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Abstract. We first conduct a comparative numerical study of two recently
proposed two-species chemotaxis models. We show that different scenarios are

possible: depending on the initial masses, either one or both cell densities may

blow up, or a global solution may exist. In particular, our numerical results
indicate answers on some open questions of possible blow up stated in [4, 7].

We then introduce two regularizations of the studied models and demonstrate

that their solutions are capable of developing spiky structure without blowing
up.

1. Introduction. Chemotaxis is one of the most important mechanism in move-
ment of biological species. It describes a collective movement of cells or biological
species that is oriented towards the chemoattractant gradient. A classical PDE-
based model of chemotaxis, the Patlak-Keller-Segel (PKS) system, was first pro-
posed in [27] and [18, 19]. The classical PKS system as well as its more recent
modifications (see, e.g., [2, 14, 16, 17, 28] and references therein) are capable of
describing the aggregation of biological species and consequently a mechanism for
self-organization of biological systems. In some of the above models, the cell aggre-
gation may lead to a finite time blow-up of the solution provided the total initial
cell mass is above a certain threshold (see [3, 11, 24]). However, the formation of
singularities in the PKS model may be viewed as a purely mathematical artifact.
Many regularized PKS-type systems admit global classical (yet spiky) solutions,
which may better describe the biological aggregation phenomenon (as, e.g., in the
regularized models studied in [2, 23, 26, 29, 33], see also a recent review [14]).
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The aim of this paper is twofold. We first numerically investigate two models
proposed and analytically studied in [4, 5, 6, 7, 8, 9, 20, 34]. The first system reads (ρ1)t + χ1∇ · (ρ1∇c) = µ1∆ρ1,

(ρ2)t + χ2∇ · (ρ2∇c) = µ2∆ρ2,
ct = D∆c+ α1ρ1 + α2ρ2 − βc,

x ∈ Ω ⊂ Rd, t > 0, (1)

where ρ1 and ρ2 denote the cell densities of the first and second species, respectively,
and c is the concentration of the chemoattractant. The positive constants µi, χi, αi
(i = 1, 2) and β are parameters of cell diffusion, chemotactic sensitivities, production
and consumption rates, respectively. Finally, D is the chemoattractant diffusion
coefficient. Throughout the paper we will assume that the second species has larger
chemotactic sensitivity than the first one, that is,

χ1 < χ2.

Since the molecular diffusion is typically much faster than the cell diffusion, that
is, both µ1 � D and µ2 � D, the system (1) can be simplified by assuming that
µi/D ≈ 0, i = 1, 2, which lead to the following system: (ρ1)t + χ1∇ · (ρ1∇c) = µ1∆ρ1,

(ρ2)t + χ2∇ · (ρ2∇c) = µ2∆ρ2,
∆c+ γ1ρ1 + γ2ρ2 − ζc = 0,

x ∈ Ω ⊂ Rd, t > 0. (2)

The models (1) and (2) can be viewed as direct extensions of the PKS system
to the case of the chemotaxis motion of two noncompeting species that produce
the same chemoattractant. As in the case of the classical PKS model, the main
question we numerically investigate is: what are the conditions on initial masses
and chemotactic parameters that determine whether the solution remain smooth
and bounded or it blows up in a finite time? In the latter case, we would also
like to determine whether the cell densities of both species blow up simultaneously
or the cell density of the species with a larger chemosensitivity constant blows up
first. These questions were first raised in [34] and further studied in [4, 5, 7]. More
precisely, it has been proven analytically that depending on a particular set of
parameter values and initial cell densities the solution may be globally regular or
it may blow up within a finite time. However, in some cases, the theory fails to
predict the behavior of the solution. Our numerical simulations indicate answers to
some of these open questions.

The second main goal of our paper is to present and study two regularizations
of (1). The first regularized system reads (ρ1)t + ∇ · (ρ1Q1(χ1∇c)) = µ1∆ρ1,

(ρ2)t + ∇ · (ρ2Q2(χ2∇c)) = µ2∆ρ2,
ct = D∆c+ α1ρ1 + α2ρ2 − βc,

x ∈ Ω ⊂ Rd, t > 0, (3)

where the functions Q1 and Q2 are smooth saturated chemotactic fluxes Qi(u1, . . . ,

ud) = Qi(u) =
(
Q

(1)
i (u), . . . , Q

(d)
i (u)

)
that satisfy the following properties:

Qi(0) = 0, |Q(j)
i | ≤ C

j
i ,

∂Q
(j)
i

∂uj
> 0 ∀u, ∀i = 1, 2; j = 1, . . . , d, (4)

where Cji are constants. This regularization is similar to the one proposed in [2] for
the PKS system. It is based on a fundamental biological property of the chemotactic
flux—its boundedness (this feature is almost always lost in weakly nonlinear, small
gradients expansions, underlying the derivation of most continuum models). The
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synthesized form of the saturated fluxes a function, which has the following universal
features: It is linear at small gradients of c and is bounded at large gradients of
c. There is a certain arbitrariness in the choice of the chemotactic flux functions
Qi. A typical example of saturated chemotactic fluxes, which is used in all of our
numerical experiments, is for i = 1, 2

Qi(χi∇c) =


χi∇c, if χi|∇c| ≤ s∗i ,(

χi|∇c| − s∗i√
1 + (χi|∇c| − s∗i )2

+ s∗i

)
∇c
|∇c|

, otherwise,
(5)

where s∗i are switching parameters, which define small gradient values, for which the
system (3) reduces to the original system (1) (or (2)) so that the effect of saturated
chemotactic flux is felt at large gradient regimes only. This is expected to result in
solutions which are spiky but yet bounded for all times.

