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Central-Upwind Scheme for Savage–Hutter
Type Model of Submarine Landslides and

Generated Tsunami Waves
Alexander Kurganov · Jason Miller

Abstract — We develop a new central-upwind scheme for a one-dimensional Savage–
Hutter type model of submarine landslides and generated tsunami waves. Our scheme
exactly preserves physically relevant steady-states, preserves positivity of water depth,
is insensitive to choice of discretization of nonconservative products, and properly in-
corporates friction inherent in the model. We apply our scheme to a variety of test
problems and the numerical results clearly demonstrate a high accuracy and robustness
of the proposed method.
2010 Mathematical subject classification: 76M12, 65M08, 86-08, 86A05, 35L65.
Keywords: Hyperbolic Systems of Balance Laws, Godunov-Type Central-Upwind
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1. Introduction

It is well known that tsunamis can form when earthquakes below the ocean cause landslides
on the ocean floor (see, e.g., [19, 32] and references therein). When in deep water, tsunamis
have a height of only around 30 cm, but have a very long wave length. These waves, however,
can be disastrous when they reach the shore. They contain an immense amount of energy,
and when the water becomes shallower they slow down and increase in height (a process
called wave shoaling). The size, speed, and shape of the wave as it comes ashore can all
impact how the wave behaves once it reaches the shoreline, so it is important to have accurate
models that can depict the true mechanisms by which tsunamis form.

Many existing tsunami models use the prescribed motion of a submerged rigid object to
generate waves at the water surface. The motion of this object is determined by ODEs for
the center of mass, which can be solved independently of the system describing the water
motion (see, e.g., [13, 17, 34, 35]). These situations can be modeled by the Saint-Venant
system with time-dependent bottom topography (see, e.g., [24]). Results from this model
mimic analogous laboratory experiments in which a submerged solid object slides along the
bottom of the water body, such as those found in [18]. In the real world, the mass sliding on
the ocean floor also deforms and its deformation may substantially affect generated surface
waves.
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Figure 1. Diagram depicting the physical setting for the model. The fluid-granular layer with density ρ2
and depth h2 sits atop a non-erodible bottom B. A fluid layer with density ρ1 sits atop the lower layer and
the bottom.

The model studied here is a one-dimensional (1-D) Savage–Hutter type model for subma-
rine avalanches and generated tsunami which was presented in [14], and is an improvement
of an earlier model proposed by [19]. In this model, the sliding object is considered to be a
fluid-granular mixture, which deforms as it slides down a solid bottom. This results a two-
layer model where the upper layer is water and the lower layer is a fluid-granular mixture.
The flow of the lower layer is driven by gravity and the interaction with the bottom of the
water body while it also deforms due to momentum exchange with the upper fluid layer.
This leads to a more realistic representation of submarine landslides and generated surface
waves.

The model is described by the following system of PDEs:

(h1)t + (q1 cos θ)x = 0,

(q1)t +
(
h1u

2
1 cos θ +

g

2
h21 cos3 θ

)
x

= −gh1 cos θBx −
g

2
h21 cos2 θ(cos θ)x

− gh1 cos θ(h2 cos2 θ)x + φ1,

(h2)t + (q2 cos θ)x = 0,

(q2)t +
(
h2u

2
2 cos θ +

g

2
Λ2h

2
2 cos3 θ

)
x

= −gh2 cos θBx −
g

2
h22 cos2 θ(cos θ)x

− rΛ1gh2 cos θ(h1 cos2 θ)x − φ2 +
T

cos θ
,

(1.1)

where h1(x, t) and h2(x, t) are the depths of the upper and lower layers, respectively, u1(x, t)
and u2(x, t) are the corresponding layer velocities, q1 = h1u1 and q2 = h2u2 are the discharges,
B(x) is the function that represents a non-erodible bottom, θ(x) is the angle of B(x) from
horizontal, g is the gravitational constant, r = ρ1/ρ2 is the constant ratio of the densities,
Λ1 and Λ2 are physical parameters relating anisotropy or normal stress on each layer and
the porosity of each layer, φi = fric(u1,u2)

cos θρi
is the inter-layer friction, T = T (h2, u2; δ0) is the

Coulomb friction term that describes the friction between the lower layer and the bottom,
and δ0 is a physical parameter of the fluid-granular mixture known as the angle of repose.
The physical setting is laid out in Figure 1.

The system (1.1) was derived from the incompressible Euler equations wherein the as-
sumption is made that the lower layer is comprised of a mixture of granular and fluid particles
that move at the same velocity, while the upper layer is solely fluid. As a result, the two
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Figure 2. Diagram depicting the “lake-at-rest” steady-state. In the absence of a lower layer, the system
reduces to a single-layer shallow water system.

layers have different constant densities ρ1 < ρ2 and are not necessarily immiscible. The
resulting system is obtained by a vertical averaging across each layer depth. For details
concerning the derivation of the system, see [14].

Our goal is to develop a highly accurate and robust numerical method for the system
(1.1). Numerically studying the system (1.1) presents many of the same challenges seen
in multilayer shallow water models (see, e.g., [1, 9–12, 25, 28]). It contains nonconservative
product terms, it is only conditionally hyperbolic, and its eigenstructure cannot be obtained
in explicit form. A good scheme for (1.1) should be well-balanced (it should exactly preserve
steady-state solutions), it should preserve positivity of both h1 and h2, it should be able
to properly handle discontinuous/nonsmooth solutions, and it should also be insensitive to
the way the nonconservative terms are discretized. In this paper, we develop a new central-
upwind scheme for (1.1) which possesses all of these features.

Central-upwind schemes (first introduced in [26] and further developed in [21, 22]) are
Godunov-type finite volume methods. They belong to the class of Riemann-problem-solver-
free central schemes and thus can be applied to a variety of hyperbolic systems of conservation
laws as a “black-box” solver. When central-upwind schemes are applied to systems of balance
laws, a special treatment of the source, friction, nonconservative product and more terms
appearing in the system at hand must be developed. This was done for single- and two-layer
shallow water models in [8, 20, 23–25]. To apply the central-upwind scheme to (1.1), one
needs to specify the way the terms on the right-hand side are discretized. This should be
done in such a way that (i) physically relevant steady-state solutions are exactly preserved;
(ii) h1 and h2 are guaranteed to be nonnegative; both (iii) nonconservative and (iv) friction
terms are properly discretized.

