
J Sci Comput
DOI 10.1007/s10915-012-9677-5

A Well-Balanced Reconstruction of Wet/Dry Fronts
for the Shallow Water Equations

Andreas Bollermann · Guoxian Chen ·
Alexander Kurganov · Sebastian Noelle

Received: 15 July 2012 / Revised: 14 November 2012 / Accepted: 20 December 2012
© Springer Science+Business Media New York 2013

Abstract In this paper, we construct a well-balanced, positivity preserving finite volume
scheme for the shallow water equations based on a continuous, piecewise linear discretization
of the bottom topography. The main new technique is a special reconstruction of the flow
variables in wet–dry cells, which is presented in this paper for the one dimensional case. We
realize the new reconstruction in the framework of the second-order semi-discrete central-
upwind scheme from (Kurganov and Petrova, Commun. Math. Sci., 5(1):133–160, 2007). The
positivity of the computed water height is ensured following (Bollermann et al., Commun.
Comput. Phys., 10:371–404, 2011): The outgoing fluxes are limited in case of draining cells.

Keywords Hyperbolic systems of conservation and balance laws · Saint-Venant system
of shallow water equations · Finite volume methods · Well-balanced schemes · Positivity
preserving schemes · Wet/dry fronts

1 Introduction

We study numerical methods for the Saint-Venant system of shallow water equations [3],
which is widely used for the flow of water in rivers or in the ocean. In one dimension, the
Saint-Venant system reads:{

ht + (hu)x = 0,

(hu)t +
(

hu2 + 1

2
gh2
)

x
= −gh Bx ,

(1.1)

A. Bollermann · G. Chen · S. Noelle (B)
IGPM, RWTH Aachen University of Technology, Templergraben 55, 52062 Aachen, Germany
e-mail: noelle@igpm.rwth-aachen.de

G. Chen
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, People’s Republic of China

A. Kurganov
Mathematics Department, Tulane University, New Orleans, LA 70118, USA

123



J Sci Comput

subject to the initial conditions

h(x, 0) = h0(x), u(x, 0) = u0(x),

where h(x, t) is the fluid depth, u(x, t) is the velocity, g is the gravitational constant, and the
function B(x) represents the bottom topography, which is assumed to be independent of time
t and possibly discontinuous. The systems (1.1) is considered in a certain spatial domain X
and if X �= R the Saint-Venant system must be augmented with proper boundary conditions.

In many applications, quasi steady solutions of the system (1.1) are to be captured using
a (practically affordable) coarse grid. In such a situation, small perturbations of steady states
may be amplified by the scheme and the so-called numerical storm can spontaneously develop
[19]. To prevent it, one has to develop a well-balanced scheme—a scheme that is capable of
exactly balancing the flux and source terms so that “lake at rest” steady states,

u = 0, w := h + B = Const. (1.2)

are preserved within the machine accuracy. Here, w denotes the total water height or free
surface. Examples of such schemes can be found in [1,2,4,5,8,9,11–14,19–23,30,31].

Another difficulty one often has to face in practice is related to the presence of dry areas
(island, shore) in the computational domain. As the eigenvalues of the Jacobian of the fluxes
in (1.1) are u ±√

gh, the system (1.1) will not be strictly hyperbolic in the dry areas (h = 0),
and if due to numerical oscillations h becomes negative, the calculation will simply break
down. It is thus crucial for a good scheme to preserve the positivity of h (positivity preserving
schemes can be found, e.g., in [1,2,4,11,12,20,21]).

We would also like to point out that when h = 0 the “lake at rest” steady state (1.2)
reduces to

hu = 0, h = 0, (1.3)

which can be viewed as a “dry lake”. A good numerical scheme may be considered “truly”
well-balanced when it is capable of exactly preserving both “lake at rest” and “dry lake”
steady states, as well as their combinations corresponding to the situations, in which the
domain X is split into two nonoverlapping parts X1 (wet area) and X2 (dry area) and the
solution satisfies (1.2) in X1 and (1.3) in X2.

We focus on Godunov-type schemes, in which a numerical solution realized at a certain
time level by a global (in space) piecewise polynomial reconstruction, is evolved to the next
time level using the integral form of the system of balance laws. In order to design a well-
balanced scheme for (1.1), it is necessary that this reconstruction respects both the “lake at
rest” (1.2) and “dry lake” (1.3) steady-state solutions as well as their combinations. On the
other hand, to preserve positivity we have to make sure that the reconstruction preserves
a positive water height for all reconstructed values. Both of this has been achieved by the
hydrostatic reconstruction introduced by Audusse et al. [1], based on a discontinuous, piece-
wise smooth discretisation of the bottom topography. In this paper, we consider a continuous,
piecewise linear reconstruction of the bottom. We propose a piecewise linear reconstruction
of the flow variables that also leads to a well-balanced, positivity preserving scheme. The
new reconstruction is based on the proper discretization of a front cell in the situation like the
one depicted in Fig. 1. The picture depicts the real situation with a sloping shore, and we see
a discretization of the same situation that seems to be the most suitable from a numerical per-
spective. We also demonstrate that the correct handling of (1.2), (1.3) and their combinations
leads to a proper treatment of non-steady states as well.

Provided the reconstruction preserves positivity, we can prove that the resulting central-
upwind scheme is positivity preserving. In fact, the proof from [12] carries over to the new
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Fig. 1 “Lake at rest” steady state w with dry boundaries upon a piecewise smooth topography B (dashed
line), which is reconstructed using piecewise linear, continuous B̃ (full line)

scheme, but with a possibly severe time step constraint. We therefore adopt a technique from
[2] and limit outgoing fluxes whenever the so-called local draining time is smaller than the
global time step. This approach ensures positive water heights without a reduction of the
global time step.

The paper is organized as follows. In Sect. 2, we briefly review the well-balanced positivity
preserving central-upwind scheme from [12]. A new positivity preserving reconstruction is
presented in Sect. 3. The well-balancing and positivity preserving properties properties of the
new scheme are proven in Sect. 4. Finally, we demonstrate the performance of the proposed
method in Sect. 5.

