overall model does not conserve the total energy.

To apply the semi-discrete FV scheme, we need, as before, to reconstruct the point values w+
J− 1

2
and w−

J+ 1
2

by (approximately) solving the Riemann problem between the cell average values wJ−1 and wJ+1. Without
loss of generality, let us assume that the gas component is on the left while the liquid one is on the right
of cell J . Then the vectors wJ−1 and w+

J− 1
2

have 3 components while the vectors wJ+1 and w−
J+ 1

2
have only

2 components. Since the gas and liquid systems are connected through the contact wave, one may still construct
the (approximate) Riemann problem solver. For example, the shock-shock solver can be described as follows.

Given (wJ−1, γL) and (wJ+1, γR) in the phase space, we denote by (w∗
L, p∗, γL) and (w∗

R, p∗, γR) two inter-
mediate constant states that appear in the solution of the Riemann problem, in which w∗

L = (ρ∗L, ρ∗Lu∗, E∗
L)T

consists of 3 components while w∗
R = (ρ∗R, ρ∗Ru∗)T consists of 2 components only. Using the the Rankine-

Hugoniot condition for each shock, we obtain ρ∗L, u∗ and p∗ and then compute ρ∗R = ρ∗R(p∗) from (2.14),
see Figure 4. Having the intermediate states (w∗

L, p∗, γL) and (w∗
R, p∗, γR), we proceed as in Section 2.1.1
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Figure 4. The same as in Figure 1, but now the liquid component on the right is modeled by
the isentropic Euler equations (2.13) with the Tait EOS (2.14).

to determine w+
J− 1

2
and w−

J+ 1
2

according to (2.9). Finally, when the interface moves to the neighboring cell, the
cell averages at cell J are recovered following (2.12).

2.2. Oscillating bubble with radial symmetry

We have used the Euler equations to compute the dynamics of a compressible oscillating bubble with surface
tension. The fluids inside and outside the bubble are separated by the bubble surface and are thermodynamically
distinct. The bubble is in equilibrium if the difference between the inside and outside pressures is balanced by
the force due to surface tension:

[p] = κτ,

where κ is the interface curvature and τ the surface tension coefficient. A larger pressure difference causes
the bubble to expand, and by inertia to overexpand, leading to a pressure drop inside the bubble, causing the
bubble to compress, and then overcompress. This repeated oscillatory motion is gradually damped by acoustic
radiation of energy, and the bubble reaches a new equilibrium. In this model, the bubble is assumed to maintain
its integrity at all times and to remain cylindrically symmetric. The force due to surface tension is a singular
force that acts on the interface, and is modeled by a Dirac δ-function. The Euler equations with cylindrical
symmetry take the form:

(rρ)t + (rρq)r = 0, (2.15)
(rρq)t + (rρq2 + rp)r = p − rτκ δ(r − R), (2.16)
(rE)t + (q(rE + rp))r = −rτκq δ(r − R), (2.17)

where ρ, q, p, and E = ρe + 1
2ρq2 denote the density, radial velocity, pressure, and total energy. The curvature

κ = 1/R, where R = R(t) is the bubble radius. The fluid components are assumed to obey the EOS for stiff
gases (1.2).

We introduce a uniform spatial grid, in which the cells Ij = (rj− 1
2
, rj+ 1

2
) of size Δr := rj+ 1

2
−rj− 1

2
are centered

at the points r = rj , and denote the vector of conservative variables by w := (rρ, rρq, rE)T , the flux function
by f(w) := (rρq, rρq2 + p, rq(E + p))T , and the source term by S := (0, p − rτκ δ(r − R),−rτκq δ(r − R))T .
As before, we assume that at some time level t, the solution is available and realized in terms of its cell
averages {wj(t)}. We also assume that the interface location R(t) is known, and is contained in cell IJ , that is
rJ− 1

2
≤ R(t) ≤ rJ+ 1

2
, and γ = γin, p∞ = p∞,in for r < R(t) and γ = γout, p∞ = p∞,out for r > R(t).

Away from the interface, the solution cell averages are evolved in time according to the semi-discrete FV
scheme:

d
dt

wj(t) = −
Hj+ 1

2
(t) − Hj− 1

2
(t)

Δr
+ Sj(t), (2.18)
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where Hj+ 1
2

= H(t,w−
j+ 1

2
(t),w+

j+ 1
2
(t)) is a numerical flux function, w+

j+ 1
2
(t) := w̃(rj+ 1

2
+ 0, t) and w−

j+ 1
2
(t) :=

w̃(rj+ 1
2
−0, t) are the right and the left values at r = rj± 1

2
of a global, (essentially) non-oscillatory, conservative

piecewise polynomial interpolant w̃(r, t), reconstructed from the cell averages {wj(t)}. The numerical source

term S = (0, S
(2)

, S
(3)

)T is:

S
(2)

j (t) =
1

Δr

∫
Ij

p(r, t) dr − RτκδJ
j , S

(3)

j (t) = −Rτκq∗δJ
j . (2.19)

Here, δJ
j is the Kronecker symbol, J is the number of the cell in which the bubble surface is located at time t,

q∗ is the interface velocity to be determined below (see p. 1001), and the pressure integral should be obtained
by an appropriate quadrature, for example, by a mid-point rule. In our numerical experiments, we have used
the 1-D second-order central-upwind scheme, described in Appendix A.