(i) The first property a good numerical method for the system (1.1) must satisfy is that
it must be well-balanced. That is, it should preserve the “lake-at-rest” steady-state solution
corresponding to the flat water surface in the absence of a lower-layer:

h1 cos2 θ +B ≡ const, h2 ≡ 0, q1 ≡ q2 ≡ 0,

see Figure 2. Preserving this particular steady-state would guarantee that no artificial surface
waves are generated, and also ensure that small perturbations of either the surface or the
lower layer will not lead to a “numerical storm”.

(ii) Good numerical methods should also preserve positivity of h1 and h2 since solutions
containing negative h1 or h2 would be nonphysical and will cause the numerical compu-
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tations to fail. To ensure positivity of h1 and h2, we follow the idea from [23]. We first
replace the bottom topography with its continuous piecewise linear approximation and then
adjust the piecewise linear reconstruction of the water heights, assuring that through each
computational cell the depth of each layer is nonnegative. This will lead to a method which
is both well-balanced and positivity preserving.

(iii) Another challenge in the development of reliable and robust numerical methods is the
discretization of the nonconservative products on the right-hand side of (1.1). In many cases,
changing the way these terms are discretized may lead to qualitatively different computed
solutions. An ultimate goal is to develop a method for which the computed solution would
be insensitive to the way nonconservative terms are discretized. To address this problem,
we follow the approach proposed in [25] by rewriting the system in an equivalent form that
allows for “favorable” treatment of the nonconservative products. This approach uses the fact
that in all practical oceanographic applications, fluctuations in the total water level, denoted
by ε := h1 cos2 θ + h2 cos2 θ + B, are typically much smaller than the total water depth. To
take advantage of this fact, the system is rewritten in a way so that the nonconservative
product terms become proportional to ε, which will reduce the impact that the particular
discretization of nonconservative terms has on the overall computed solution.

(iv) The final challenge with the system (1.1) is treatment of the Coulomb friction term T .
We use an operator splitting method in which the nonconservative products and geometric
source terms are first applied to reach an intermediate solution, and then we apply a friction
mechanism that slows or stops the lower layer in each computational cell depending on the
value of the discharge there.

All of these goals (i)–(iv) are achieved. In Section 2, we rewrite the system (1.1) in a
computationally favorable form. In Section 3, we derive the central-upwind scheme for the
reformulated system. In particular: in Section 3.3, we introduce the measures that preserve
positivity; in Section 3.4, we derive a well-balanced discretization of the geometric source
terms; in Section 3.5, we write down a proper discretization of the nonconservative terms;
in Section 3.6, we show how to address the Coulomb friction. Finally, in Section 4, the new
scheme is successfully applied to various test problems.

2. Reformulated System

We define the variables wi := hi cos2 θ, i = 1, 2 and ε := w1 + w2 + B, for which the
“lake-at-rest” steady state is given by

ε ≡ const, w2 ≡ 0, q1 ≡ q2 ≡ 0. (2.1)

In this paper, we will neglect the interlayer friction terms φ1 and φ2, and let Λ1 = Λ2 = 1,
which corresponds to the two layers being immiscible. The system (1.1) can then be rewritten
in terms of the equilibrium variables U := (ε, q1, w2, q2)

T as follows:
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εt + ((q1 + q2) cos3 θ)x = 2(q1 + q2) cos2 θ(cos θ)x,

(q1)t +
( q21 cos3 θ

ε− (w2 +B)
+
g

2

ε2 − 2ε(w2 +B)

cos θ

)
x

= − g

cos θ
ε(w2 +B)x

− g

2

ε2 − 2ε(w2 +B)

cos2 θ
(cos θ)x,

(w2)t + (q2 cos3 θ)x = 2q2 cos2 θ(cos θ)x,

(q2)t +
(q22 cos3 θ

w2

+
g

2

(1− r)w2
2 + 2rw2ε

cos θ

)
x

= −(1− r)g
cos θ

w2Bx +
rg

cos θ
ε(w2)x

− g

2

(1− r)w2
2 + 2rεw2

cos2 θ
(cos θ)x +

T
cos θ

.

(2.2)
For smooth solutions, this system is equivalent to the original system (1.1). We also shift

the z-coordinate so that the water surface reference level is 0 (see Figure 3). This means
that for the “lake-at-rest” steady state (2.1), ε ≡ 0, and in all practical applications ε will
remain small relative to the total depth of the water (w1 +w2). The system (2.2) is favorable
for numerical computations because the nonconservative product ε(w2)x appearing on the
right-hand side of (2.2) is proportional to ε.

3. Numerical Scheme

We develop a new well-balanced positivity preserving scheme for (2.2). Our scheme is based
on the semi-discrete central-upwind scheme from [22] (see also [23, 25]). For simplicity, we
introduce a uniform grid xα = α∆x where ∆x is a small spatial scale, and denote the
computational cells by Ij := [xj− 1

2
, xj+ 1

2
].

3.1. Linear Bottom

We replace the bottom topography function B(x) with its continuous piecewise linear ap-
proximation B̃(x) that connects the points (xj− 1

2
, B(xj− 1

2
)) and (xj+ 1

2
, B(xj+ 1

2
)):

B̃(x) = Bj− 1
2

+ (Bj+ 1
2
−Bj− 1

2
)
x− xj− 1

2

∆x
, xj− 1

2
< x < xj+ 1

2
,

where Bj+ 1
2

:= B(xj+ 1
2
). Replacing B with B̃ does not affect the formal accuracy of the

scheme since the piecewise linear interpolant is a second-order approximation of B. The
piecewise linear function B̃ has the following property:

Bj := B̃(xj) =
1

∆x

∫
Ij

B̃(x) dx =
Bj+ 1

2
+Bj− 1

2

2
.

This is important for the positivity preserving property of the scheme. This procedure is
exactly the same as in [23,25].

In our scheme, we will need to have the values of cos θ and sin θ at the cell interfaces
x = xj+ 1

2
. These values will be calculated using the original function B, that is, we take

cos θj+ 1
2

:= cos(θ(xj+ 1
2
)) = cos(arctan(B′(xj+ 1

2
))),

sin θj+ 1
2

:= sin(θ(xj+ 1
2
)) = sin(arctan(B′(xj+ 1

2
))).
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Figure 3. Diagram depicting the variables in the new system. The z-coordinate is shifted so that the
bottom B is negative and the water surface reference level is 0. In practical applications, this ensures that
the water surface ε is small since it is close to the reference level (dashed line).