2 A Central-Upwind Scheme for the Shallow Water Equations

Our work will be based on the central-upwind scheme proposed in [12]. We will therefore
begin with a brief overview of the original scheme.

We introduce a uniform grid xα := α�x, with finite volume cells I j :=
[
x j− 1

2
, x j+ 1

2

]
of length �x and denote by U j (t) the cell averages of the solution U := (w, hu)T of (1.1)
computed at time t :

U j (t) ≈ 1

�x

∫
I j

U(x, t) dx . (2.1)

We then replace the bottom function B with its continuous, piecewise linear approximation
B̃. To this end, we first define

B j+ 1
2

:=
B
(

x j+ 1
2

+ 0
)

+ B
(

x j+ 1
2

− 0
)

2
, (2.2)

which in case of a continuous function B reduces to B j+ 1
2

= B
(

x j+ 1
2

)
, and then interpolate

between these points to obtain

B̃(x) = B j− 1
2

+
(

B j+ 1
2

− B j− 1
2

)
·

x − x j− 1
2

�x
, x j− 1

2
≤ x ≤ x j+ 1

2
. (2.3)
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From (2.3), we obviously have

B j := B̃(x j ) = 1

�x

∫
I j

B̃(x) dx =
B j+ 1

2
+ B j− 1

2

2
. (2.4)

The central-upwind semi-discretization of (1.1) can be written as the following system of
time-dependent ODEs:

d

dt
U j (t) = −

H j+ 1
2
(t) − H j− 1

2
(t)

�x
+ S j (t), (2.5)

where H j+ 1
2

are the central-upwind numerical fluxes and S j is an appropriate discretization
of the cell averages of the source term:

S j (t) ≈ 1

�x

∫
I j

S(U(x, t), B(x)) dx, S := (0,−gh Bx )
T . (2.6)

Using the definitions (2.2) and (2.4), we write the second component of the discretized source
term (2.6) as (see [11] and [12] for details)

S
(2)

j (t) := −gh j

B j+ 1
2

− B j− 1
2

�x
. (2.7)

The central-upwind numerical fluxes H j+ 1
2

are given by:

H j+ 1
2
(t) =

a+
j+ 1

2
F
(

U−
j+ 1

2
, B j+ 1

2

)
− a−

j+ 1
2
F
(

U+
j+ 1

2
, B j+ 1

2

)
a+

j+ 1
2

− a−
j+ 1

2

+
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

[
U+

j+ 1
2

− U−
j+ 1

2

]
, (2.8)

where we use the following flux notation:

F(U, B) :=
(

hu,
(hu)2

w − B
+ g

2
(w − B)2

)T

. (2.9)

The values U±
j+ 1

2
=
(

w±
j+ 1

2
, h±

j+ 1
2

· u±
j+ 1

2

)
represent the left and right values of the solution

at point x j+ 1
2

obtained by a piecewise linear reconstruction

q̃(x) := q j + (qx ) j (x − x j ), x j− 1
2

< x < x j+ 1
2
, (2.10)

of q standing for w and u respectively with h±
j+ 1

2
= w±

j+ 1
2
− B j+ 1

2
. To avoid the cancellation

problem near dry areas, we define the average velocity by

u j :=
{

(hu) j/h j , if h j ≥ ε,

0, otherwise.

We choose ε = 10−9 in all of our numerical experiments. This reconstruction will be
second-order accurate if the approximate values of the derivatives (qx ) j are at least first-
order approximations of the corresponding exact derivatives. To ensure a non-oscillatory
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nature of the reconstruction (2.10) and thus to avoid spurious oscillations in the numerical
solution, one has to evaluate (qx ) j using a nonlinear limiter. From the large selection of the
limiters readily available in the literature (see, e.g., [6,10,13,16,18,25,29]), we chose the
generalized minmod limiter ([16,18,25,29]):

(qx ) j = minmod

(
θ

q j − q j−1

�x
,

q j+1 − q j−1

2�x
, θ

q j+1 − q j

�x

)
, θ ∈ [1, 2], (2.11)

where the minmod function, defined as

minmod(z1, z2, . . .) :=
⎧⎨
⎩

min j {z j }, if z j > 0 ∀ j,
max j {z j }, if z j < 0 ∀ j,
0, otherwise,

(2.12)

is applied in a componentwise manner, and θ is a parameter affecting the numerical viscosity
of the scheme. It is shown in [12] that this procedure (as well as any alternative “conven-
tional” reconstruction, including the simplest first-order piecewise constant one, for which
(wx ) j ≡ 0) might produce negative values h±

j+ 1
2

near the dry areas (see [12]). Therefore, the

reconstruction (2.10)–(2.12) must be corrected there. The correction algorithm used in [12]
restores positivity of the reconstruction depicted in Fig. 3, but destroys the well-balancing
property. This is explained in Sect. 3, where we propose an alternative positivity preserving
reconstruction, which is capable of exactly preserving the “lake at rest” and the “dry lake”
steady states as well as their combinations.

Finally, the local speeds a±
j+ 1

2
in (2.8) are obtained using the eigenvalues of the Jacobian

∂F
∂U as follows:

a+
j+ 1

2
= max

{
u+

j+ 1
2

+
√

gh+
j+ 1

2
, u−

j+ 1
2

+
√

gh−
j+ 1

2
, 0

}
, (2.13)

a−
j+ 1

2
= min

{
u+

j+ 1
2

−
√

gh+
j+ 1

2
, u−

j+ 1
2

−
√

gh−
j+ 1

2
, 0

}
. (2.14)

Note that for U j , U±
j+ 1

2
and a±

j+ 1
2
, we dropped the dependence of t for simplicity.

As in [12], in our numerical experiments, we use the third-order strong stability preserving
Runge-Kutta (SSP-RK) ODE solver (see [7] for details) to numerically integrate the ODE
system (2.5). The timestep is restricted by the standard CFL condition,

CFL := �t

�x
max

j
|a±

j+ 1
2
| ≤ 1

2
(2.15)

For the examples of the present paper, results of the second and third order SSP-RK solvers
are almost undistinguishable.