The second regularized system,
(ρ1)t + χ1∇ ·

( ρ1

1 + κρ1
∇c
)

= µ1∆ρ1,

(ρ2)t + χ2∇ ·
( ρ2

1 + κρ2
∇c
)

= µ2∆ρ2,

ct = D∆c+ α1ρ1 + α2ρ2 − βc,

x ∈ Ω ⊂ Rd, t > 0, (6)

is similar to the density-dependent regularization from [31, 32]. Here, κ is a (small)
regularization parameter and κ → 0 leads to the original system (1). As in the
single species case [13, 31], one expects a global classical solution of (6) to exist. At
the same time, we will numerically demonstrate that the solutions of (6) typically
have spiky structure and thus the system (6) can be used to model the aggregation
phenomenon.

Throughout the paper, we will consider the systems (1), (2), (3) and (6) subject
to the initial conditions ρ1(x, 0) = ρ0

1(x) ≥ 0, ρ2(x, 0) = ρ0
2(x) ≥ 0, c(x, 0) = c0(x)

and the homogeneous Neumann boundary conditions. These boundary conditions
are zero-flux conditions for the cell densities, which guarantee mass conservation.

The present paper will be organized as follows. In Section 2, we prove a-priori
estimates for the regularized system (3). Section 3 is devoted to the description of
the numerical method, which is a modification of the second-order positivity pre-
serving upwind scheme from [1, 2]. Finally, Section 4 is devoted to the presentation
and discussion of our numerical simulations.

2. L∞ bounds via Moser-Alikakos iteration. Let us consider the original
initial-boundary value problem (IBVP) for the system (3):

(ρ1)t + ∇ · (ρ1Q1(χ1∇c)) = µ1∆ρ1, x ∈ ∂Ω, t > 0,
(ρ2)t + ∇ · (ρ2Q2(χ2∇c)) = µ2∆ρ2, x ∈ ∂Ω, t > 0,
ct = D∆c+ α1ρ1 + α2ρ2 − βc, x ∈ ∂Ω, t > 0,
ρi(x, 0) = ρ0

i (x), c(x, 0) = c0(x), x ∈ ∂Ω, i = 1, 2,
∂ρ1

∂n
=
∂ρ2

∂n
=

∂c

∂n
= 0, x ∈ ∂Ω, t > 0,

(7)

where ∂Ω is a Lipschitz continuous boundary with the outer normal n.
In this section, we will prove a-priori estimates for positive solutions of (7). The

following result is a generalization of analogous result for the one-species chemotaxis
system from [2].
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Theorem 2.1. Let (ρ1(x, t), ρ2(x, t), c(x, t)) be a positive classical solution of the
IBVP (7) with bounded nonnegative initial data. Then, for all x ∈ Ω̄ and t ≥ 0,

ρ1(x, t) ≤ C
(

1 +
C1

µ1

)d
max

{
‖ρ0

1‖L∞(Ω), ‖ρ0
1‖L1(Ω)

}
, (8)

ρ2(x, t) ≤ C
(

1 +
C2

µ2

)d
max

{
‖ρ0

2‖L∞(Ω), ‖ρ0
2‖L1(Ω)

}
, (9)

c(x, t) ≤ ‖c0‖L∞(Ω)

+C

(
β

α1

(
1 +

C1

µ1

)d
+

β

α2

(
1 +

C2

µ2

)d)
max
i=1,2

{
‖ρ0
i ‖L∞(Ω), ‖ρ0

i ‖L1(Ω)

}
,(10)

where C = C(d,Ω) is a constant, which depends on d and Ω only, and Ci =

maxj C
(j)
i , i = 1, 2.