2.2.1. Interface treatment

As in 1-D, we refrain from using the cell averages of the mixed cell, IJ , as they lead to thermodynamical
inconsistencies and typically result in unphysical pressure oscillation. Instead, we obtain the point values of the
solution at the cell edges xJ± 1

2
by solving the Riemann problem between the cell averages in the neighboring

cells (J − 1) and (J + 1). Here, we have used an approximate Riemann problem solver, described below. The
governing equations (2.15)–(2.17) are nonconservative due to the non-Cartesian geometry and surface tension
force. Ignoring the effects of the source terms, the solution for the Riemann problem in the radially symmetric
setup is essentially the same as that in 1-D, with the density, pressure and energy scaled by r, that is, ρ, p and
E replaced by rρ, rp and rE, respectively. Surface tension sustains a pressure jump of size [p] = τκ across
the bubble surface, and thus the pressure is no longer continuous in the surface normal direction. This jump
needs to be incorporated into the approximate Riemann problem solver. The pressure source term needs to be
integrated over the control volume and is treated by a source linearization.

Approximate Riemann problem solver

The way in which we make use of the approximate Riemann problem solution does not require that the
solution is conservative, as conservation is insured by the flux form of the semi-discrete scheme and by the
conservation property of the correction procedure (2.12). We therefore write the governing equations (2.15)–
(2.17) in terms of the primitive variables U = (ρ, u, p)T and consider the Riemann problem:

ρt + qρr + ρqr = −ρq

r
, (2.20)

qt + qqr +
1
ρ

pr = −1
ρ

τκδ(r − R), (2.21)

pt + qpr + ρc2qr =
ρqc2

r
− τκqδ(r − R), (2.22)

with sound speed c is given by (1.3) and subject to the initial data

(U(r, 0); γ, p∞) =

{
(Uin; γin, p∞,in) := ((ρJ−1, qJ−1, pJ−1)T ; γin, p∞,in), r < r0,

(Uout; γout, p∞,out) := ((ρJ+1, qJ+1, pJ+1)T ; γout, p∞,out), r > r0.
(2.23)

Since the exact solution of this Riemann problem is unavailable, we will use the solution of the corresponding
linearized system. It should be pointed out, however, that the system (2.20)–(2.22) in its current form cannot
be linearized due to the presence of the singular terms on the RHS of (2.21) and (2.22). Therefore, we will
first modify the initial data (2.23) to reflect the effect of surface tension that supports the pressure jump,
[p] = τκ, across the material interface: we will subtract the vector (0, 0, βτκ)T from Uin and add the vector



1000 A. CHERTOCK ET AL.

(0, 0, (1 − β)τκ)T to Uout. Then, we will remove the δ-source from the RHS of (2.21) and (2.22) and linearize
the obtained system about an average state. Once the solution of the linearized system has been found, we will
restore the approximate solution of the original Riemann problem by adding/subtracting the aforementioned
vectors back to the corresponding inside/outside states.

We now turn to a detailed description of the algorithm. We begin by modifying the initial data as follows:

Ûin = Uin −
⎛⎝ 0

0
βτκ

⎞⎠, Ûout = Uout +

⎛⎝ 0
0

(1 − β)τκ

⎞⎠, 0 ≤ β ≤ 1, (2.24)

where β is a free parameter. We would like to recall that the goal of such a modification is to reflect the effect
of surface tension so that Ûout − Ûin = Uout − Uin + τκ. The latter is true for any value of β. Our numerical
experiments indicate that the resulting method is not too sensitive to the choice of β, so in all numerical results
reported below, we have used β = 0.5.

We then remove the δ-source terms from the RHS of the system (2.20)–(2.22) and linearize it about some
average state, again with no special regard to conservation, for example, about Ûav := 1

2 (Ûin + Ûout), and
consider the linearized Riemann problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ut + A(Ûav)Ux = σav,

U(r, 0) =

⎧⎨⎩ Ûin, r < r0,

Ûout, r > r0,

(2.25)

where σav is a piecewise constant approximation of the source term σ ≡ (σ(1), σ(2), σ(3))T := (−ρq/r, 0, ρqc2/r)T ,
which is a nonsingular part of the source term in the system (2.20)–(2.22), and A is the coefficient matrix of
this system:

A(U) =

⎛⎝ q ρ 0
0 q 1/ρ
0 ρc2 q

⎞⎠, (2.26)

whose eigenvalues and the corresponding right eigenvectors are:

λ1 = q − c, λ2 = q, λ3 = q + c, (2.27)

r1 =

⎛⎝ ρ
−c
ρc2

⎞⎠, r2 =

⎛⎝ 1
0
0

⎞⎠, r3 =

⎛⎝ ρ
c

ρc2

⎞⎠. (2.28)

Next, the difference ΔÛ := Ûout − Ûin is projected onto the characteristic fields of the linearized system:

ΔÛ =
3∑

k=1

αkrk, rk = rk(Ûav), k = 1, 2, 3,

where the wave strengths αk are given by:

α1 =
Δp − ρavcavΔq

2ρavc2
av

, α2 = Δρ − Δp

c2
av

, α3 =
Δp + ρavcavΔq

2ρavc2
av

,

and

c2
av :=

c2
in + c2

out

2
·
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We note that this linearization may not correspond to a thermodynamically consistent state, that is, in general,
c2
av �= c2

av(ρav, pav). This is necessary in order to circumvent the need to define a mixed-cell EOS, since there
may not be a thermodynamically meaningful way to define an average γ and p∞.