3.2. The Semi-Discrete Central-Upwind Scheme

First, we introduce notations for the flux F, the geometric source term S, the nonconservative
products N, and the Coulomb friction C:

F(U, B) :=


(q1 + q2) cos3 θ

q21 cos3 θ

ε−(w2+B)
+ g

2
ε2−2ε(w2+B)

cos θ

q2 cos3 θ
q22 cos3 θ

w2
+ g

2

(1−r)w2
2+2rw2ε

cos θ

 ,

S(U, B) :=


2(q1 + q2) cos2 θ(cos θ)x

− g
cos θ

εBx − g
2
ε2−2ε(w2+B)

cos2 θ
(cos θ)x

2q2 cos2 θ(cos θ)x

− (1−r)g
cos θ

w2Bx − g
2

(1−r)w2
2+2rεw2

cos2 θ
(cos θ)x

 ,

N(U, B) :=
(

0,− gε

cos θ
(w2)x, 0,

rgε

cos θ
(w2)x

)T
,

C(U, B) :=
(

0, 0, 0,
T

cos θ

)T
,

(3.1)

so that the system (2.2) can be written as

Ut + F(U, B)x = S(U, B) + N(U, B) + C(U, B). (3.2)

Using these notations, a semi-discrete finite-volume scheme for (3.2) takes the form of the
following system of time-dependent ODEs:

d

dt
Uj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
+ Sj(t) + Nj(t) + Cj(t), (3.3)

where Uj(t) are approximations of the cell averages of the solution over the corresponding
cells,

Uj(t) ≈
1

∆x

∫
Ij

U(x, t) dx,
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Hj+ 1
2
(t) are numerical fluxes, and Sj(t) and Nj(t) are discretizations of the cell averages of

the geometric source and nonconservative product terms, respectively:

Sj(t) ≈
1

∆x

∫
Ij

S(U(x, t), B(x)) dx, Nj(t) ≈
1

∆x

∫
Ij

N(U(x, t), B(x)) dx.

The contribution of C will be discussed in Section 3.6 below.
The central-upwind numerical fluxes Hj+ 1

2
are the ones proposed in [22] (see also [23,25]):

Hj+ 1
2
(t) =

a+
j+ 1

2

F(U−
j+ 1

2

, Bj+ 1
2
)− a−

j+ 1
2

F(U+
j+ 1

2

, Bj+ 1
2
)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+
j+ 1

2

−U−
j+ 1

2

]
. (3.4)

Here, the valuesU±
j+ 1

2

are the right/left point values at x = xj+ 1
2
of the conservative piecewise

linear reconstruction Ũ,

Ũ(x) := Uj + (Ux)j(x− xj), xj− 1
2
< x < xj+ 1

2
, (3.5)

which is used to approximate U at time t, that is,

U±
j+ 1

2

:= Ũ(xj+ 1
2
± 0) = Uj+ 1

2
± 1

2
∓ ∆x

2
(Ux)j+ 1

2
± 1

2
. (3.6)

The numerical derivatives (Ux)j are at least first-order accurate componentwise approxima-
tions of Ux(xj, t), computed using a nonlinear limiter needed to ensure the non-oscillatory
nature of the reconstruction (3.5). The right- and left-sided local speeds a±

j+ 1
2

in (3.4) are
obtained from the smallest and largest eigenvalues of the Jacobian ∂F

∂U
(see Section 3.7 for

details). Notice that the terms U±
j+ 1

2

, Uj, a±j+ 1
2

, Ũ(x) and (Ux)j all depend on t, but we
suppress this dependence for simplicity.

A fully discrete central-upwind scheme is obtained by applying an appropriate ODE solver
to (3.3). In our computations, we have used the third-order strong stability preserving
Runge–Kutta (SSP-RK) method from [15], which ensures a non-oscillatory nature of the
resulting fully discrete scheme.

3.3. Positivity Preserving Reconstruction

The evaluation of the numerical derivatives (Ux) in equation (3.5) is essential to the non-
oscillatory property and nonlinear stability of the scheme. One can achieve these attributes
by using a nonlinear limiter, which ensures the reconstruction is non-oscillatory. The central-
upwind scheme can be implemented with any one of the many nonlinear limiters available.
In the numerical experiments presented in Section 4, we have used the generalized minmod
limiter:

(Ux)j = minmod
(
γ
Uj −Uj−1

∆x
,
Uj+1 −Uj−1

2∆x
, γ

Uj+1 −Uj

∆x

)
, γ ∈ [1, 2], (3.7)

where the minmod function is defined as

minmod(z1, z2, . . . ) :=


minj{zj}, if zj > 0 for all j,
maxj{zj}, if zj < 0 for all j,
0, otherwise,
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and the parameter γ can be used to control the amount of numerical viscosity present in the
resulting scheme (see, e.g., [27, 31,33] for more details concerning nonlinear limiters).

The use of nonlinear limiters, however, is not enough to guarantee positivity of the
reconstructed point values (w2)

±
j+ 1

2

and (w1)
±
j+ 1

2

even when the cell averages

(w2)j = U
(3)

j and (w1)j = U
(1)

j −U
(3)

j −Bj = εj − (w2)j −Bj

are positive for all j. We follow the procedure presented in [25] and [23] by amending our
reconstruction with the following two positivity correction steps:

if (w2)
−
j+ 1

2

< 0, then take ((w2)x)j := − (w2)j
∆x/2

=⇒ (w2)
−
j+ 1

2

= 0, (w2)
+
j− 1

2

= 2(w2)j,

if (w2)
+
j− 1

2

< 0, then take ((w2)x)j :=
(w2)j
∆x/2

=⇒ (w2)
−
j+ 1

2

= 2(w2)j, (w2)
+
j− 1

2

= 0,

(3.8)

and

if ε−
j+ 1

2

< (w2)j+ 1
2

+Bj+ 1
2
, then take (εx)j :=

(w2)j+ 1
2

+Bj+ 1
2
− εj

∆x/2

=⇒ ε−
j+ 1

2

= (w2)j+ 1
2

+Bj+ 1
2
, ε+

j− 1
2

= 2εj − (w2)j+ 1
2
−Bj+ 1

2
,

if ε+
j− 1

2

< (w2)j− 1
2

+Bj− 1
2
, then take (εx)j :=

εj − (w2)j− 1
2

+Bj− 1
2

∆x/2

=⇒ ε−
j+ 1

2

= 2εj − (w2)j− 1
2
−Bj− 1

2
, ε+

j− 1
2

= (w2)j− 1
2

+Bj− 1
2
.