3 A New Reconstruction at the Almost Dry Cells

In the presence of dry areas, the central-upwind scheme described in the previous section
may create negative water depth values at the reconstruction stage. To understand this, one
may look at Fig. 2, where we illustrate the following situation: The solution satisfies (1.2) for
x > x�

w (where x�
w marks the waterline) and (1.3) for x < x�

w. Notice that cell j is a typical
almost dry cell and the use of the (first-order) piecewise constant reconstruction clearly leads
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Fig. 2 Wrong approximations of the wet/dry front by the piecewise constant reconstruction

Fig. 3 Approximations of the wet/dry front by the positivity preserving but unbalanced piecewise linear
reconstruction from [12]

to appearance of negative water depth values there. Indeed, in this cell the total amount of
water is positive and therefore w j > B j , but clearly w j < B j− 1

2
and thus h j− 1

2
< 0.

It is clear that replacement of the first-order piecewise constant reconstruction with a
conventional second-order piecewise linear one will not guarantee positivity of the computed
point values of h. Therefore, the reconstruction in cell j may need to be corrected. The
correction proposed in [12] will solve the positivity problem by raising the water level at one
of the cell edges to the level of the bottom function there and lowering the water level at the
other edge by the same value (this procedure would thus preserve the amount of water in cell
j). The resulting linear piece is shown in Fig. 3. Unfortunately, as one may clearly see in the
same figure, the obtained reconstruction is not well-balanced since the reconstructed values
w−

j+ 1
2

and w+
j+ 1

2
are not the same.

Here, we propose an alternative correction procedure, which will be both positivity pre-
serving and well-balanced even in the presence of dry areas. This correction bears some
similarity to the reconstruction near dry fronts of depth-averaged granular avalanche models
in [28]. However, in [28] the authors tracked a front running down the terrain, and did not treat
well-balancing of equilibrium states. Let us assume that at a certain time level all computed
values w j ≥ B j and the slopes (wx ) j and (ux ) j in the piecewise linear reconstruction (2.10)
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Fig. 4 Computation of w j . Left fully flooded cell; right partially flooded cell

have been computed using some nonlinear limiter as it was discussed in Sect. 2 above. We
also assume that at some almost dry cell j,

B j− 1
2

> w j > B j+ 1
2

(3.1)

(the case B j− 1
2

< w j < B j+ 1
2

can obviously be treated in a symmetric way) and that the
reconstructed values of w in cell j + 1 satisfy

w+
j+ 1

2
> B j+ 1

2
and w−

j+ 3
2

> B j+ 3
2
, (3.2)

that is, cell j + 1 is fully flooded. This means that cell j is located near the dry boundary
(mounting shore), and we design a well-balanced reconstruction correction procedure for
cell j in the following way:

We begin by computing the free surface in cell j (denoted by w j ), which represents the
average total water level in (the flooded parts of) this cell assuming that the water is at rest.
The meaning of this formulation becomes clear from Fig. 4. We always choose w j such that
the area enclosed between the line with height w j and the bottom line equals the amount of
water given by �x · h j , where h j := w j − B j . The resulting area is either a trapezoid (if
cell j is a fully flooded cell as in Fig. 4 on the left) or a triangle (if cell j is a partially flooded
cell as in Fig. 4 on the right), depending on h j and the bottom slope (Bx ) j .

So if the cell j is a fully flooded cell, i.e. h j ≥ �x
2

∣∣(Bx ) j
∣∣ , the free surface w j (x) is

defined as

w j (x) = w j ,

otherwise the free surface is a continuous piecewise linear function given by

w j (x) =
{

B j (x), if x < x�
w,

w j , otherwise,
(3.3)

where x�
w is the boundary point separating the dry and wet parts in the cell j. It can be

determined by the mass conservation,
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�x · h j =
x

j+ 1
2∫

x
j− 1

2

(w j (x) − B j (x))dx =
x

j+ 1
2∫

x�
w

(w j − B j (x))dx

= �x�
w

2

(
w j − B j+ 1

2

)
= �x�

w

2

(
B(x�

w) − B j+ 1
2

)
= − (�x�

w)2

2
(Bx ) j ,

where �x�
w = x j+ 1

2
− x�

w, thus

�x�
w =

√
2�xh j

−(Bx ) j
=
√√√√ 2h j

B j− 1
2

− B j+ 1
2

�x, (3.4)

resulting in the free surface w j formula for the wet/dry cells,

w j = B j+ 1
2

+
√

2h j |B j− 1
2

− B j+ 1
2
| (3.5)

Note that the limit for the distinction of cases in (3.3) is determined from the area of the
triangle between the bottom line and the horizontal line at the level of B j− 1

2
. We also note

that if cell j satisfies (3.1), then it is clearly a partially flooded cell (like the one shown in
Fig. 4 on the right) with �x�

w < �x .

Remark 3.1 We would like to emphasize that if cell j is fully flooded, then the free surface
is represented by the cell average w j (see the first case in Eq. (3.3)), while if the cell is only
partially flooded, w j does not represent the free surface at all (see, e.g., Fig. 2). Thus, in the
latter case we need to represent the free surface with the help of another variable w j �= w j

(see the second case in (3.3)), which is only defined on the wet part of cell j,
[
x�
w, x j+ 1

2

]
,

and thus stays above the bottom function B, see Fig. 4 (right).

We now modify the reconstruction of h in the partially flooded cell j to ensure the well-
balanced property. To this end, we first set w−

j+ 1
2

= w+
j+ 1

2
(which immediately implies that

h−
j+ 1

2
:= w−

j+ 1
2

− B j+ 1
2

= w+
j+ 1

2
− B j+ 1

2
=: h+

j+ 1
2
) and determine the reconstruction of w

in cell j via the conservation of h j in this cell. We distinguish between the following two
possible cases. If the amount of water in cell j is sufficiently large (as in the case illustrated
in Fig. 5 on the left), there is a unique h+

j− 1
2

≥ 0 satisfying

h j = 1

2

(
h−

j+ 1
2

+ h+
j− 1

2

)
. (3.6)