Proof. We begin by multiplying the density equations in (7) by ρs−1
1 and ρs−1

2

(s ≥ 2), respectively. Then, integrating by parts, applying the chain rule, using the
boundedness of |Qi| and the inequality (see [2, 21])

‖u‖2L2(Ω) ≤ ε‖∇u‖
2
L2(Ω) +K

(
1 + ε−

d
2

)
‖u‖2L1(Ω) (11)

with a suitable ε yields the following estimates:

1

s

d

dt

∫
Ω

ρsi dx = −µi
∫
Ω

∇ρi · ∇
(
ρs−1
i

)
dx +

∫
Ω

ρiQi(χi∇c) · ∇
(
ρs−1
i

)
dx

≤ −4µi(s− 1)

s2

∫
Ω

∣∣∣∇(ρ s
2
i

)∣∣∣2 dx +
2Ci(s− 1)

s

∫
Ω

ρ
s
2
i

∣∣∣∇(ρ s
2
i

)∣∣∣ dx
≤ −4µi(s− 1)

s2

∫
Ω

∣∣∣∇(ρ s
2
i

)∣∣∣2 dx +
Ci(s− 1)

s

∫
Ω

( 2µi
Cis

∣∣∣∇(ρ s
2
i

)∣∣∣2 +
Cis

2µi
ρsi

)
dx

≤ −2µi(s− 1)

s2

∫
Ω

∣∣∣∇(ρ s
2
i

)∣∣∣2 dx +
C2
i (s− 1)

2µi

∫
Ω

ρsi dx, i = 1, 2. (12)

The last term in (12) is estimated using the inequality (11) with u = ρ
s
2
i and ε such

that
C2

i (s−1)
2µi

= 2µi(s−1)
s2ε − C2

i (s−1)
2µi

⇐⇒ ε = 2( µi

Cis
)2.

This results in

C2
i (s− 1)

2µi

∫
Ω

ρsi dx =
2µi(s− 1)

s2ε

∫
Ω

ρsi dx−
C2
i (s− 1)

2µi

∫
Ω

ρsi dx

≤ 2µi(s− 1)

s2

∥∥∥∇(ρ s
2
i

)∥∥∥2

L2(Ω)
+

2µi(s− 1)K(1 + ε−
d
2 )

s2ε

∥∥∥ρ s
2
i

∥∥∥2

L1(Ω)

−C
2
i (s− 1)

2µi

∫
Ω

ρsi dx. (13)

Substituting (13) into (12), we obtain

d

dt

∫
Ω

ρsi dx ≤ −
C2
i s(s− 1)

2µi

∫
Ω

ρsi dx +
C2
i s(s− 1)K

(
1 +

(
sCi√
2µi

)d )
µi

(∫
Ω

ρ
s
2
i dx

)2

.
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We then fix T ∈ (0,∞), multiply both sides of the last inequality by the integrating
factor eκt, where κ := C2

i s(s − 1)/(2µi), and integrate over the time interval [0, t]
for t ∈ [0, T ] to obtain∫

Ω

ρsi (x, t) dx ≤
∫
Ω

(ρ0
i )
s(x) dx + 2K

(
1 +

sCi
µi

)d
sup

0≤t≤T

(∫
Ω

ρ
s
2
i (x, t) dx

)2

. (14)

Let us now define the function

Mi(s) := max

{
‖ρ0
i ‖L∞(Ω), sup

0≤t≤T

(∫
Ω

ρsi dx

) 1
s

}
, (15)

which satisfies (from (14)):

Mi(s) ≤

(
K̃

(
1 +

sCi
µi

)d) 1
s

Mi(s/2), ∀s ≥ 2,

where the constant K̃ depends on d and Ω only. Taking s = 2k, k = 1, 2, . . . and
applying the above inequality recursively we obtain

Mi(2
k) ≤ C(1 + Ciµi)

dMi(1),

where C = C(d,Ω). Now letting k →∞, we conclude that

‖ρi(·, t)‖L∞(Ω) ≤ C
(

1 +
Ci
µi

)d
Mi(1), ∀t ≥ 0. (16)

Finally, we note the total mass of the cells remains constant in time (this can be
verified by integrating the density equations in (7) over Ω), and therefore

Mi(1) = max
{
‖ρ0
i ‖L∞(Ω), ‖ρ0

i ‖L1(Ω)

}
, i = 1, 2, (17)

and the estimate (8) for the cell densities ρi(x, t) follows from (16), (17).
Let us denote by M(1) := maxi=1,2 (M1(1),M2(1)) . In order to obtain a bound

on chemoattractant concentration c(x, t), we compare it with the solution of the
following initial value problem (IVP):

dw

dt
= −βw + C

(
α1

(
1 +

C1

µ1

)d
+ α2

(
1 +

C1

µ1

)d)
M(1),

w(0) = ‖c0‖L∞(Ω).

The comparison principle then yields

0 ≤ c(x, t) ≤ w(t)

= e−βt‖c0‖L∞(Ω) + C
(
1− e−βt

)(α1

β

(
1 +

Ci
µi

)d
+
α1

β

(
1 +

Ci
µi

)d)
M(1)

≤ ‖c0‖L∞(Ω)

+ C

(
α1

β

(
1 +

C1

µ1

)d
+
α2

β

(
1 +

C2

µ2

)d)
max
i=1,2

{
‖ρ0
i ‖L∞(Ω), ‖ρ0

i ‖L1(Ω)

}
, (18)

which completes the proof of Theorem 2.1.
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Remark 1. An alternative L∞ bounds on ρ1 and ρ2 can be obtained using the
results from [15]. However, the estimates (8) and (9) explicitly show the dependence
of the bounds on the number of dimensions d and the viscosity coefficients µ1 and
µ2.