The source difference Δσ := σ(Ûout)−σ(Ûin) is also projected onto the characteristic fields of the linearized
system:

Δσ =
3∑

k=1

δkrk,

where the coefficients are:

δ1 = δ3 =
Δσ(3)

2ρavc2
av

, δ2 = Δσ(1) − Δσ(3)

c2
av

·

An appropriate piecewise constant approximation of the source term is then given by:

σav =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ(Ûin), r < r0 + λ1t,

σ(Ûin) + δ1r1, r0 + λ1t < r < r0 + λ2t,

σ(Ûout) − δ3r3, r0 + λ2t < r < r0 + λ3t,

σ(Ûout), r > r0 + λ3t,

(2.29)

where λk = λk(Ûav), k = 1, 2, 3.
The solution of the initial value problem (IVP) (2.25)–(2.29) is:

Û(r, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ûin(t), r < r0 + λ1t,

Û∗
in(t), r0 + λ1t < r < r0 + λ2t,

Û∗
out(t), r0 + λ2t < r < r0 + λ3t,

Ûout(t), r > r0 + λ3t,

where

Ûin(t) := Ûin + t σ(Ûin), Û∗
in(t) := Ûin + α1r1 + t

(
σ(Ûin) + δ1r1

)
,

Ûout(t) := Ûout + t σ(Ûout), Û∗
out(t) := Ûout − α4r4 + t

(
σ(Ûout) − δ3r3

)
.

Note that the second components of both Û∗
in(0) and Û∗

out(0) are equal to the interface velocity q∗, used to
evaluate the source cell average in (2.19).

Finally, we restore the solution of the original Riemann problem (2.20)–(2.23) by adding/subtracting, ac-
cording to (2.24), the vectors (0, 0, βτκ)T and (0, 0, (1 − β)τκ)T from the above (̂·)-values:

U(r, t) =

{
Û(r, t) + (0, 0, βτκ)T , r < r0 + λ2t,

Û(r, t) − (0, 0, (1 − βτκ))T , r > r0 + λ2t.

This completes the description of our approximate Riemann problem solver.

Remark 2.2. Since the interface tracking method is based on the semi-discrete FV scheme, we only need the
solution of the Riemann problem at time t = 0+ to evaluate the point values w+

J− 1
2

and w−
J+ 1

2
, as described in

Section 2.1.1. Therefore, the piecewise constant approximation of the source, σav, is not used by our method,
and formula (2.29) is only provided for the completeness of a description of the approximate Riemann problem
solver, presented in this section.
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2.3. Two-dimensional method

We now turn to the system (1.1) and describe our 2-D interface tracking method.
We consider a uniform spatial grid xμ := μΔx, yν := νΔy, and denote the computed quantities, the cell

averages, by:

wj,k(t) :=
1

ΔxΔy

∫ ∫
Ij,k

w(ξ, η, t) dη dξ, Ij,k := [xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
]. (2.30)

The cell averages are evolved in time according to the semi-discrete finite-volume scheme:

d
dt

wj,k(t) = −
Hx

j+ 1
2 ,k

(t) − Hx
j− 1

2 ,k
(t)

Δx
−

Hy

j,k+ 1
2
(t) − Hy

j,k− 1
2
(t)

Δy
, (2.31)

where the numerical flux functions are Hx
j+ 1

2 ,k
(t) = Hx(wNE

j,k ,wE
j,k,wSE

j,k;wNW
j+1,k,wW

j+1,k,wSW
j+1,k) and

Hy

j,k+ 1
2
(t) = Hy(wNW

j,k ,wN
j,k,wNE

j,k ;wSW
j,k+1,w

S
j,k+1,w

SE
j,k+1). Here, the point values in the middle of cell bound-

aries, wE(W,S,N), and at the sell corners, wNE(NW,SE,SW ), are to be computed from a conservative, (essentially)
non-oscillatory piecewise polynomial reconstruction. Second-order schemes typically utilize piecewise linear re-
constructions:

w̃(x, y, t) = wj,k + (wx)j,k(x − xj) + (wy)j,k(y − yk), for (x, y) ∈ Ij,k, (2.32)

and then the corresponding point values are:

wE(W)
j,k := wj,k ± Δx

2 (wx)j,k, wN(S)
j,k := wj,k ± Δy

2 (wy)j,k,

wNE(NW)
j,k := wj,k ± Δx

2 (wx)j,k + Δy
2 (wy)j,k, wSE(SW)

j,k := wj,k ± Δx
2 (wx)j,k − Δy

2 (wy)j,k.

(2.33)

From now on, we will simplify the notation as in the 1-D case: time dependence of all computed and recon-
structed quantities will be omitted.