(3.9)

Following these steps will ensure that the reconstructed point values of w1 and w2 will be
nonnegative so long as the cell averages are nonnegative.

Another critical point to the positivity preserving nature of our scheme is the computation
of the velocity variables ui = qi cos2 θ/wi, which are needed for calculating the numerical
fluxes (Section 3.2) as well as for estimating the wave speeds (Section 3.7). Even though we
have guaranteed that the quantities (wi)

±
j+ 1

2

will be nonnegative, they may be small or even
zero. Therefore, a desingularization procedure is required in this computation. We again
follow [25] and [23] and compute the velocities using the following formula:

ui :=

√
2wi · qi cos2 θ√

w4
i + max (w4

i , β)
, i = 1, 2, (3.10)

where β is a small desingularization parameter (in our experiments β = min{(∆x)3, 10−4}).
This reduces to ui = qi cos2 θ/wi for large values of wi and the velocities ui will be modified
according to (3.10) only at those cell interfaces where the reconstructed values of wi are
small. Notice that after this, the discharges at the same points have to be modified by
setting

qi =
wi · ui
cos2 θ

, i = 1, 2 (3.11)

there. This will be crucial to have a positivity preserving scheme as it is proved in Theorem
3.1 (see Section 3.8).

Brought to you by | Tulane University
Authenticated | kurganov@math.tulane.edu author's copy

Download Date | 1/30/14 10:30 PM



Central-Upwind Scheme for Submarine Landslides and Generated Tsunami 9

3.4. Well-Balanced Discretization

An essential aspect to a good numerical scheme for the system (2.2) is that it does not result
in the so-called “numerical storm”, that is, any surface waves should be purely physical and
not artifacts of the numerical scheme. Therefore we design our scheme to be well-balanced,
and that will ensure that small perturbations of steady states will not grow in a manner that
is not physical.

In many previous well-balanced schemes for two-layer shallow water models (see, e.g.,
[1, 5, 10–12, 25]), the preserved steady state corresponded to the case of both layers being
flat and motionless (for the system (2.2) this would be ε = const with w2 + B = const).
Because of the friction and ratio of densities r that we would see in practical applications
of this model, we do not expect that this steady-state will ever be achieved. When the
lower layer slides down the bottom and stops due to friction, it will not be flat, but will be
in some mound shape. At this point, the lower layer will essentially become a part of the
bottom topography while the upper layer will continue to flow as in the case of a single-
layer shallow water system. Therefore, we choose to preserve another “lake-at-rest” steady
state that corresponds to the absence of the lower layer, in which case the model acts like a
single-layer shallow water model.

Our goal is to design a numerical scheme that exactly preserves this “lake-at-rest” steady-
state solution (ε = const, w2 = 0, q1 = q2 = 0). For brevity we denote cos θj+ 1

2
by cj+ 1

2
and

substitute the steady-state data εj = ε, (w2)j = (q1)j = (q2)j = 0 for all j into the second
component of the numerical flux (3.4). We obtain

H
(2)

j+ 1
2

=
g

2

ε(ε− 2Bj+ 1
2
)

cj+ 1
2

,

and thus

−
H

(2)

j+ 1
2

−H
(2)

j− 1
2

∆x
= −g

2

ε(ε− 2Bj+ 1
2
)

∆xcj+ 1
2

+
g

2

ε(ε− 2Bj− 1
2
)

∆xcj− 1
2

=
gε

2∆xcj+ 1
2
cj− 1

2

[
cj− 1

2
(2Bj+ 1

2
− ε)− cj+ 1

2
(2Bj− 1

2
− ε)

]
=

gε

2∆xcj+ 1
2
cj− 1

2

[
ε(cj+ 1

2
− cj− 1

2
) + 2

(cj+ 1
2

+ cj− 1
2

2
(Bj+ 1

2
−Bj− 1

2
)

−
Bj+ 1

2
+Bj− 1

2

2
(cj+ 1

2
− cj− 1

2
)
)]

= gε
cj+ 1

2
+ cj− 1

2

2cj+ 1
2
cj− 1

2

·
Bj+ 1

2
−Bj− 1

2

∆x

+
gε

2cj+ 1
2
cj− 1

2

[
ε− (Bj+ 1

2
+Bj− 1

2
)
]cj+ 1

2
− cj− 1

2

∆x
, (3.12)

which is the second component of the flux difference on the right-hand side of (3.3) at the
“lake-at-rest” steady state. Since at this steady state, both N and C are zero, the scheme
will be well-balanced provided the quadrature for the geometric source S

(2)

j cancels the flux
contribution (3.12). Such a quadrature can be easily constructed and it is
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10 Alexander Kurganov, Jason Miller

S
(2)

j = −gεj
cj+ 1

2
+ cj− 1

2

2cj+ 1
2
cj− 1

2

·
Bj+ 1

2
−Bj− 1

2

∆x

− gεj
2cj+ 1

2
cj− 1

2

[
εj − 2(w2)j − (Bj+ 1

2
+Bj− 1

2
)
]cj+ 1

2
− cj− 1

2

∆x
. (3.13)

Since the first, third, and fourth components of S vanish at the “lake-at-rest” steady
state, any consistent discretization of S(1), S(3), S(4) can be used without affecting the well-
balanced property of the scheme. In our numerical experiments we have used the following
discretizations:

S
(1)

j = 2((q1)j + (q2)j)cj+ 1
2
cj− 1

2

cj+ 1
2
− cj− 1

2

∆x
,

S
(3)

j = 2(q2)jcj+ 1
2
cj− 1

2

cj+ 1
2
− cj− 1

2

∆x
,

S
(4)

j = −(1− r)g
cj+ 1

2
+ cj− 1

2

2cj+ 1
2
cj− 1

2

(w2)j
Bj+ 1

2
−Bj− 1

2

∆x

− g [(1− r)(w2)j + 2rεj](w2)j
2cj+ 1

2
cj− 1

2

·
cj+ 1

2
− cj− 1

2

∆x
.

(3.14)

Recall that in (3.13) and (3.14), we have used the notation cj+ 1
2

:= cos θj+ 1
2
.

3.5. Nonconservative Terms

As mentioned in Section 1, an integral part of designing a stable numerical method for (1.1)
is a proper treatment of the nonconservative products. However, now that we have rewritten
the system (1.1) in a favorable way (2.2), the particular discretization of these terms will
have only a small impact on the computed solution. This is because the surface waves in this
model are typically several orders of magnitude smaller than the inertial waves, and thus
after shifting our coordinate system the water surface ε is at or near zero in all practically
relevant applications.