Remark 2. Note that using the L∞-bounds established in Theorem 2.1, parabolic
boundary Lp-estimates and Schauder estimates (see, e.g., [21]), one can obtain that
(ρ1)t, (ρ2)t, ct and all spatial partial derivatives of ρ1, ρ2 and c up to order two are
bounded on Ω̄× [0,∞). This will lead to a global existence result similar to the one
established in [2] for the one-species chemotaxis system. As it has been illustrated
by our numerical experiments (shown in Section 4), the regularized solution while
being bounded for all times, may develop spiky (even multi-spiky) structures that
model aggregation phenomena.

3. Numerical scheme. The numerical results presented in this paper are obtained
using a second-order positivity preserving upwind scheme, which is a rather straight-
forward extension of the hybrid finite-volume-finite-difference scheme developed in
[1, 2] for the single species chemotaxis models. In this section, we briefly describe
the scheme for the two-species chemotaxis system (ρ1)t +∇ ·

(
g(ρ1)Q1(χ1∇c)

)
= µ1∆ρ1,

(ρ2)t +∇ ·
(
g(ρ2)Q2(χ2∇c)

)
= µ2∆ρ2,

εct = D∆c+ α1ρ1 + α2ρ2 − βc,
(19)

where ε = 0 or ε = 1 and the functions g, Q1 and Q2 may be either linear or
nonlinear so that the system (19) reduces to either (1), (2), (3) or (6).

We introduce a Cartesian mesh consisting of the uniform cells Cj,k = [xj− 1
2
, xj+ 1

2
]

× [yk− 1
2
, yk+ 1

2
] of the size ∆x∆y centered at (xj , yk). The computed quantities are

the cell averages of cell densities ρi,

(ρ̄i)j,k(t) ≈ 1

∆x∆y

∫∫
Cj,k

ρi(x, y, t) dxdy,

and the point values of the chemoattractant concentration c, cj,k(t) ≈ c(xj , yk, t),
which are evolved in time according to the semi-discrete scheme:

d(ρ̄i)j,k
dt

= −
(Hi)

x
j+ 1

2 ,k
− (Hi)

x
j− 1

2 ,k

∆x
−

(Hi)
y

j,k+ 1
2

− (Hi)
y

j,k− 1
2

∆y

+ µi

(
(ρ̄i)j−1,k − 2(ρ̄i)j,k + (ρ̄i)j+1,k

(∆x)2

+
(ρ̄i)j,k−1 − 2(ρ̄i)j,k + (ρ̄i)j,k+1

(∆y)2

)
, i = 1, 2,

ε
dcj,k
dt

= D

(
cj−1,k − 2cj,k + cj+1,k

(∆x)2
+
cj,k−1 − 2cj,k + cj,k+1

(∆y)2

)
+ α1(ρ̄1)j,k + α2(ρ̄2)j,k − βcj,k.

(20)
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Here, (Hi)
x
j+ 1

2 ,k
and (Hi)

y

j,k+ 1
2

are the following upwind numerical fluxes:

(Hi)
x
j+ 1

2 ,k
= (gi)j+ 1

2 ,k
Q

(1)
i

(
χi
cj+1,k − cj,k

∆x

)
,

(Hi)
y

j,k+ 1
2

= (gi)j,k+ 1
2
Q

(2)
i

(
χi
cj,k+1 − cj,k

∆y

)
,

(21)

where Q
(1)
i and Q

(2)
i are the components of the vector function Qi (see (4)) and

(gi)j+ 1
2 ,k

=

 g
(

(ρi)
E
j,k

)
, if Q

(1)
i

(
χi
cj+1,k − cj,k

∆x

)
> 0,

g
(

(ρi)
W
j+1,k

)
, otherwise,

(gi)j,k+ 1
2

=

 g
(

(ρi)
N
j,k

)
, if Q

(2)
i

(
χi
cj,k+1 − cj,k

∆y

)
> 0,

g
(

(ρi)
S
j,k+1

)
, otherwise.

The point values (ρi)
E (W,N,S)
j,k are obtained using the piecewise linear reconstruction

(ρ̃i)(x, y) = (ρ̄i)j,k + ((ρi)x)j,k(x− xj) + ((ρi)y)j,k(y − yk), (x, y) ∈ Cj,k,
with the slopes ((ρi)x)j,k and ((ρi)y)j,k calculated using the minmod2 limiter (see,
e.g., [22, 25, 30]):

((ρi)x)j,k = minmod

(
2

(ρ̄i)j+1,k − (ρ̄i)j,k
∆x

,
(ρ̄i)j+1,k − (ρ̄i)j−1,k

2∆x
,

2
(ρ̄i)j,k − (ρ̄i)j−1,k

∆x

)
,

((ρi)y)j,k = minmod

(
2

(ρ̄i)j,k+1 − (ρ̄i)j,k
∆y

,
(ρ̄i)j,k+1 − (ρ̄i)j,k−1

2∆y
,

2
(ρ̄i)j,k − (ρ̄i)j,k−1

∆y

)
,

where the minmod function is defined by

minmod(z1, z2, . . . , zm) :=

 min(z1, z2, . . . , zm), if z` > 0 ∀` = 1, . . . ,m,
max(z1, z2, . . . , zm), if z` < 0 ∀` = 1, . . . ,m,
0, otherwise.