To ensure a non-oscillatory property of the reconstruction (2.32), the slopes should be computed with the
help of a nonlinear limiter. In our numerical experiments, we have used a 2-D extension of the generalized
minmod limiter (2.7):

(wx)j,k = minmod
(

θ
wj+1,k − wj,k

Δx
,
wj+1,k − wj−1,k

2Δx
, θ

wj,k − wj−1,k

Δx

)
,

(wy)j,k = minmod
(

θ
wj,k+1 − wj,k

Δy
,
wj,k+1 − wj,k−1

2Δy
, θ

wj,k − wj,k−1

Δy

)
,

(2.34)

where θ ∈ [1, 2].

2.3.1. Interface treatment

The extension of the 1-D interface treatment algorithm to 2-D is essentially in a dimension-by-dimension man-
ner. However, since the geometry of the interface in 2-D is more complex, the extension is not straightforward
as it needs to account for various possible 2-D scenarios.

We use a level-set formulation to determine the interface geometry. Within this framework, we solve equation
(1.4) for the level set function φ, where φ is positive for one fluid, negative for the other and zero at the interface.
Given the point values of φj,k := φj,k(t) ≈ φ(xj , yk, t), if φj,k changes sign across any one of the cell interfaces
(that is if either φj,kφj+1,k < 0, φj,kφj−1,k < 0, φj,kφj,k+1 < 0, or φj,kφj,k−1 < 0), then the cell (j, k) is flagged
as mixed and is marked by 0. Otherwise, the cell (j, k) is marked by sign(φj,k(t)) and the fluid parameters γ
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J J+1J−1J J+1J−1 J J+1J−1 J J+1J−1

K KKK 1 1 0 1 −1 0 −10 −1 −1 01

Figure 5. Mixed (J, K) cell and its single-fluid neighbors in the x-direction – configurations,
for which the 1-D approach can be directly extended.

and p∞ there are set accordingly. We further distinguish between mixed cells and denote by 0+ mixed cells
with φj,k > 0, and by 0− cells with φj,k < 0.

In the following, we assume that cell (J, K) is mixed, and describe the algorithm for the computation of the
numerical fluxes Hx

J+ 1
2 ,K

and Hx
J− 1

2 ,K
(Hy

J,K+ 1
2

and Hy

J,K− 1
2

are computed in a similar manner).
As in the 1-D case, we consider cell averages of mixed cells not to be physically meaningful and seek to

interpolate the required point values in cell (J, K) by solving the Riemann problem between cells (J − 1, K)
and (J + 1, K). However, the 2-D situation is more complicated since cells (J − 1, K) and (J + 1, K) are not
necessarily single-fluid ones. If one or both of these cells are mixed, we will replace the cell averages there with
the values interpolated from the nearest single-fluid cells and solve the corresponding Riemann problem. We
now turn to a detailed description of the algorithm.

We first observe that the 1-D algorithm described in Section 2.1.1, can be straightforwardly extended to two
space dimensions in the cases shown in Figure 5. We note that the two cases illustrated on the right are not
likely to arise is 1-D computations. Nonetheless, (J, K) is a mixed cell, and as in the 1-D methodology we solve
a Riemann problem between its left/right neighboring cells, which in these two case happen to be occupied by
the same fluid.

As it has been already mentioned, in 2-D, it is possible for the left/right neighbor of a mixed cell to be also
mixed, for example, if the interface is close to horizontal (respectively vertical). We consider in detail the case
illustrated in Figure 6, where cell (J, K) is a 0+ cell, the right neighboring cell (J + 1, K) is mixed. Other
cases follow in complete analogy and are not described. We seek to replace the cell average in the mixed cell
(J +1, K) by extrapolating information from neighboring cells, and need to determine which of the neighboring
cell averages to use in the extrapolation. If cell (J +1, K) is a 0+ cell, we use its single-fluid neighbors which are
marked by 1 (provided there is at least one such a neighbor). An example of a configuration that corresponds
to this case is shown in Figure 6a. In such a situation, we replace wJ+1,K with the weighted average

CdwJ,K+1 + CywJ+1,K+1 + CdwJ+2,K+1 + CxwJ+2,K

2Cd + Cx + Cy
, (2.35)

where the weights, Cx, Cy and Cd, are inversely proportional to the distance between the single-fluid cells
participating in (2.35) and cell (J + 1, K), that is,

Cx =
1

Δx
, Cy =

1
Δy

, Cd =
1√

(Δx)2 + (Δy)2
, (2.36)

and we also set the fluid parameters γ and p∞ in cell (J +1, K) to correspond to the fluid marked by 1. If none
of the neighbors of this cell is marked by 1, then we interpolate using the values from the neighbors marked by
−1. An example of such a situation is illustrated in Figure 6b. In this particular example, we replace wJ+1,K

with the following weighted average

CdwJ+2,K+1 + CxwJ+2,K + CdwJ+2,K−1 + CywJ+1,K−1 + CdwJ,K−1

3Cd + Cx + Cy
,

where the weights, Cx, Cy and Cd, are still given by (2.36), and the parameters γ and p∞ in cell (J + 1, K) are
set to correspond to the fluid marked by −1.
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Figure 6. Typical cell configurations around mixed (J, K) and (J + 1, K) cells (φJ+1,K > 0).
The dashed line represents a possible interface path.

If all the surrounding cells are marked by 0 (see Fig. 6c), which may occur if the interface is highly curved on
the scale of the grid size, it might be hard or even impossible to accurately interpolate the cell average values
of wJ+1,K . In this case, we simply look for the nearest cell with single-fluid data.