From this we obtain w+
j− 1

2
= h+

j− 1
2

+ B j− 1
2
, and thus the well-balanced reconstruction in

cell j is completed.
If the value of h+

j− 1
2
, computed from the conservation requirement (3.6) is negative, we

replace a linear piece of w in cell j with two linear pieces as shown in Fig. 5 on the right.
The breaking point between the “wet” and “dry” pieces will be denoted by x�

j and it will be
determined from the conservation requirement, which in this case reads

�x · h j = �x�
j

2
h−

j+ 1
2
, (3.7)

where

�x�
j = ∣∣x j+ 1

2
− x�

j

∣∣.
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Fig. 5 Conservative reconstruction of w at the boundary with the fixed value w+
j+ 1

2
. Left linear reconstruction

with nonnegative h+
j− 1

2
; right two linear pieces with h+

j− 1
2

= 0

Combining the above two cases, we obtain the reconstructed value

h+
j− 1

2
= max

{
0, 2h j − h−

j+ 1
2

}
. (3.8)

We also generalize the definition of �x�
j and set

�x�
j := �x · min

⎧⎨
⎩ 2 h j

h−
j+ 1

2

, 1

⎫⎬
⎭ , (3.9)

which will be used in the proofs of the positivity and well-balancing of the resulting central-
upwind scheme in Sect. 4. We summarize the wet/dry reconstruction in the following defin-
ition:

Definition 3.2 (wet/dryreconstruction) For the sake of clarity, we denote the left
and right values of the piecewise linear reconstruction (2.10) – (2.12) by Ũ±

j+ 1
2

=(
w̃±

j+ 1
2
, h̃±

j+ 1
2

· ũ±
j+ 1

2

)
. The purpose of this definition is to define the final values U±

j+ 1
2

=(
w±

j+ 1
2
, h±

j+ 1
2

· u±
j+ 1

2

)
, which are modified by the wet/dry reconstruction.

Case 1. w̄ j ≥ B j− 1
2

and w̄ j ≥ B j+ 1
2

: there is enough water to flood the cell for flat lake.

1A. w̃+
j− 1

2
≥ B j− 1

2
and w̃−

j+ 1
2

≥ B j+ 1
2

: the cell is fully flooded, and we set U±
j+ 1

2
:=

Ũ±
j+ 1

2
.

1B. otherwise, as in [12] we redistribute the water via

If w̃−
j+ 1

2
< B j+ 1

2
, then set (wx ) j :=

B j+ 1
2

− w j

�x/2
,


⇒ w−
j+ 1

2
= B j+ 1

2
, w+

j− 1
2

= 2w j − B j+ 1
2
;
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and

If w̃+
j− 1

2
< B j− 1

2
, then set (wx ) j :=

w j − B j− 1
2

�x/2
,


⇒ w−
j+ 1

2
= 2w j − B j− 1

2
, w+

j− 1
2

= B j− 1
2
.

Case 2. B j− 1
2

> w j > B j+ 1
2

: the cell is possible partially flooded.

2A. w̃+
j+ 1

2
> B j+ 1

2
and w̃−

j+ 3
2

> B j+ 3
2
, i.e., cell j+1 is fully flooded and w+

j+ 1
2

= w̃+
j+ 1

2
.

Define w−
j+ 1

2
= w+

j+ 1
2

and h−
j+ 1

2
= w−

j+ 1
2

− B j+ 1
2

.

2A1. 2h j − h−
j+ 1

2
≥ 0, the amount of water in cell j is sufficiently large, we set

h+
j− 1

2
= 2h j − h−

j+ 1
2
, so w+

j− 1
2

= h+
j− 1

2
+ B j− 1

2

2A2. otherwise set h+
j− 1

2
= 0, w+

j− 1
2

= B j− 1
2

and �x�
j as in (3.9).

2B. otherwise set h−
j+ 1

2
:= w j − B j+ 1

2
(3.5) and �x�

j := �x�
w (3.4). Note that this

situation is not generic and may occur only in the under-resolved computations.

Case 3. B j− 1
2

< w j < B j+ 1
2

: analogous to Case 2.

4 Positivity Preserving and Well-Balancing

In the previous section, we proposed a new spatial reconstruction for wet/dry cell. In this
section, we will implement a time-quadrature for the fluxes at wet/dry boundaries developed
in [2]. It cuts off the space-time flux integrals for partially flooded interfaces. Then we prove
that the resulting central-upwind scheme is positivity preserving and well-balanced under
the standard CFL condition (2.15).

We begin by studying the positivity using a standard time integration of the fluxes. The
following lemma shows that for explicit Euler time stepping, positivity cannot be guaranteed
directly under a CFL condition such as (2.15).

Lemma 4.1 (2.5)–(2.14) with the piecewise linear reconstruction (2.10) corrected according
to the procedure described in Sect. 3. Assume that the system of ODEs (2.5) is solved by the
forward Euler method and that for all j, h

n
j ≥ 0. Then

(i) h
n+1
j ≥ 0 for all j provided that

�t ≤ min
j

{
�x�

j

2a j

}
, a j := max

{
a+

j+ 1
2
,−a−

j+ 1
2

}
. (4.1)

(ii) Condition (4.1) cannot be guaranteed by any finite positive CFL condition (2.15).

Proof (i) For the fully flooded cells with �x�
j = �x, the proof of Theorem 2.1 in [12] still

holds. Therefore, we will only consider partially flooded cells like the one shown in Fig. 5.
First, from (3.7) we have that in such a cell j the cell average of the water depth at time level
t = tn is

h
n
j = �x�

j

2�x
h−

j+ 1
2
, (4.2)
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and it is evolved to the next time level by applying the forward Euler temporal discretization
to the first component of (2.5), which after the subtraction of the value B j from both sides
can be written as

h
n+1
j = h

n
j − λ

(
H(1)

j+ 1
2

− H(1)

j− 1
2

)
, λ := �t

�x
, (4.3)

where the numerical fluxes are evaluated at time level t = tn . Using (2.8) and the fact that
by construction w+

j+ 1
2

− w−
j+ 1

2
= h+

j+ 1
2

− h−
j+ 1

2
, we obtain:

H(1)

j+ 1
2

=
a+

j+ 1
2
(hu)−

j+ 1
2

− a−
j+ 1

2
(hu)+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

+
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

[
h+

j+ 1
2

− h−
j+ 1

2

]
. (4.4)