Thus, we have for i = 1, 2

(ρi)
E
j,k = (ρ̃i)(xj+ 1

2
, yk), (ρi)

W
j,k = (ρ̃i)(xj− 1

2
, yk),

(ρi)
N
j,k = (ρ̃i)(xj , yk+ 1

2
), (ρi)

S
j,k = (ρ̃i)(xj , yk− 1

2
).

Remark 3. Notice that in the above formulae, the quantities (ρ̄i)j,k, cj,k, (Hi)
x
j+ 1

2 ,k
,

(Hi)
y

j,k+ 1
2

, (ρi)j+ 1
2 ,k

, (ρi)j,k+ 1
2
, (ρi)

E (W,N,S)
j,k , ((ρi)x)j,k, ((ρi)y)j,k and the functions

(ρ̃i)(x, y), i = 1, 2 depend on time, but we suppress this dependence for brevity.

If ε = 1, then the semi-discrete scheme (20) is a system of time-dependent ODEs,
which has to be integrated numerically using a stable and accurate ODE solver. In
this paper, we have used the third-order strong stability preserving (SSP) Runge-
Kutta method from [10]. The efficiency of the fully discrete method can be improved
by applying an SSP implicit-explicit Runge-Kutta method (see, e.g., [12] and refer-
ences therein), as discussed in [1].



138 ALEXANDER KURGANOV AND MÁRIA LUKÁČOVÁ-MEDVIĎOVÁ

If ε = 0, then the last equation in (19) becomes an elliptic equation for c, and
consequently the last equation in (20) becomes a system of linear algebraic equa-
tions. This system has to be solved using a proper linear algebra solver. One time
step of the resulting algorithm will then consist of an explicit time advance of ρ1

and ρ2 followed by solving the last equation in (20) for c using the values of ρ1 and
ρ2 from the new time level.

4. Numerical experiments. In this section, we present the results of our numer-
ical experiments that clarify the behavior of the solutions of the studied two-species
chemotaxis systems in two space dimensions. We restrict our consideration to the
two-dimensional (2-D) case since the theoretical results/open questions in [4, 5, 7]
were obtained/formulated for the 2-D version of the system (2).

In all of the examples below, we take α1 = α2 = β = γ1 = γ2 = ζ = 1.

4.1. Parabolic-elliptic systems. We first consider the parabolic-elliptic system
(2) and its regularization with a bounded chemotaxis fluxes (with Q1 and Q2 sat-
isfying (4)):  (ρ1)t + ∇ · (ρ1Q1(χ1∇c)) = µ1∆ρ1,

(ρ2)t + ∇ · (ρ2Q2(χ2∇c)) = µ2∆ρ2,
∆c+ γ1ρ1 + γ2ρ2 − ζc = 0.

(22)

Without loss of generality we set µ2 = 1. We denote by θ1 and θ2 the initial masses

θ1 :=

∫
Ω

ρ1(x, t) dx =

∫
Ω

ρ0
1(x) dx, θ2 :=

∫
Ω

ρ2(x, t) dx =

∫
Ω

ρ0
2(x) dx.

Following [4, 7], we split the (θ1, θ2)-plane into the following four regions, outlined
in Figure 1:

• Region A:
8πµ1θ1

χ1
+

8πθ2

χ2
− (θ1 + θ2)2 ≥ 0 and θ2 ≤

8π

χ2
;

• Region B:
8πµ1θ1

χ1
+

8πθ2

χ2
− (θ1 + θ2)2 ≥ 0 and θ2 ≥

8π

χ2
;

• Region C: θ1 + θ2 ≤
8π

χ1
and

8πµ1θ1

χ1
+

8πθ2

χ2
− (θ1 + θ2)2 ≤ 0;

• Region D: θ1 + θ2 >
8π

χ1
.

In [4, 7], the following results were proved for the 2-D IVP for the parabolic-
elliptic system (2) with γ1 = γ2 = ζ = µ2 = 1:

• There is a global classical solution in Region A (the proof is based on the energy
functions that provide a-priori estimates for the entropy of (2));

• In Region C, ρ2 blows up faster than ρ1;

• In Region D, ρ1 and ρ2 blow up at the same rate.

The question on the solution behavior in Region B remains open and we inves-
tigate it numerically. We study the systems (2) and (22) on a large square domain
(either [−1.5, 1.5]× [−1.5, 1.5] or [−3, 3]× [−3, 3]) and use the Neumann boundary
conditions, which are typically used to represent open boundary conditions on trun-
cated computational domains. In none of the numerical examples reported below,
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8πµ1

χ1

8πµ1

χ2

8π

θ2

D
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C

B

Figure 1. Four different regions in the (θ1, θ2)-plane.

the solution behavior was affected by the boundary conditions, that is, all of the
numerical solutions remain flat near the boundaries. This makes us to believe that
the solution in R2 should behave similarly.