Once wJ+1,K and wJ−1,K have been replaced by suitably extrapolated single-fluid data, we proceed according
to the 1-D algorithm described in Section 2.1.1, and solve the x-direction Riemann problem between them. Then,
as in Section 2.1.1, we use the obtained solution to evaluate the point values wW

J,K and wE
J,K , needed for the

computation of the x-slopes in the neighboring single-fluid cells and for the evaluation of x-numerical fluxes at
(xJ− 1

2
, yK) and (xJ+ 1

2
, yK).

The level set equation (1.4) is solved by an upwind finite-difference method with the corresponding velocities
to be:

(uj,k, vj,k) =

{
((ρu)j,k/ρj,k, (ρv)j,k/ρj,k), if (j, k) is a single-fluid cell,

(u∗
j,k, v∗j,k), if (j, k) is a mixed cell,

where u∗
J,K and v∗J,K are the intermediate x- and y-velocities obtained when solving Riemann problems in the

x- and y-direction, respectively.
Finally, when the interface crosses a cell boundary, a cell status may change from mixed to single-fluid. We

consider the following 3 typical scenarios illustrated in Figure 7. In the cases illustrated in Figures 7a and 7b,
we conclude that the interface has moved from the cell (J, K) to the right, and thus we correct the values wJ,K

and wJ+1,K according to the following conservation algorithm (compare with (2.12)):

wnew
J,K = (w∗

L)x, wnew
J+1,K = wJ,K + wJ+1,K − wnew

J,K ,

where (w∗
L)x is the left intermediate state of the (approximate) solution of the 1-D Riemann problem in the

x-direction between (the interpolated values of) wJ−1,K and wJ+1,K , see Figure 1. Notice that the new value
wnew

J+1,K complies with the conservation requirements, that is, wnew
J+1,K + wnew

J,K = wJ,K + wJ+1,K . In the case
shown in Figure 7c, we conclude that the interface has moved in the down-right direction and thus the above
correction procedure should be modified, for instance, as follows:

wnew
J,K =

(w∗
L)x + (w∗

R)y

2
, wnew

J+1,K =
wJ,K

2
+ wJ+1,K − wnew

J,K

2
, wnew

J,K−1 =
wJ,K

2
+ wJ,K−1 −

wnew
J,K

2
,

where (w∗
L)x is the same as in the previous formula and (w∗

R)y is the right intermediate state of the (approximate)
solution of the 1-D Riemann problem in the y-direction between (the interpolated values of) wJ,K−1 and wJ,K+1.
Once again, the new cell average values respect the multi-block conservation in the sense that wnew

J,K +wnew
J+1,K +

wnew
J,K−1 = wJ,K + wJ+1,K + wJ,K−1.
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Figure 7. Typical cell configurations around cell (J, K), whose status has changed from the
mixed to the single-fluid one after the latest time evolution step.

3. Numerical examples

In this section, we illustrate the performance of the interface tracking method by a number of 1-D and
2-D numerical experiments. In all examples, we use the semi-discrete second-order central-upwind schemes
described in Appendix A. Away from material interfaces, the method employs either the generalized minmod
reconstruction (2.6)–(2.7) with θ = 1.3 (in the 1-D and radial symmetric cases) or its 2-D extension (2.32)–
(2.34). To obtain the intermediate states needed for reconstructing required point values in the vicinity of the
material interface, we use either approximate or exact Riemann problem solvers. The approximate solver is
based on a local linearization of the governing equations about an average state, which has been taken as the
arithmetic average of the single-fluid cell averages from both sides of the interface. The time integration is
performed using the third-order SSP-RK method [18].

The interface tracking methods based on the exact and linearized Riemann problem solvers will be referred
to as IT-EXACT and IT-LIN methods, respectively.

3.1. One-dimensional examples

Example 3.1.1 – Shock-tube problem

We first consider the system (2.1) subject to the initial conditions corresponding to a shock-tube problem:

(ρ, u, p; γ, p∞)T =
{

(1.000, 0, 1.0; 1.4, 0)T , x < 0.5,

(0.125, 0, 0.1; 1.6, 0)T , x > 0.5.

We compute the solution of this IVP at time t = 0.2 on a uniform grid with Δx = 5 × 10−3. The densities
obtained by the IT-LIN and IT-EXACT methods are shown in Figure 8. The results are very similar though
the IT-EXACT method provides a slightly better resolution of the contact wave. There is almost no difference
in the resolution of the velocity and pressure achieved by both methods. Therefore, in Figure 9 we plot u
and p obtained by the IT-LIN method only. As one can see from Figures 8–9, the numerical solutions (dotted
lines) are in a very good agreement with the corresponding exact solutions (solid lines). We note that in this
example, our interface tracking method tends to capture the material front as a perfect jump. As our next
examples demonstrate, a perfect resolution of material fronts is not guaranteed by the method, but in our
experience, almost all contact discontinuities are captured in a sharp manner (similar to [10,11]). This property
is particularly nice when the EOS of the fluid may not be valid for all flow regimes (as is the case with the Tait
EOS) and may not be valid for intermediate values produced by a smeared material front.
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Figure 8. Solution (density) of the shock-tube problem by the IT-LIN and IT-EXACT methods.
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Figure 9. Solution (velocity and pressure) of the shock-tube problem by the IT-LIN method.
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Figure 10. Solution (density) of the stiff shock-tube problem by the IT-LIN and IT-EXACT methods.
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Figure 11. Solution (density) of the stiff shock-tube problem by the IT-LIN and IT-EXACT
methods – zoom at x ∈ [0.68, 0.78].
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Figure 12. Solution (velocity and pressure) of the stiff shock-tube problem by the IT-LIN method.