In this paper, we discretize the nonconservative product term Nj as follows:

N
(2)

j = −g
(cos θj+ 1

2
+ cos θj− 1

2

2 cos θj+ 1
2

cos θj− 1
2

)
· εj((w2)x)j, N

(4)

j = −rN(2)

j . (3.15)

3.6. Coulomb Friction

To include the friction term into the model, we apply an operator splitting to the semi-
discrete system (3.3). We split it into

d

dt
Uj = −

Hj+ 1
2
−Hj− 1

2

∆x
+ Sj + Nj,

d

dt
Uj = Cj.

(3.16)

This entails composing the two solution operators corresponding to each equation in (3.16)
in the following manner:

U(t+ ∆t) ≈ SC(∆t)SFSN(∆t)U(t), (3.17)
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Central-Upwind Scheme for Submarine Landslides and Generated Tsunami 11

where SFSN and SC denote the corresponding solution operators. We first obtain U∗ =
SFSN(∆t)U(t) by applying the third-order SSP-RK solver from [15] to the scheme described
above. We then apply the friction term by computing the same quantities as in [14], but
rather than including them in the flux term, we treat the friction as a source term in our
numerical method. This is a very straightforward approach because we do not have to adjust
our numerical fluxes, and thus it is very simple to implement. This is achieved by updating
the fourth component according to the following steps:

(q2)j(t+ ∆t) =

{
(q∗2)j + Tj∆t, if |(q∗2)j| > σ∗j∆t/ cos θj,

0, otherwise,
(3.18)

with

Tj := − sgn{(q∗2)j}
[
σ∗j +

(ŵ2)j+ 1
2

+ (ŵ2)j− 1
2

2
· (û2)2j ·

sin θj+ 1
2
− sin θj− 1

2

∆x
· tan δ0

]
, (3.19)

where

σ∗j := g(1− r)
(ŵ2)j+ 1

2
+ (ŵ2)j− 1

2

2
(cos θj)

2 tan δ0,

(û2)j :=

√
2(w∗2)j(q

∗
2)j(cos θj)

2√
((w∗2)j)

4 + max (((w∗2)j)
4, β)

,

(ŵ2)j+ 1
2

:=
1

2

( (w∗2)j
(cos θj)2

+
(w∗2)j+1

(cos θj+1)2

)
,

(3.20)

and β is the same small desingularization parameter as in equation (3.10). These are exactly
the same quantities as were calculated in [14] with the exception of (û2)j, which we modify
by including the desingularization procedure.

The operator SC determines in each cell Ij whether the momentum of the lower layer is
below some critical threshold which depends on the slope of the bottom Bx and the angle of
repose of the granular layer δ0, a given physical parameter. If so, then the mass is stopped
in that cell (the momentum q2 is set to zero there), and if not, the mass is slowed down by
adding Tj∆t, which has the opposite sign to the momentum (q∗2)j. For more information on
the Coulomb friction associated with this system, we refer the reader to [29].

Remark 3.1. Desingularization is critical to the success of the friction procedure since the
locations where (w2) is small are exactly where one would expect the friction cause the
lower layer to stop. Without desingularization, the velocities (û2) at these locations may
become very large, and as a result the momentum may never fall below the critical threshold
σ∗∆t/ cos θ.

3.7. Calculating Wave Speeds

To calculate wave speeds, we need bounds on the eigenvalues of the Jacobian of the flux
term in the system (2.2). To achieve this, we write the characteristic equation in the form

λ4 + c1λ
3 + c2λ

2 + c3λ+ c4 = 0 (3.21)
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12 Alexander Kurganov, Jason Miller

with coefficients

c1 = −2 cos θ(u1 + u2),

c2 = cos2 θ
(
(u1 + u2)

2 + 2u1u2 + gB − (1 + r)gε
)
,

c3 = 2 cos3 θ
(
u1u2(u1 + u2)− gu2w1 − gu1(rε+ w2)

)
,

c4 = cos4 θ
[
u21u

2
2 − g

(
u21(rε+ w2) + u22(B + ε− w2)

)
+ g2

(
(B + ε)(rε+ (1− r)w2)− (1− r)w2

2

)]
.

We then use the Lagrange theorem (see, e.g., [30]) to establish bounds on the roots of
the polynomial (3.21) as was done in [25]. This theorem says that the largest nonnegative
root of (3.21) is smaller than the sum of the largest and second largest numbers in the
set { j

√
|cj| : j ∈ Jmax}, where {cj : j ∈ Jmax} is the set of negative coefficients of (3.21).

Similarly, the smallest nonpositive root of (3.21) is larger than the sum of the smallest and
second smallest numbers in the set {− j

√
|dj| : j ∈ Jmax} where {dj : j ∈ Jmax} is the set of

negative coefficients of the polynomial

λ4 + d1λ
3 + d2λ

2 + d3λ+ d4 = 0, dj = (−1)jcj for all j.

Let us denote the bounds by

(λmax)
±
j+ 1

2

:= λmax

(
ε±
j+ 1

2

, (w2)
±
j+ 1

2

, (u1)
±
j+ 1

2

, (u2)
±
j+ 1

2

)
,

(λmin)±
j+ 1

2

:= λmin

(
ε±
j+ 1

2

, (w2)
±
j+ 1

2

, (u1)
±
j+ 1

2

, (u2)
±
j+ 1

2

)
.

Then the one-sided local propagation speeds needed to calculate the numerical flux (3.4),
can be estimated by

a+
j+ 1

2

= max
±

{
(λmax)

±
j+ 1

2

, cos θj+ 1
2
(u1)

±
j+ 1

2

, cos θj+ 1
2
(u2)

±
j+ 1

2

, 0
}
,

a−
j+ 1

2

= min
±

{
(λmin)±

j+ 1
2

, cos θj+ 1
2
(u1)

±
j+ 1

2

, cos θj+ 1
2
(u2)

±
j+ 1

2

, 0
}
.

(3.22)

Note that we also impose that the physical speeds of the layers cos θj+ 1
2
(u1,2)

±
j+ 1

2

cannot
exceed the local propagation speeds a±

j+ 1
2

, which is critical for the positivity proof that
follows in Section 3.8.