4.1.1. The original system (2).
Example 1. Global existence in Region A.. We first consider the system (2) with
χ1 = 1, χ2 = 10, µ1 = 1, and subject to the following initial data:

ρ1(x, y, 0) ≡ ρ2(x, y, 0) = 50 e−100(x2+y2). (23)

As one can see in Figure 2, the magnitude of both ρ1 and ρ2 decays and the solution
remains smooth and bounded.

Figure 2. Example 1: ρ1 and ρ2 at time t = 0.05, computed on
the 200× 200 uniform mesh.

Example 2. Different types of blow-up of ρ1 and ρ2 in Region B.. We now consider
the system (2) with χ1 = 1, χ2 = 20, µ1 = 1, and subject to the same, radially
symmetric initial data (23). Figure 3 suggests that ρ2 blows up while ρ1 remains
bounded. Moreover, the magnitude of ρ1 seems to decay in time.

However, this would contradict the analytical results on simultaneous blow-up in
Region B proved in [5, 7] for radially symmetric initial data. We therefore perform
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Figure 3. Example 2: ρ1 and ρ2 at time t = 0.05, computed on
the 400× 400 uniform mesh.

a mesh refinement study to carefully monitor the behavior of maxΩ ρ1(x, y, 0.05)
and maxΩ ρ2(x, y, 0.05) as a function of N , where the computational grid is N ×N .
The dependence of maxΩ ρ1(x, y, 0.05) on N together with the algebraic function
ξ1(N) = 1.266(2N + 10)1/4 are shown in Figure 4 (left). This results indicate that
ρ1 still blows up, but does not develop a δ-type singularity and therefore its blow-up
is extremely hard to verify numerically.

In contrast, ρ2 collapses to a δ-function as indicated in Figure 4 (right), where
we plot maxΩ ρ2(x, y, 0.05) as a function of N together with the quadratic function
ξ2(N) = 0.0266(N − 8)2. Note that this quadratic increase indeed reflects a δ-
type singularity since using either a finite-volume, finite-difference or finite-element
method 2-D δ-functions can only be resolved so that

max
j,k

(ρ2)j,k ∼
1

∆x∆y
.
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Figure 4. Example 2: max
(x,y)∈Ω

ρ1(x, y, 0.05) together with ξ1(N) =

1.266(2N + 10)1/4 (left) and max
(x,y)∈Ω

ρ2(x, y, 0.05) together with

ξ2(N) = 0.0266(N − 8)2 (right) as functions of N .
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Example 3. Blow-up of ρ1 and ρ2 with non-radial initial data in Region B.. The
theoretical blow-up results for Region B reported in [5, 7] only apply to radially
symmetric initial data. However, behavior of solutions with non-radially symmetric
initial data is still an open problem. In order to numerically investigate this case
we take the following initial data:

ρ1(x, y, 0) = 12.5 e−100(x2/16+y2), ρ2(x, y, 0) = 12.5 e−100(x2+y2/16), (24)

and numerically solve the IVP (2), (24) with χ1 = 1, χ2 = 20 and µ1 = 1 in the
domain Ω = [−3, 3]× [−3, 3]. The results obtained using a uniform 400× 400 mesh
are shown in Figure 5. They are quite similar to the corresponding results obtained
in the radially symmetric case, see Figure 3.

Figure 5. Example 3: ρ1 and ρ2 at time t = 0.15, computed on
the 400× 400 uniform mesh.

To better understand the difference in the behavior of ρ1 and ρ2, we perform
a mesh refinement study similar to the one conducted in Example 2. The results
shown in Figure 6 support the conjecture that non-radially symmetric initial data
from Region B lead to the same different types of blow-up as in the radially sym-
metric case.
Example 4. ρ2 blows up faster than ρ1 in Region C.. Next, we consider the system
(2) with χ1 = 6, χ2 = 100, µ1 = 1, and subject to the following initial data:

ρ1(x, y, 0) = 10 e−100(x2+y2), ρ2(x, y, 0) = 90 e−100(x2+y2).

Figure 7 shows that both ρ2 and ρ1 blow up, while c stays bounded. One can also
observe that ρ2 seems to blow up faster than ρ1. To verify this, we perform the
mesh refinement study and plot the results obtained on the 200×200 and 400×400
uniform grids at the same time t = 0.007. As one can see, the magnitude of ρ2

increases by a factor of about 4 (from 8.9258 · 103 to 3.2590 · 104), which clearly
indicates that by this time ρ2 has already blown up. At the same time, ρ1 increases
only by a factor of about 2 (from 55.9119 to 105.1929), which means that ρ1 is
going to blow up a little later. Notice that this numerical experiment confirms the
analytical result from [4, 5, 7].