Substituting (4.2) and (4.4) into (4.3) and taking into account the fact that in this cell h+
j− 1

2
=

0, we arrive at:

h
n+1
j =

⎡
⎣�x�

j

2�x
− λa+

j+ 1
2

⎛
⎝u−

j+ 1
2

− a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

⎞
⎠
⎤
⎦ h−

j+ 1
2

−λa−
j+ 1

2

⎛
⎝a+

j+ 1
2

− u+
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

⎞
⎠ h+

j+ 1
2

+ λa+
j− 1

2

⎛
⎝u−

j− 1
2

− a−
j− 1

2

a+
j− 1

2
− a−

j− 1
2

⎞
⎠ h−

j− 1
2
, (4.5)

Next, we argue as in [12, Theorem 2.1] and show that h
n+1
j is a linear combination of the three

values, h±
j+ 1

2
and h−

j− 1
2

(which are guaranteed to be nonnegative by our special reconstruction

procedure) with nonnegative coefficients. To this end, we note that it follows from (2.13) and
(2.14) that a+

j+ 1
2

≥ 0, a−
j+ 1

2
≤ 0, a+

j+ 1
2

− u+
j+ 1

2
≥ 0, and u−

j+ 1
2

− a−
j+ 1

2
≥ 0, and hence the

last two terms in (4.5) are nonnegative. By the same argument, 0 ≤
a+

j− 1
2
−u+

j− 1
2

a+
j− 1

2
−a−

j− 1
2

≤ 1 and

0 ≤
u−

j+ 1
2
−a−

j+ 1
2

a+
j+ 1

2
−a−

j+ 1
2

≤ 1, and thus the first term in (4.5) will be also nonnegative, provided the

CFL restriction (4.1) is satisfied. Therefore, h
n+1
j ≥ 0, and part (i) is proved.

In order to show part (ii) of the lemma, we compare the CFL-like condition (4.1) with the
standard CFL condition (2.15),

CFL∗ := �t max
j

(
|a j |
�x∗

j

)
= max

j

⎛
⎝ |a j |

max
i

|ai |
�x

�x∗
j

⎞
⎠ CFL (4.6)

We note that depending on the water level w j in the partially flooded cell, �x∗
j can be

arbitrarily small, so there is no upper bound of CFL∗ in terms of CFL. �
Part (ii) of Lemma 4.1 reveals that one might obtain a serious restriction of the timestep

in the presence of partially flooded cells. We will now show how to overcome this restriction
using the draining time technique developed in [2].
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We start from the Eq. (4.3) for the water height and look for a suitable modification of the
update such that the water height remains positive,

h
n+1
j = h

n
j − �t

H(1)

j+ 1
2

− H(1)

j− 1
2

�x
≥ 0.

As in [2], we introduce the draining time step

�tdrain
j := �xh

n
j

max

(
0, H(1)

j+ 1
2

)
+ max

(
0,−H(1)

j− 1
2

) , (4.7)

which describes the time when the water contained in cell j in the beginning of the time step
has left via the outflow fluxes. We now replace the evolution step (4.3) with

h
n+1
j = h

n
j −

�t j+ 1
2
H(1)

j+ 1
2

− �t j− 1
2
H(1)

j− 1
2

�x
, (4.8)

where we set the effective time step on the cell interface as

�t j+ 1
2

= min
(
�t,�tdrain

i

)
, i = j + 1

2
−

sgn

(
H(1)

j+ 1
2

)
2

. (4.9)

The definition of i selects the cell in upwind direction of the edge. We would like to point out
that the modification of flux is only active in cells which are at risk of running empty during
the next time step. It corresponds to the simple fact that there is no flux out of a cell once
the cell is empty. The positivity based on the draining time is summarized as the following
theorem, which we proved in [2]. Note that in contrast to Lemma 4.1, the timestep is now
uniform under the CFL condition (2.15):

Theorem 4.1 Consider the update (4.8) of the water height with fluxes with the help of the
draining time (4.7). Assume that the initial height h

n
j is non-negative for all j. Then the height

remains nonnegative,

h
n+1
j ≥ 0 for all j. (4.10)

provided that the standard CFL condition (2.15) is satisfied.

To guarantee well-balancing, we have to make sure that the gravity driven part of the
momentum flux H(2)

j+ 1
2

cancels the source term S(2)

j+ 1
2
, in a lake at rest situation. To this end,

we follow [2] and split the momentum flux F(2)(U) in its advective and gravity driven parts:

F(2),a(U) := (hu)2

w − B
and F(2),g(U) := g

2
(w − B)2,

respectively. For convenience, we will denote w−B by h in the following. The corresponding
advective and gravity driven parts of the central-upwind fluxes then read

H(2),g
j+ 1

2
(t) =

a+
j+ 1

2
F(2),g

(
U−

j+ 1
2

)
− a−

j+ 1
2
F(2),g

(
U+

j+ 1
2

)
a+

j+ 1
2

− a−
j+ 1

2

+
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

[
U(2),+

j+ 1
2

− U(2),−
j+ 1

2

]
,
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and

H(2),a
j+ 1

2
(t) =

a+
j+ 1

2
F(2),a

(
U−

j+ 1
2

)
− a−

j+ 1
2
F(2),a

(
U+

j+ 1
2

)
a+

j+ 1
2

− a−
j+ 1

2

,

The above fluxes adds up to the following modified update of the momentum:

(hu)n+1
j = (hu)n

j −
�t j+ 1

2
H(2),a

j+ 1
2

− �t j− 1
2
H(2),a

j− 1
2

�x
− �t

⎛
⎜⎝H(2),g

j+ 1
2

− H(2),g
j− 1

2

�x
+ S

(2),n
j

⎞
⎟⎠ .

(4.11)

This modified finite volume scheme (4.8) and (4.11) ensures the well-balancing property
even in the presence of dry areas, as we will show in Theorem 4.2.

Theorem 4.2 Consider the system (1.1) and the fully discrete central-upwind scheme (4.8)
and (4.11). Assume that the numerical solution U(tn) corresponds to the steady state which
is a combination of the “lake at rest” (1.2) and “dry lake” (1.3) states in the sense that for
all w j defined in 3.3, w j = Const and u = 0 whenever h j > 0. Then U(tn+1) = U(tn), that
is, the scheme is well-balanced.