3.8. Proof of Positivity

Theorem 3.1. Suppose the system (2.2) is numerically solved by the central-upwind semi-
discrete scheme given by (3.16) and (3.4) with (3.14), (3.15), (3.6)–(3.11), and (3.22). As-
sume that the system of ODEs (3.16) is numerically integrated by the forward Euler method
and that for all j, (w1)

n
j := εnj − (w2)

n
j −Bj > 0 and (w2)

n
j > 0.

Then, the depth of each layer remains nonnegative in time; that is, (w1)
n+1
j := εn+1

j −
(w2)

n+1
j − Bj > 0 and (w2)

n+1
j > 0 for all j, provided that ∆t 6 ∆x/(2a(1 + δ)), where

a := maxj{max {a+
j+ 1

2

,−a−
j+ 1

2

}}, δ := maxj{max{δ+j , δ−j }}, and δ±j are

δ+j :=
cos θj+ 1

2

cos θj− 1
2

(cos θj+ 1
2

cos θj− 1
2

− 1
)
, δ−j :=

cos θj− 1
2

cos θj+ 1
2

(
1−

cos θj− 1
2

cos θj+ 1
2

)
. (3.23)
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Central-Upwind Scheme for Submarine Landslides and Generated Tsunami 13

Proof. Applying the forward Euler method to the first and third components of the ODE
system (3.16) results in the following:

εn+1
j = εnj − λ

(
H

(1)

j+ 1
2

−H
(1)

j− 1
2

)
+ ∆tS

(1)

j , (3.24)

(w2)
n+1
j = (w2)

n
j − λ

(
H

(3)

j+ 1
2

−H
(3)

j− 1
2

)
+ ∆tS

(3)

j , (3.25)

where λ := ∆t/∆x and the numerical fluxes are evaluated at time t = tn.
We first show that if the cell averages (w2)

n
j are nonnegative, then the new cell averages

(w2)
n+1
j are also nonnegative. Since, according to (3.1) and (3.4), the third component H(3)

j+ 1
2of the central-upwind numerical flux is given by

H
(3)

j+ 1
2

=
a+
j+ 1

2

(q2)
−
j+ 1

2

(cos θj+ 1
2
)3 − a−

j+ 1
2

(q2)
+
j+ 1

2

(cos θj+ 1
2
)3

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
(w2)

+
j+ 1

2

− (w2)
−
j+ 1

2

]
,

(3.26)
and according to (3.14) the source is given by

S
(3)

j = 2(q2)j cos θj+ 1
2

cos θj− 1
2

cos θj+ 1
2
− cos θj− 1

2

∆x
, (3.27)

we use (3.11), (3.23), (3.26), and (3.27) to rewrite (3.25) as

(w2)
n+1
j =

[1

2
+ λ
{
a−
j− 1

2

(a+
j− 1

2

− cos θj− 1
2
(u2)

+
j− 1

2

a+
j− 1

2

− a−
j− 1

2

)
+ cos θj− 1

2
(u2)

+
j− 1

2

δ+j

}]
(w2)

+
j− 1

2

+
[1

2
− λ
{
a+
j+ 1

2

(cos θj+ 1
2
(u2)

−
j+ 1

2

− a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

)
− cos θj+ 1

2
(u2)

−
j+ 1

2

δ−j

}]
(w2)

−
j+ 1

2

− λa−
j+ 1

2

(a+
j+ 1

2

− cos θj+ 1
2
(u2)

+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

)
(w2)

+
j+ 1

2

+ λa+
j− 1

2

(cos θj− 1
2
(u2)

−
j− 1

2

− a−
j− 1

2

a+
j− 1

2

− a−
j− 1

2

)
(w2)

−
j− 1

2

, (3.28)

where we have used the facts that

(w2)
n
j =

1

2

(
(w2)

+
j− 1

2

+ (w2)
−
j+ 1

2

)
and 2(q2)

n
j =

(
(q2)

+
j− 1

2

+ (q2)
−
j+ 1

2

)
.

We now recall that our piecewise linear reconstruction procedure described in Section 3.3
ensures that all (w2)

±
j± 1

2

> 0. Also, it follows from the formulas for the one-sided local speeds
(3.22) that

a+
j± 1

2

> 0, a−
j± 1

2

6 0, 0 6
cos θj± 1

2
(u2)

−
j± 1

2

− a−
j± 1

2

a+
j± 1

2

− a−
j± 1

2

6 1, 0 6
a+
j± 1

2

− cos θj± 1
2
(u2)

+
j± 1

2

a+
j± 1

2

− a−
j± 1

2

6 1.

Therefore, the last two terms on the right-hand side of (3.28) are nonnegative. The first two
terms on the right-hand side of (3.28) will be nonnegative provided the CFL restriction

λa(1 + δ) 6 1/2, a := max
j

{
max{a+

j+ 1
2

,−a−
j+ 1

2

}
}
, δ := max

j

{
max{δ+j , δ−j }

}
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14 Alexander Kurganov, Jason Miller

is satisfied. This is only a slight modification of the usual CFL restriction λa 6 1/2 because
δ will be very small in all practical applications. Hence, (w2)

n+1
j > 0 for all j, since these

values are linear combinations of nonnegative point values of the reconstruction w̃2 with
nonnegative coefficients.

Next, we show that the cell averages (w1)
n+1
j remain nonnegative if they were nonnegative

at the previous time step. According to (3.1) and (3.4), the first flux component H
(1)

j+ 1
2

is
given by

H
(1)

j+ 1
2

=
a+
j+ 1

2

((q1)
−
j+ 1

2

+ (q2)
−
j+ 1

2

)(cos θj+ 1
2
)3 − a−

j+ 1
2

((q1)
+
j+ 1

2

+ (q2)
+
j+ 1

2

)(cos θj+ 1
2
)3

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
ε+
j+ 1

2

− ε−
j+ 1

2

]
, (3.29)

and according to (3.14) the source is given by

S
(1)

j = S
(3)

j + 2(q1)j cos θj+ 1
2

cos θj− 1
2

cos θj+ 1
2
− cos θj− 1

2

∆x
. (3.30)

Now taking into account that

εnj = (w1)
n
j + (w2)

n
j +Bj =

1

2

(
(w1)

+
j− 1

2

+ (w1)
−
j+ 1

2

)
+

1

2

(
(w2)

+
j− 1

2

+ (w1)
−
j+ 1

2

)
+Bj,

we use (3.11), (3.27), (3.29), and (3.30) to rewrite (3.24) as

εn+1
j = (w2)

n+1 +Bj

+
[1

2
+ λ
{
a−
j− 1

2

(a+
j− 1

2

− cos θj− 1
2
(u1)