Remark 4. We have conducted more numerical experiments (not reported here for
the sake of brevity) that confirm the analytical results from [4, 7]: global existence
of the solution in Region A as well as simultaneous blow-up in Region D.
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Figure 6. Example 3: max
(x,y)∈Ω

ρ1(x, y, 0.15) together with η1(N) =

0.429(2N + 10)1/4 (left) and max
(x,y)∈Ω

ρ2(x, y, 0.15) together with

η2(N) = 0.0263(N − 8)2 (right) as functions of N .

4.1.2. The regularized system (22).
Example 5. Region B, regularized solution. We now consider the system (22), (5)
with s∗1 = s∗2 = 20 and the same data as in Example 2. A mesh refinement study
presented in Figure 8 clearly demonstrates that saturated chemotaxis flux prevents
blow-up of ρ2 though a spiky structure is developed.
Example 6. Region C, regularized solution. Here, we consider the regularized
system (22), (5) with s∗1 = s∗2 = 20 and the same data as in Example 4. The
obtained solution is shown in Figure 9, where one can see a spiky structure in
both density components. Note that while the magnitude of ρ2 has increased, the
magnitude of ρ1 has slightly decreased. A mesh refinement study (not presented
here for the sake of brevity) indicates that unlike the solution of the original system
(2) (shown in Example 4), the solution of the regularized system (22) does not blow
up. Moreover, by the time t = 0.05 the regularized solution has already reached its
(numerical) steady state.

4.2. Parabolic systems. In this section, we numerically study behavior of so-
lutions of the parabolic system (1) and its two regularizations (3) and (6). In the
parabolic case, no analytical results that could have split the (θ1, θ2)-plane into par-
ticular regions (as it has been done in the parabolic-elliptic case in Section 4.1) are
available. However, one can expect the solutions of the parabolic system to behave
rather similarly to the solutions of the parabolic-elliptic systems, especially when
µ1/D and µ2/D are small (in all of our numerical experiments, we take µ1 = µ2 = 1
and D = 10).

As in Section 4.1, we perform the numerical experiments on a large square domain
(either [−1.5, 1.5] × [−1.5, 1.5] or [−3, 3] × [−3, 3] or [0, 10] × [0, 10]) and use the
Neumann boundary conditions.

4.2.1. The original system (1).
Example 7. Global existence. We first consider the system (1) with χ1 = 1, χ2 = 5,
and subject to the following initial data:

ρ1(x, y, 0) ≡ ρ2(x, y, 0) = 500 e−100(x2+y2), c(x, y, 0) ≡ 1. (25)
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Figure 7. Example 4: ρ1, ρ2 and c at time t = 0.007, computed
on the 200× 200 (left) and 400× 400 (right) uniform meshes.

Our numerical experiments suggest that the solution of this IBVP remains smooth
and bounded, and the magnitude of both ρ1 and ρ2 monotonically decays in time.
A snapshot of the computed solution at time t = 0.01 is plotted in Figure 10.

We then double the chemotactic sensitivity of the second species and take χ2 =
10. This leads to the nonmonotone behavior of ρ2: Its magnitude first increases,
but then starts decreasing and by time t = 0.05 (see Figure 11) the solution looks
similar to the one obtained with χ2 = 5 (the only difference is that the ratio between
the maximum values of ρ2 and ρ1 is now about 3 times larger.
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Figure 8. Example 5: ρ1 and ρ2 at time t = 0.05, computed on
the 200× 200 (left) and 400× 400 (right) uniform meshes.

Figure 9. Example 6: ρ1 and ρ2 at time t = 0.05, computed on
the 200× 200 uniform mesh.

Example 8. ρ2 blows up faster than ρ1. Next, we consider the system (1) subject
to the same initial data (25), but with much larger chemotactic sensitivity constants
χ1 = 5 and χ2 = 60. Figure 12 shows that both ρ2 and ρ1 blow up, but ρ2 blows up
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Figure 10. Example 7: ρ1 and ρ2 at time t = 0.01, computed for
χ1 = 1, χ2 = 5 in the domain [−1.5, 1.5] × [−1.5, 1.5] using the
200× 200 uniform mesh.

Figure 11. Example 7: ρ1 and ρ2 at time t = 0.05, computed for
χ1 = 1, χ2 = 10 in the domain [−3, 3]× [−3, 3] using the 400× 400
uniform mesh.

faster than ρ1 as it is confirmed by the performed mesh refinement study. As one
can see, when the mesh size is doubled, the magnitude of ρ2 increases by a factor
of about 4 (from 4.5158 · 104 to 1.8027 · 105), which clearly indicates that by this
time ρ2 has already blown up. At the same time, ρ1 increases only by a factor of
less than 2 (from 1.5263 · 103 to 2.8660 · 103), which means that ρ1 is going to blow
up a little later.
Example 9. Blow-up of large initial data. In this example, we take much larger
initial data,

ρ1(x, y, 0) ≡ ρ2(x, y, 0) = 5000 e−100(x2+y2), c(x, y, 0) ≡ 1, (26)

and the same chemotactic sensitivity constants χ1 = 5 and χ2 = 60. As it can be
seen in Figure 13, both ρ1 and ρ2 blow up now much faster than in Example 8.