Example 3.1.2 – Stiff shock-tube problem

We now turn to another shock-tube problem with stiffer initial data [4]:

(ρ, u, p; γ, p∞)T =
{

(1.0, 0.0, 500; 1.4, 0)T , x < 0.5,

(1.0, 0.0, 0.2; 1.6, 0)T , x > 0.5.
(3.1)

The solutions of the IVP (2.1)-(3.1) at time t = 0.015 are plotted in Figures 10–12. The densities computed
by the IT-LIN and IT-EXACT methods are shown in Figure 10 (see also zoom at the area of contact and
shock discontinuities shown in Fig. 11) and the velocity and the pressure computed by the IT-LIN method are
plotted in Figure 12 (the resolution of these fields achieved by the IT-EXACT method is similar). In all these
figures, the dots represent the solutions computed on a uniform grid with Δx = 2.5 × 10−3, and the solid lines
represent the corresponding exact solutions. As one can see from Figures 10 and 11, the IT-EXACT method
achieves a somewhat better resolution of the contact discontinuity then the IT-LIN method, but both versions
of our interface tracking method clearly demonstrates their ability to accurately capture strong contact waves.
In particular, we note that all computed solutions are oscillation-free and the results obtained on the coarser
grid are in excellent agreement with the reference solutions.
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Figure 13. Solution (density) of the gas-liquid shock-tube problem by the IT-LIN and IT-
EXACT methods.
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Figure 14. Solution (density) of the gas-liquid shock-tube problem by the IT-LIN and IT-
EXACT methods – zoom at x ∈ [0.805, 0.865].
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Figure 15. Solution (velocity and pressure) of the gas-liquid shock-tube problem by the IT-
EXACT method.



INTERFACE TRACKING METHOD FOR COMPRESSIBLE MULTIFLUIDS 1009

0 5 10
2

4

6

ln(ρ)

10 10.5 11
1037

1038

1039

1040

1041
ρ

0 5 10
0

1000

2000

3000

 u

10 10.5 11
46

48

50

52

 u

0 5 10

2

4

6

8

10

x 10
7  p

10 10.5 11

1

1.05

1.1
x 10

8  p

Figure 16. Solution of the gas-liquid problem by the Tait EOS for the water at t = 0.006.
The graphs on the right zoom at the region x ∈ [10, 11.4]. The dots represent the solution
computed on the coarser grid and the solid line corresponds to the reference solution.

Example 3.1.3 – Water-air model using the stiff equation of state

We now consider a gas-liquid multifluid system and model the liquid component using the stiff EOS (1.2).
The initial conditions correspond to a severe water-air shock tube problem and are given by:

(ρ, u, p; γ, p∞)T =
{

(1000, 0, 109; 4.4, 6 · 108)T , x < 0.7,

(50, 0, 105; 1.4, 0)T , x > 0.7.
(3.2)
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Figure 17. Bubble radius vs. time: grid convergence (upper left) and time convergence (upper
right). Density (lower left) and pressure (lower right) at the new equilibrium, computed by the
IT-LIN method.

We apply both the IT-LIN and IT-EXACT methods to the IVP (2.1)-(3.2). In Figures 13 and 15, the numerical
solutions at time t = 0.00025, computed on an uniform (with Δx = 2.5×10−3, dots) grid are plotted along with
the corresponding exact solutions (solid lines). As in the previous examples, we show the densities obtained
by both the IT-LIN and IT-EXACT methods, while the velocity and the pressure are shown only once. One
can also observe, the IT-EXACT method outperforms the IT-LIN one though both methods seem to converge
to the correct solution as we show in Figure 14. In this figure, we zoom at the shock and contact waves area
of the densities computed on four different uniform grids with Δx = 2.5 × 10−3, Δx = 1.25 × 10−3, and
Δx = 6.25 × 10−4.

We note that the advantage of the IT-EXACT method over the IT-LIN one is more pronounced in this
example than in the previous one, which is likely related to the stiffness of the problem.

Example 3.1.4 – Water-air model using the Tait equation of state

As in the previous example, we consider a gas-liquid system. The gas component is modeled using the full
gas dynamics system (2.1)-(1.2) with p∞ = 0 and γ = 1.25, while the water component is now modeled using
(2.13)–(2.14) with γ = 7.15, A = 105, B = 3.31× 108, and ρ0 = 1000. We apply the IT-EXACT method to this
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system subject to the initial data containing a shock in each fluid:

(ρ, u, p) =

{
(8.26605505, 2949.97131, 107), x < 1,

(1, 0, 105), 1 < x < 5,

(ρ, u) =

{
(1000, 0), 5 < x < 9.6,

(1004.1303,−6.3813588), x > 9.6.

The interface is initially located at x = 5 with a gas on the left and water on the right. This problem is similar
to the one from [11,48], where an initial-boundary value problem with the same initial data was considered
(here, we solve the IVP only).