+
j− 1

2

a+
j− 1

2

− a−
j− 1

2

)
+ cos θj− 1

2
(u1)

+
j− 1

2

δ+j

}]
(w1)

+
j− 1

2

+
[1

2
− λ
{
a+
j+ 1

2

(cos θj+ 1
2
(u1)

−
j+ 1

2

− a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

)
− cos θj+ 1

2
(u1)

−
j+ 1

2

δ−j

}]
(w1)

−
j+ 1

2

− λa−
j+ 1

2

(a+
j+ 1

2

− cos θj+ 1
2
(u1)

+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

)
(w1)

+
j+ 1

2

+ λa+
j− 1

2

(cos θj− 1
2
(u1)

−
j− 1

2

− a−
j− 1

2

a+
j− 1

2

− a−
j− 1

2

)
(w1)

−
j− 1

2

, (3.31)

where (w2)
n+1
j is defined by (3.28). Therefore, since εn+1

j = (w1)
n+1 +(w2)

n+1 +Bj, we apply
the same argument as for (w2)

n+1
j and conclude that since (w1)

n+1
j are linear combinations of

nonnegative point values of the reconstruction w̃1 with nonnegative coefficients, (w1)
n+1
j > 0

for all j.

Remark 3.2. Theorem 3.1 is still valid if one uses a higher-order SSP ODE solver because
such solvers can be written as a convex combination of forward Euler steps (see [15] for
details).

Remark 3.3. Implementing the friction stage of our operator splitting technique (outlined
in Section 3.18) has no impact on the positivity preserving property of our scheme since
neither ε nor w2 is affected by (3.18)–(3.20).
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4. Numerical Experiments

We have tested the proposed central-upwind scheme on a series of test problems. The first
test problems in Section 4.1 demonstrate the well-balanced property of our scheme, the
problems in Sections 4.2 and 4.3 demonstrate the good agreement between our scheme and
that of [14], and the final example in Section 4.4 tests our scheme on a realistic scale. For
all of the examples, we have set r = 0.2 (as was done in [14]), use the minmod parameter
γ = 1.3, and impose free boundary conditions on both sides of the domain.

4.1. Small Perturbation of Steady State

We first demonstrate the well-balanced property of the scheme by considering a small per-
turbation of the “lake-at-rest” steady state on the domain 0 6 x 6 3 with the bottom
topography function and initial condition as follows:

B(x) =

{
0.05(cos(5π(x− 1)) + 1)− 2, if 0.8 < x < 1.2,

−2, otherwise,
(4.1)

(ε, q1, w2, q2)(x, 0) =


(0, 0, η2(x), 0), if 0.9 < x < 0.95,

(η1, 0, 0, 0), if 2 < x < 2.1,

(0, 0, 0, 0), otherwise.
(4.2)

We will first take η1 = 10−3 and η2(x) ≡ 0, and then take η1 = 0 and η2(x) = −1.9− B(x)
(so that w2 + B ≡ −1.9, a flat perturbation on a sloped bottom). These data are depicted
in Figure 4.

In this example, we take g = 1 and δ0 = 25◦. We compare our new well-balanced scheme
applied to the reformulated system (2.2) to a scheme applied to the original system (1.1) in
which the central-upwind fluxes are used to discretize the convection term on the left and
all of the terms on the right-hand side are discretized in a straightforward manner using the
midpoint rule (we will call this the “non-well-balanced scheme”).

Figure 5 shows how the small perturbation in the water surface initially located near
x = 2 splits into two waves moving in opposite directions. With the non-well-balanced
scheme, some small surface waves are generated over the hump in the bottom and then they
propagate in both directions. The left moving wave from the perturbation reaches the hump
on the bottom at approximately t = 0.6, resulting in some small reflected waves moving
to the right. These waves are slightly larger for the non-well-balanced scheme than for our
new scheme. At the end of the simulation, both schemes have reached steady state, but the
waves over the hump in the bottom persist for the non-well-balanced scheme, resulting in a
steady state that is nonphysical.

Figure 6 shows how the perturbation in the lower layer initially located near x = 1 creates
surface waves. At t = 0.2, the non-well-balanced scheme has already produced oscillations
at the wave fronts as well as over the hump on the bottom. By the end of the simulation,
the non-well-balanced scheme has again reached a nonphysical steady state.

In both of these small perturbation test problems, as the mesh is refined, the solution
computed by the non-well-balanced scheme approaches the physical solution that is captured
by our new well-balanced scheme applied to the reformulated system (2.2) on a coarse grid.
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16 Alexander Kurganov, Jason Miller

Figure 4. Initial data for small perturbation test problems as described by (4.1) and (4.2). For the solutions
shown in Figures 5 and 6, η1 = 10−3 and 0.014 6 η2 6 0.05, so these pictures are not to scale.

Figure 5. Solutions (the water surface) of (1.1) using the non-well-balanced scheme and of (2.2) using
our well-balanced scheme with the same bottom topography and initial data given by (4.1) and (4.2) with
η1 = 10−3 and η2 ≡ 0; ∆x = 1/800. The well-balanced scheme is oscillation-free and results in a physically
relevant steady state whereas the non-well-balanced scheme develops nonphysical oscillations.
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Central-Upwind Scheme for Submarine Landslides and Generated Tsunami 17

Figure 6. Solution (the water surface) of (1.1) using a non-well-balanced scheme and of (2.2) using our
well-balanced scheme with the same bottom topography and initial data given by (4.1) and (4.2) with η1 ≡ 0

and η2−1.9−B(x); ∆x = 1/800. Even though the well-balanced scheme develops small oscillations, it results
in a physically relevant steady state whereas the non-well-balanced scheme produces physically irrelevant
solution.

4.2. Surface Wave Generation

We next consider the first example from [14] which simulates a submarine landslide in a
rectangular channel of length 10 m. The bottom B and the initial data are given by

B(x) = 0.2x− 2.7, (4.3)

(ε, q1, w2, q2)(x, 0) =

{
(0, 0, cos(arctan(0.2)), 0), if 7 < x < 8,

(0, 0, 0, 0), otherwise.
(4.4)

We take g = 9.81 and the Coloumb friction angle δ0 = 25◦ as in [14]. The results of the
simulation are shown in Figure 7. The sediment layer spreads out and slides down the hill,
creating surface waves that travel in both directions and deform together with the bottom
topography. The results are in good agreement with those reported in [14].