Proof We have to show that in all cells the fluxes and the source term discretization cancel
exactly. First, we mention the fact that the reconstruction procedure derived in Sect. 3 pre-
serves both the “lake at rest” and “dry lake” steady states and their combinations. For all cells
where the original reconstruction is not corrected, the resulting slopes are obviously zero
and therefore w∓

j± 1
2

= w j there. As hu = 0 in all cells, the reconstruction for hu obviously

reproduces the constant point values (hu)∓
j± 1

2
= 0, ∀ j, resulting that the draining time is

equal to the global time step, i.e., �tdrain
j = �t.

We first analyze the update of the free surface using (4.8). The first component of flux
(2.8) is

H(1)

j+ 1
2
=

a+
j+ 1

2
(hu)−

j+ 1
2

− a−
j+ 1

2
(hu)+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

+
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

[
(h + B)+

j+ 1
2

− (h + B)−
j+ 1

2

]
=0,

as B+
j+ 1

2
= B−

j+ 1
2
, h+

j+ 1
2

= h−
j+ 1

2
and (hu)+

j+ 1
2

= (hu)−
j+ 1

2
= 0. This gives

wn+1
j = h

n+1
j + B j = h

n
j + B j = wn

j

Secondly, we analyze the update of the momentum using (4.11). Using the same argument
and setting u±

j+ 1
2

= 0 at the points x = x j+ 1
2

where h+
j+ 1

2
= h−

j+ 1
2

= 0, for the second

component we obtain

H(2),a
j+ 1

2
+ H(2),g

j+ 1
2

=
a+

j+ 1
2

(
hu2
)−

j+ 1
2

− a−
j+ 1

2

(
hu2
)+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

+
a+

j+ 1
2

( g
2 h2
)−

j+ 1
2

− a−
j+ 1

2

( g
2 h2
)+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

+
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

[
(hu)+

j+ 1
2

− (hu)−
j+ 1

2

]
= g

2
h2

j+ 1
2
,
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where h j+ 1
2

:= h+
j+ 1

2
= h−

j+ 1
2
. So, the finite volume update (4.11) for the studied steady

state reads after substituting the source quadrature (2.7),

(hu)n+1
j = (hu)n

j − �t

�x

[
g

2

(
h j+ 1

2

)2 − g

2

(
h j− 1

2

)2
]

+ �t S
(2),n
j

= (hu)n
j − �t

�x

[
g

2

(
h j+ 1

2

)2 − g

2

(
h j− 1

2

)2
]

− �t

�x
gh j

(
B j+ 1

2
− B j− 1

2

)
= (hu)n

j ,

where we have used

(h j+ 1
2
)2 − (h j− 1

2
)2

2
= −h

n
j

(
B j+ 1

2
− B j− 1

2

)
. (4.12)

It remains the verify (4.12). In the fully flooded cells, where w j > B j± 1
2
, we have

(
h j+ 1

2

)2 −
(

h j− 1
2

)2

2
=

h j+ 1
2

+ h j− 1
2

2

(
h j+ 1

2
− h j− 1

2

)
= h

n
j

(
w j −B j+ 1

2
− w j +B j− 1

2

)
= −h

n
j

(
B j+ 1

2
− B j− 1

2

)
,

and thus (4.12) is satisfied. In the partially flooded cells (as the one shown in Fig. 4 on the
right), w j < B j− 1

2
, h j− 1

2
= 0, and thus using (3.7) Eq. (4.12) reduces to

(
h j+ 1

2

)2

2
= −

�x�
j h j+ 1

2

2�x

(
B j+ 1

2
− B j− 1

2

)
= −

h j+ 1
2

2
�x�

j (Bx ) j ,

which is true since at the studied-steady situation, x�
j = x�

w, which implies that �x�
j = �x�

w,

and hence, −�x�
j (Bx ) j = h j+ 1

2
.

This concludes the proof of the theorem. �
Remark 4.2 The draining time �tdrain

j equals the standard time step �t in all cells except
at the wet/dry boundary. Therefore, the update (4.8) equals the original update (2.5) almost
everywhere.

Remark 4.3 We would like to point out that the resulting scheme will clearly remain positivity
preserving if the forward Euler method in the discretization of the ODE system (2.5) is
replaced with a higher-order SSP ODE solver (either the Runge-Kutta or the multistep one),
because such solvers can be written as a convex combination of several forward Euler steps,
see [7]. In each Runge-Kutta stage, the time step �t is chosen as the global time step at the
first stage. This is because the draining time �tdrain

j , which is a local cut-off to the numerical
flux, does not reduce, or even influence, the global time step.

5 Numerical Experiments

Here, we set θ = 1.3 in the minmod function (2.11), and in (2.15) we set CFL = 0.5.

To show the effects of our new reconstruction at the boundary, we first test the numerical
accuracy order using a continuous problem; then compare our new scheme with the scheme
from [12] for the oscillating lake problem and the wave run-up problem on a slopping shore.
These schemes only differ in the treatment of the dry boundary, so that the effects of the
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proposed modifications are highlighted. At last, we apply our scheme to dam-break problems
over a plane and a triangular hump with bottom friction. For the sake of brevity, we refer to
the scheme from [12] as KP and to our new scheme as BCKN.

Before the simulations, let us talk about the cell averages for the initial condition. Suppose
that the states at cell interfaces U j− 1

2
and U j+ 1

2
are given. The cell averages of momentums

(hu) j are computed using the trapezoidal rule in the cells I j as

(hu) j =
(hu) j− 1

2
+ (hu) j+ 1

2

2
.

As for the water height, we have to distinguish between three cases [21]. Cells I j are called
wet cells if the water heights at both cell interfaces are positive,

h j− 1
2

> 0 and h j+ 1
2

> 0.