We take two uniform grids with Δx = 0.02 and Δx = 0.002 (the solution computed on the finer grid serves
as a reference solution). The computed solutions at time t = 0.006 are shown in Figure 16, where the graphs
on the right zoom at the region x ∈ [10, 11.4]. One can clearly see that the proposed interface tracking method,
described in Section 2.1.2, sharply captures the contact wave and provides a high overall quality of the computed
solution despite some small oscillations.

3.2. Radially symmetric oscillating bubble

We apply the radial version of the IT-LIN method, presented in Section 2.2, to the example taken from [25].
We consider an oscillating compressible cylindrical bubble, whose motion is governed by the system (2.15)–
(2.17). Initially, the radius of the bubble is R = 1 and the data inside/outside the bubble are:

(ρ, u, p; γ, p∞)(r, 0) =
{

(40, 0, 10; 1.4, 0), r < 1,

(1, 0, 1; 1.67, 2), r > 1.

The surface tension coefficient is τ = 0.1.
Due to a large initial pressure difference, the bubble starts oscillating. Each oscillation dissipates energy by

radiating acoustic waves away from the bubble and this causes the convergence towards a new equilibrium, as
illustrated in Figure 17 (upper right), where we plot the computed bubble radius vs. time. A grid convergence
is demonstrated in Figure 17 (upper left). Finally, the lower two graphs in Figure 17 show the density and
pressure, computed at the new equilibrium (at t = 200) on a uniform grid with Δr = 0.025. As in the 1-D case,
the contact surface is sharply resolved. At the same time, our results are in good agreement with the results
reported in [25].

3.3. Two-dimensional examples

In this section, we compute the interaction between a shock wave and a bubble by a 2-D IT-LIN method
described in Section 2.3. A weak shock wave in air (shock Mach number ≈ 1.19) hits a bubble at rest, containing
either Helium (Ex. 3.3.1) or R22 (Ex. 3.3.2). With Helium being lighter than air, and R22 being heavier, wave
refraction at the bubble interface and the resulting wave structures are very different. The examples follow
experiments reported in [19] and computationally studied in [36]. The fluids are modeled as ideal gases using
(1.2) with p∞ = 0, and have different values of specific heat ratio γ. A schematic of the initial setup is shown
in Figure 18. The top and bottom boundaries are solid walls, the left and right boundaries are open, with the
domain set to be large enough so that waves do not reach the boundaries by the final time of the computation.
In both examples, we have used a uniform spatial grid with Δx = Δy = 0.02, yielding an effective grid of 25×25
over the initial bubble. Figures 19–22, show Schlieren images of the numerical results displaying the magnitude
of the density gradient field, |∇ρ|, for different times during the interaction. In these figures, we have used the
following shading function:

exp
(
− C|∇ρ|

max(|∇ρ|)
)
, C = 300,

where the numerical density derivatives are computed using central differencing.
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Figure 18. Initial setting for the 2-D numerical examples.

Example 3.3.1 – Helium bubble

We numerically solve the system (1.1)–(1.2) with the following initial conditions:

(ρ, u, v, p; γ, p∞) =

⎧⎪⎨⎪⎩
(4/29, 0, 0, 1; 5/3, 0), in region I,
(1, 0, 0, 1; 1.4, 0), in region II,
(4/3,−0.3535, 0, 1.5; 1.4, 0), in region III,

where regions I, II, and III are shown in Figure 18.
Different stages if the shock-bubble interaction are shown in Figures 19 and 20. Upon hitting the bubble,

the shock wave partly refracts, and partly reflects. The refracted shock is curved and propagates faster inside
the helium bubble than in the air, as sound speed in helium is higher than sound speed in air. The bubble
compresses under the impact of the shock and is set into motion. Being lighter than air, the helium accelerates
more under the impact of the shock, and shear is produced across the bubble interface. The refracted shock
sweeps over the bubble, and continues to interacts with the bubble interface, giving rise to highly complicated
refraction patterns. After the shock completes its sweep over the bubble, the bubble continues to evolve slowly
into a familiar kidney shape as a result of the vorticity generated at the bubble interface, before losing its
integrity and breaking up. Interface roll-up due to shear instability may be observed, as well as wave reflection
from the solid top/bottom boundaries. The results are in good agreement with the results reported in [36].

Example 3.3.2 – R22 bubble

We numerically solve the system (1.1)–(1.2) subject to the following initial conditions:

(ρ, u, v, p; γ, p∞) =

⎧⎪⎨⎪⎩
(3.1538, 0, 0, 1; 1.249, 0), in region I,
(1, 0, 0, 1; 1.4, 0), in region II,
(4/3,−0.3535, 0, 1.5; 1.4, 0), in region III,

where, as in the previous example, regions I, II, and III are specified in Figure 18.
In Figures 21 and 22, we show different stages if the shock-bubble interaction. Upon being hit by the shock

wave, the bubble compresses and undergoes a deformation, and the shock partly reflects and partly refracts.
The speed of sound inside the R22 bubble is lower than outside, causing the refracted shock wave to move more
slowly than the shock outside the bubble. The bubble is heavier than the surrounding air, and accelerates less
than the air under the impact of the shock. As a result, vorticity is generated at the bubble interface. The
refracted shock can be observed to focus inside the bubble, causing a rise in pressure and resulting in a visible
forward jet along the center of the bubble. The shear at the boundary interface causes the interface to roll-up,
as the bubble continues to evolve under the induced vorticity field. The results are in good agreement with the
results reported in [36].
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Figure 19. Shock-helium bubble interaction. Earlier times.
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Figure 20. Shock-helium bubble interaction. Later times.