146 ALEXANDER KURGANOV AND MÁRIA LUKÁČOVÁ-MEDVIĎOVÁ

Figure 12. Example 8: ρ1, ρ2 at time t = 0.001, computed on the
200× 200 (left) and 400× 400 (right) uniform meshes.

4.2.2. The regularized systems (3) and (6).
Example 10. Spiky solutions—no blow-up. We now study the behavior of the
solutions of the regularized systems (3) and (6) subject to the same initial data
(26) as in Example 9. We first compute the solution of the system (3), (5) with
s∗1 = s∗2 = 20. As one can see in Figure 14, both ρ1 and ρ2 increase and the
spikes are formed (notice that they have about the same magnitude even though
χ2 is much larger than χ1: this is an effect of the regularization). However, the
mesh refinement study clearly demonstrates that the solution has not blown up.
Our further numerical studies indicate that the obtained spiky solution is a steady
state: it does not change as the time increases.

The solution of the second regularized system (6) with κ = 0.01 is shown in
Figure 15. As one can clearly see, this regularized solution does not blow up as
well. However, it behaves differently: by the time t = 0.01, maxΩ ρ2 has increased,
while maxΩ ρ1 has decreased. As in the previous case, the obtained solution is a
numerical steady state.

We finally decrease the regularization parameter and take κ = 0.001. The ob-
tained solution, plotted in Figure 16, is spiky, but bounded. Notice that now both
ρ1 and ρ2 increase, but maxΩ ρ2 is still about 5 times larger than maxΩ ρ1.
Example 11. Multi-spiky solutions. In the last example, we take noisy initial data,

ρ1(x, y, 0) ≡ ρ2(x, y, 0) = 10(1 + σ), c(x, y, 0) ≡ 1, (27)
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Figure 13. Example 9: ρ1 and ρ2 at time t = 0.0002, computed
on the 200× 200 (left) and 400× 400 (right) uniform meshes.

Figure 14. Example 10: Solutions (ρ1 and ρ2) of (3), (5), (26)
with s∗1 = s∗2 = 20 at time t = 0.01, computed on the 200 × 200
uniform mesh.
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Figure 15. Example 10: Solutions (ρ1 and ρ2) of (6), (26) with
κ = 0.01 at time t = 0.01, computed on the 400 × 400 (left) and
800× 800 (right) uniform meshes.

where σ is a random variable uniformly distributed on [0, 1]. The solutions of both
the first regularized system (3), (5) with s∗1 = s∗2 = 20 (see Figure 17, left) and
the second regularized system (6) with κ = 0.01 (see Figure 17, right) develop a
complicated multi-spiky structures. In both cases, the multi-spiky solutions are
numerical steady states.

5. Conclusions. In this paper, we have presented a comprehensive numerical
study of several two-species chemotaxis Patlak-Keller-Segel type models. We have
considered both the parabolic-elliptic as well as the fully parabolic systems. The
simplest (yet very challenging for rigorous mathematical analysis) parabolic-elliptic
case has been analytically studied in [4, 7]. It has been proven there that under cer-
tain conditions on the initial cell densities and chemotactic sensitivity coefficients
the system admits global regular solutions, while under a different set of condi-
tions the densities of both species will simultaneously blow up within a finite time.
If none of those conditions is satisfied, the question of global existence vs. finite
time blow-up remains open. The aim of the present paper has been to present an
extensive numerical study of possible configurations and indicate answers to some
open questions posted in [4, 7]. More precisely, we have demonstrated that for the
parabolic-elliptic system the following 3 scenarios are possible: a global solution
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Figure 16. Example 10: Solutions (ρ1 and ρ2) of (6), (26) with
κ = 0.001 at time t = 0.01, computed on the 200 × 200 (left) and
400× 400 (right) uniform meshes.

may exist, the density of one species may blows up faster than the density of the
second species, both densities may blow up simultaneously.

In the fully parabolic case, the situation is more complicated and a complete
identification of the corresponding conditions for the initial data and parameters is
not yet available. Nevertheless, we have demonstrated that the same 3 scenarios
are still possible.

Since blow up of the solution can be viewed as a purely mathematical artifact
of the classical Patlak-Keller-Segel type models, we have also studied two different
regularizations that yield spiky but bounded solutions. We have derived a-priori
estimates that confirm that the solutions of the regularized system indeed remain
bounded. We have also conducted a number of numerical experiments to study
behavior of the obtained spiky solutions.

Acknowledgments. The main part of the research was conducted during the Sum-
mer of 2011, when the first authors visited the Institute of Mathematics, University
of Mainz. The first author would like to thank the faculty and staff for their support
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Figure 17. Example 11: Solutions (ρ1, ρ2 and c) of (3), (5), (27)
with s∗1 = s∗2 = 20 (left) and of (6), (27) with κ = 0.01 (right),
computed at time t = 0.5 on the 200× 200 uniform mesh. χ1 = 5,
χ2 = 60.
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