If instead,

h j− 1
2

= 0, h j+ 1
2

> 0 and B j− 1
2

> B j+ 1
2
,

we speak of cells with upward slope. If

h j− 1
2

= 0, h j+ 1
2

> 0 and B j− 1
2

< B j+ 1
2
,

we speak of downward slope. For the wet cells and cells with downward slope, the cell
averages of water height h j are computed using the trapezoidal rule in the cells I j as

h j =
h j− 1

2
+ h j+ 1

2

2
,

because it is impossible to be still water states. For the adverse slope, we use the inverse
function of (3.5),

h j =
(

h j+ 1
2

)2

2
(

B j+ 1
2

− B j− 1
2

) ,

to computed the cell average water height assuming the water is flat. It is easy to see from our
new reconstruction (3.4), (3.5) and (3.9) can exactly reconstruct the initial still water states.

5.1 Numerical Accuracy Order

To compute the numerical order of accuracy of our scheme, we choose a continuous example
from [12]. With computational domain [0, 1], the problem is subject to the gravitational
constant g = 9.812, the bottom topography

B(x) = sin2(πx),

the initial data

h(x, 0) = 5 + ecos(2πx), hu(x, 0) = sin(cos(2πx)),

and the periodic boundary conditions.
The reference solution is computed on a grid with 12,800 cells. The numerical result is

shown in the Table 1 at time t = 0.1. The result confirm that our scheme is second-order
accurate.
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Table 1 Accuracy checking: experimental order of convergence (EOC) measured in the L1-norm

# points h error EOC hu error EOC

25 5.30e−2 2.33e−1

50 1.51e−2 1.81 1.38e−1 0.76

100 4.86e−3 1.63 4.43e−2 1.64

200 1.40e−3 1.80 1.14e−2 1.95

400 3.59e−4 1.96 2.84e−3 2.01

800 8.93e−5 2.01 7.05e−4 2.01

x

w
 =

 h
+

B

0.1 0.15 0.2 0.25 0.3

0.3998

0.4

0.4002

KP
BCKN
Bed

x

hu

0 0.2 0.4 0.6 0.8 1

-0.0001

-5E-05

0

5E-05

0.0001 KP
BCKN

Fig. 6 Lake at rest. Left free surface h + B; right discharge hu (cf. Table 2)

5.2 Still and Oscillating Lakes

In this section, we consider present a test case proposed in [1]. It describes the situation
where the “lake at rest” (1.2) and “dry lake” (1.3) are combined in the domain [0, 1] with the
bottom topography given by

B(x) = 1

4
− 1

4
cos((2x − 1)π), (5.1)

and the following initial data:

h(x, 0) = max (0, 0.4 − B(x)) , u(x, 0) ≡ 0. (5.2)

We compute the numerical solution by the KP and BCKN schemes with 200 points at the
final time T = 19.87. The results are shown in Fig. 6 and Table 2. As one can clearly see there,
the KP scheme introduces some oscillations at the boundary, whereas the BCKN scheme is
perfectly well-balanced which means that our new initial data reconstruction method can
exactly preserve the well-balanceed property not only in the wet region but also in the dry
region. And the influence on the solutions away from the wet/dry front is also visible because
of oscillations at the boundary produced by the KP schme.

We now consider a sinusoidal perturbation of the steady state (5.1), (5.2) by taking

h(x, 0) = max

(
0, 0.4 + sin (4x − 2 − max(0,−0.4 + B(x)))

25
− B(x)

)
.
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Table 2 Errors in the
computation of the steady state
(cf. Fig. 6)

Scheme L∞ error of h L∞ error of hu

KP 7.88e−5 9.08e−5

BCKN 3.33e−16 5.43e−16

x

w
=

h+
B

0 0.2 0.4 0.6 0.8 1

0.35

0.4

0.45

0.5
KP
BCKN
Ref. sol.
Bed

x

hu

0 0.2 0.4 0.6 0.8 1

0

0.004

0.008

0.012

KP 
BCKN
Ref. Sol.

Fig. 7 Oscillating lake. Left free surface h + B; right discharge hu. Comparison of KP and BCKN schemes
with the reference solution

Table 3 Oscillating lake: experimental order of convergence measured in the L1-norm

# points h error EOC hu error EOC

KP scheme

25 9.48e−3 1.47e−2

50 2.81e−3 1.75 7.26e−3 1.02

100 1.65e−3 0.77 2.46e−3 1.56

200 7.88e−4 1.06 1.59e−3 0.63

400 3.33e−4 1.24 6.19e−4 1.36

800 1.26e−4 1.40 2.27e−4 1.45

BCKN scheme
25 7.55e−3 1.31e−2

50 2.27e−3 1.74 6.04e−3 1.11

100 1.45e−3 0.65 2.35e−3 1.36

200 6.77e−4 1.09 1.31e−3 0.84

400 2.71e−4 1.32 5.04e−4 1.38

800 1.04e−4 1.38 1.87e−4 1.43

As in [1], we set the final time to be T = 19.87. At this time, the wave has its maximal height
at the left shore after some oscillations.

In Fig. 7 we compare the results obtained by the BCKN and KP schemes with 200 points
with a reference solution (computed using 12, 800 points). Table 3 shows the experimental
accuracy order for the two different schemes. One can clearly see that both KP and BCKN
scheme can produce good results and acceptable numerical order. In Fig. 8 we show a zoom
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Fig. 8 Oscillating lake, zoom at the right wet/dry front. BCKN solutions with 200, 400, 800 points and
reference solution (12, 800 points). Left free surface h + B; right discharge hu

of BCKN solutions for x ∈ [0.74, 0.84] with 200, 400 and 800 points, which converge nicely
to the reference solution. In particular, the discharge converges without any oscillations.

5.3 Wave Run-Up on a Sloping Shore

This test describes the run-up and reflection of a wave on a mounting slope. It was proposed
in [27] and reference solutions can be found, for example, in [2,21,26].

The initial data are

H0(x) = max
{

D + δ sech2(γ (x − xa)), B(x)
}
, u0(x) =

√
g

D
H0(x),

and the bottom topography is

B(x) =
⎧⎨
⎩

0, if x < 2xa,
x − 2xa

19.85
, otherwise.

As in [2,21], we set

D = 1, δ = 0.019, γ =
√

3δ

4D
, xa =

√
4D

3δ
arccosh

(√
20
)
.