INTERFACE TRACKING METHOD FOR COMPRESSIBLE MULTIFLUIDS 1015

Figure 21. Shock-R22 bubble interaction. Earlier times.
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Figure 22. Shock-R22 bubble interaction. Later times.
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Appendix A: Semi-discrete central-upwind schemes

Here, we briefly describe the second-order semi-discrete central-upwind schemes.
We begin with the 1-D case. The cell averages (2.2) are evolved in time according to (2.4) with the following

central-upwind fluxes (see [28,30]):

Hj+ 1
2

:=
a+

j+ 1
2
f(w−

j+ 1
2
) − a−

j+ 1
2
f(w+

j+ 1
2
)

a+
j+ 1

2
− a−

j+ 1
2

+ a+
j+ 1

2
a−

j+ 1
2

[
w+

j+ 1
2
− w−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

− Qj+ 1
2

]
, (A.1)

where w±
j+ 1

2
are the point values, reconstructed at x = xj+ 1

2
, a±

j+ 1
2

are the right- and left-sided local speeds of
propagation that, for the Euler equations of gas dynamics, can be estimated by:

a+
j+ 1

2
= max

{
u+

j+ 1
2

+ c+
j+ 1

2
, u−

j+ 1
2

+ c−
j+ 1

2
, 0
}
, a−

j+ 1
2

= min
{

u+
j+ 1

2
− c+

j+ 1
2
, u−

j+ 1
2
− c−

j+ 1
2
, 0
}
,

and Qj+ 1
2

is the “anti-diffusion” terms that help to reduce numerical dissipation present at non-oscillatory
central schemes [28]:

Qj+ 1
2

= minmod

(
w+

j+ 1
2
− wint

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

,
wint

j+ 1
2
− w−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

)
,

wint
j+ 1

2
=

a+
j+ 1

2
w+

j+ 1
2
− a−

j+ 1
2
w−

j+ 1
2
−
{
f(w+

j+ 1
2
) − f(w−

j+ 1
2
)
}

a+
j+ 1

2
− a−

j+ 1
2

·

In the 2-D case, the structure of the second-order semi-discrete central-upwind scheme is similar. The cell
averages (2.30) are evolved in time according to (2.31) with the numerical fluxes given by (see [28] for their
derivation):

Hx
j+ 1

2 ,k :=
a+

j+ 1
2 ,k

f(wE
j,k) − a−

j+ 1
2 ,k

f(wW
j+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+ a+
j+ 1

2 ,k
a−

j+ 1
2 ,k

[
wW

j+1,k − wE
j,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

− Qx
j+ 1

2 ,k

]
, (A.2)

and

Hy

j,k+ 1
2

:=
b+
j,k+ 1

2
g(wN

j,k) − b−
j,k+ 1

2
g(wS

j,k+1)

b+
j,k+ 1

2
− b−

j,k+ 1
2

+ b+
j,k+ 1

2
b−
j,k+ 1

2

[
wS

j,k+1 − wN
j,k

b+
j,k+ 1

2
− b−

j,k+ 1
2

− Qy

j,k+ 1
2

]
. (A.3)

The point values participating in this formula are defined in (2.33), the one-sided local speeds for the Euler
equations are:

a+
j+ 1

2 ,k
= max

{
uW

j+1,k + cW
j+1,k, uE

j,k + cE
j,k, 0

}
, a−

j+ 1
2 ,k

= min
{
uW

j+1,k − cW
j+1,k, uE

j,k − cE
j,k, 0

}
,

b+
j,k+ 1

2
= max

{
uS

j,k+1 + cS
j,k+1, u

N
j,k + cN

j,k, 0
}
, b−

j,k+ 1
2

= min
{
uS

j,k+1 − cS
j,k+1, u

N
j,k − cN

j,k, 0
}
,
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and the built-in “anti-diffusion” terms are given by [28]:

Qx
j+ 1

2 ,k = minmod

(
wNW

j+1,k − wint
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,
wint
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2 ,k
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j,k
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2 ,k
− a−
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2 ,k
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2 ,k
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2 ,k
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j+ 1
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,
wint

j+ 1
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2 ,k
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2 ,k

)
,

Qy
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2
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2
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2
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b+
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2
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,
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2
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j,k+ 1
2

,
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2
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j,k
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2
− b−
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2

)
,

where

wint
j+ 1

2 ,k =
a+

j+ 1
2 ,k

wW
j+1,k − a−

j+ 1
2 ,k

wE
j,k −

{
f(wW

j+1,k) − f(wE
j,k)

}
a+

j+ 1
2 ,k

− a−
j+ 1

2 ,k

,
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2

·

Remark. In the original semi-discrete central-upwind scheme [30], both Qj+ 1
2

in (A.1) and Qx
j+ 1

2 ,k
and Qy

j,k+ 1
2

in (A.2)–(A.3) were chosen to be zero.
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