In Figure 8, we show the interface between the upper and lower layers at time t = 5, by
which the mass has stopped sliding down the hill. Table 1 shows the errors and convergence
rates of these solutions when comparing to the reference solution, which was computed with
∆x = 10/12800.

4.3. Large-Scale Wave Generation

We next consider the third example from [14] in which more physically relevant initial data
is considered in that the length scales are much greater. We consider a 30 km long domain
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18 Alexander Kurganov, Jason Miller

Figure 7. Time snapshots of the solution (the water surface, sediment layer, and bottom) of (2.2), (4.3),
(4.4) with ∆x = 0.05. The deformation due to gravity in the lower layer creates large waves on the water
surface. The lower layer slides downhill and stops due to friction between the material and the non-erodible
bottom B.

Figure 8. Zoom of the interface between the upper and lower layers at t = 5.0.
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∆x L1-Error Rate

10/100 0.1581 —
10/200 0.1116 0.46
10/400 0.0781 0.57
10/800 0.0502 0.64
10/1600 0.0338 0.57
10/3200 0.0222 0.61

Table 1. Errors and convergence rates of the lower layer in Section 4.2 at time t = 5 using ∆x = 10/12800

to compute the reference solution.

Figure 9. Initial condition and solution at t = 600. The lower layer slides down the hill and stops due to
the friction between the lower layer and non-erodible bottom B. Surface waves cannot be seen at this zoom
level.

with a depth on the order of 1 km. For this simulation we take g = 9.81 and δ0 = 12◦ with
the following bottom topography and initial condition:

B(x) =

{
−10− 490 e−6.1429 (1−x/10000), if x 6 10000,

−2500 + 2000 e−1.5050 (x/10000−1), if x > 10000,
(4.5)

(ε, q1, w2, q2)(x, 0) =
(
0, 0,max

{
−B(x)− 1.8 · 10−4(x− 10000)2, 0

}
, 0
)
. (4.6)

The results obtained by our scheme with ∆x = 30000/500 = 60 are similar to those in
[14]. As Figure 9 shows, the lower layer slides down the hill and stops due to the friction
between the lower layer and the bottom. Surface waves that are small relative to the size
of the domain cannot be seen in Figure 9, but they have been captured and are shown in
Figure 10.

4.4. Tsunami-Like Wave Generation

We next consider a situation in which a steep ridge on the bottom of the water body breaks
off, causing a submarine landslide. For this simulation we take g = 9.81 and δ0 = 35◦. The
bottom topography is given by

B(x) = −3

4
− 1

2

[
1− (2− x)− sgn(2− x)

(
1− (|2− x|c + 1)1/c

)]
, (4.7)

which essentially describes two piecewise constant pieces for x < 1 and x > 3 connected by
a linear piece where the corners are smoothed out (the smoothing parameter is taken to be
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20 Alexander Kurganov, Jason Miller

Figure 10. Zoomed time snapshots of the solution of (2.2) with the initial condition and bottom function
given by (4.6) and (4.5), respectively.

c = 10). The initial condition,

(ε, q1, w2, q2)(x, 0) =

{
(0, 0,max{−1−B(x), 0}, 0), if 0.5 < x < 3.5,

(0, 0, 0, 0), otherwise,
(4.8)

together with the bottom structure (4.7) are shown in Figure 11.
Figure 12 shows how submarine landslide creates surface waves propagating in each direc-

tion. The left-moving wave leaves the domain by t = 5.0 while the right-moving wave moves
over the flat bottom in the characteristic tsunami wave shape. We are able to capture the
surface dynamics even though the waves are small relative to the total water depth. Figure
13 depicts the propagation of this wave over a flat bottom for a long distance. One can see
that the wave is dissipating, suggesting that this model is insufficient for studying long-time
propagation of tsunami-like waves. It is known that tsunami-like waves do not dissipate
and preserve their initial shapes in dispersive models like the Green–Naghdi equations [16]
and their modern counterparts (see, e.g., [2–4, 6, 7] and references therein). We therefore
believe that a plausible approach to modeling tsunami waves generated by submarine land-
slides should be the following one: Use the system (2.2) for modeling the initial stage of the
wave formation and then switch to a dispersive shallow water system to model the long-time
propagation of the generated tsunami-waves.
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Central-Upwind Scheme for Submarine Landslides and Generated Tsunami 21

Figure 11. Bottom topography and initial condition given by (4.7) and (4.8), respectively. There is a small
ridge formed by the sediment layer that deforms and generates small surface waves.

Figure 12. Solution (the water surface) of tsunami-like wave generation simulation at different time levels.
The relatively small submarine landslide creates very small surface waves that are undetectable when zoomed
out. Our new scheme is able to capture the very small wave with characteristic tsunami shape. The solution
is computed on a computational domain 0 < x < 100 using ∆x = 0.25 (the plots are zoomed to 0 6 x 6 30).

Figure 13. The same simulation as in Figure 12, but shown on a larger domain and at later times.
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Figure 14. Bottom topography and initial condition given by (4.9) and (4.10), respectively. There is a
small ridge formed by the sediment layer that deforms and generates small surface waves.

4.5. Large-Scale Tsunami-Like Wave Generation

We again consider a situation in which a ridge on the bottom of the water body breaks off,
causing a submarine landslide. The domain is the interval [0, 500] and we take δ0 = 12◦. In
order to consider this on a large spatial scale (km), we take g = 271008 km/hr2. The bottom
topography is given by

B(x) = −1− 2
[
1− 2(110− x)

10
− sign(110− x)

(
1−

(
1 +

∣∣∣2(110− x)

10

∣∣∣c) 1
c
)]
, (4.9)

which essentially describes two piecewise constant pieces for x < 105 and x > 115 connected
by a linear piece where the corners are smoothed out (the smoothing parameter is again
taken to be c = 10). The initial condition,

(ε, q1, w2, q2)(x, 0) =

{
(0, 0, 0.7 sin((x− 105)π/10), 0), if 105 < x < 115,

(0, 0, 0, 0), otherwise,
(4.10)

together with the bottom structure (4.7) are shown in Figure 11.
Figure 15 shows how submarine landslide creates surface waves propagating in each

direction. The left-moving wave leaves the domain by t = 0.4 while the right-moving wave
moves over the flat bottom in the characteristic tsunami wave shape, size, and speed. We
are able to capture the surface dynamics even though the waves are small relative to the
total water depth.
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