The computational domain is [0, 80] and the number of grid cells is 200.

Figure 9 shows the free surface and discharge computed by both BCNK and KP schemes
for different times. The reference solution is computed using 2,000 points. A wave is running
up the shore at time t = 17, and running down at t = 23. At time t = 80 a steady state
is reached. In the dynamic phase (up to time t = 28), both schemes provide satisfactory
solutions. In Fig. 10 we study the long time decay towards equilibrium for different grid
size resolutions. While the BCKN solutions decay up to machine accuracy, the long time
convergence of the KP scheme comes to a halt. A brief check reveals that the deviation from
equilibrium is roughly of the size of the truncation error of the KP scheme.
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Fig. 9 Wave run-up on a sloping shore. KP, BCKN and reference solutions at times 17, 23, 28 and 80. Left
free surface w = h + B; right discharge hu
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Fig. 10 Wave run-up on a sloping shore: deviation from stationary state. Left free surface log(||w −
max(1, B)||∞); right discharge ln(||hu||∞). KP scheme (dashed) and BCKN scheme (dash-dot). Long time
convergence of KP scheme stalls

5.4 Dam-Break Over a Plane

Here we study three dam breaks over inclined planes with various inclination angles. These
test cases have been previously considered in [4,32].

The domain is [−15, 15], the bottom topography is given by

B(x) = −x tan α

where α is the inclination angle. The initial data are

u(x, 0) = 0, h(x, 0) =
{

1 − B(x), x < 0,

0, otherwise.

At x = 15 we impose a free flow boundary condition, and at x = −15 we set the
discharge to zero. The plane is either flat (α = 0), inclined uphill (α = π/60), or downhill
(α = −π/60).
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Fig. 11 Dam-break over a plane. Left the numerical solution of w = h + B and u; middle the front position;
right the front velocity

We run the simulation until time t = 2, with 200 uniform cells. The numerical results are
displayed in Fig. 11, for inclination angles α = 0, π/60 and −π/60, from top to bottom.
The left column shows h and u, the central column the front position and the right column
the front velocity. We also display the exact front positions and velocities (see [4]) given by

x f (t) = 2t
√

g cos(α) − 1

2
gt2 tan(α), u f (t) = 2

√
g cos(α) − gt tan(α).

As suggested in [32], we define the numerical front position to be the first cell (counted from
right to left) where the water height exceeds ε = 10−9. While the BCKN scheme, which
is only second order accurate, cannot fully match the resolution of the third and fifth order
schemes in [4,32], it still performs reasonably well. What we would like to stress here is that
the new scheme, which was designed to be well balanced near wet/dry equilibrium states, is
also robust for shocks running into dry areas.

5.5 Laboratory Dam-Break Over a Triangular Hump

We apply our scheme to a laboratory test of a dam-break inundation over a triangular
hump which is recommended by the Europe, the Concerted Action on Dam-Break Modeling
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Fig. 12 Laboratory dam-break inundation over dry bed: experimental setup and the comparison of simulated
and observed water depth versus time at 7 gauge points
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(CADAM) project [17]. The problem consider the friction effect and then the corresponding
governing equation (1.1) is changed to be{

ht + (hu)x = 0,

(hu)t +
(

hu2 + 1

2
gh2
)

x
= −gh Bx − τb/ρ,

(5.3)

where τb = ρc f u|u| represents the energy dissipation effect and are estimated from bed
roughness on the flow, ρ is the density of water and c f = gn2/h1/3 represents the bed
roughness coefficient with n being the Manning coefficient. For small water depths, the
bed friction term dominates the other terms in the momentum equation, due to the presence
of h1/3 in the denominator. To simplify the update of the momentum, we first update the
solution using our new positivity preserving and well-balanced scheme stated in Sects. 2, 3
and 4 without the bed friction effect, and then retain the local acceleration from the only bed
friction terms.

(hu)t = −τb/ρ = −c f u|u| = − gn2u|u|
h1/3 . (5.4)

A partially implicit approach [15,24] is used for the discretization of the above equation as

(hu)n+1 − (h̃ũ)n+1

�t
= − gn2(hu)n+1|ũn+1|

(h̃n+1)4/3
. (5.5)

Resolving this for (hu)n+1, we obtain

(hu)n+1 = (h̃ũ)n+1

1 + �tgn2|ũn+1|/(h̃n+1)4/3
= (h̃ũ)n+1(h̃n+1)4/3

(h̃n+1)4/3 + �tgn2|ũn+1| , (5.6)

where h̃ and ũ are given using our above stated scheme without friction term. The initial
conditions and geometry (Fig. 12) were identical to those used by [15,24]. The experiment
was conducted in a 38-m-long channel. The dam was located at 15.5 m, with a still water
surface of 0.75 m in the reservoir. A symmetric triangular obstacle 6.0 m long and 0.4 m high
was installed 13.0 m downstream of the dam. The floodplain was fixed and initially dry, with
reflecting boundaries and a free outlet. The Manning coefficient n was 0.0125, adopted from
[15]. The flow depth was measured at seven stations, GP2, GP4, GP8, GP10, GP11, GP13,
and GP20, respectively, located at 2, 4, 8, 10, 11, 13, and 20 m downstream of the dam, as
shown in Fig. 12. The simulation was conducted for 90 s.

The numerical predictions using 200 points are shown in Fig. 12. The comparison between
the numerical results and measurements is satisfactory at all gauge points and the wet/dry tran-
sitions are resolved sharply (compare with [15,24] and the references therein). This confirms
the effectiveness of the current scheme together with the implicit method for discretization
of the friction term, even near wet/dry fronts.

6 Conclusion

In this paper, we designed a special reconstruction of the water level at wet/dry fronts, in
the framework of the second-order semi-discrete central-upwind scheme and a continuous,
piecewise linear discretisation of the bottom topography. The proposed reconstruction is
conservative, well-balanced and positivity preserving for both wet and dry cells. The positivity
of the computed water height is ensured by cutting the outflux across partially flooded edges
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at the draining time, when the cell has run empty. Several numerical examples demonstrate
the experimental order of convergence and the well-balancing property of the new scheme,
and we also show a case where the prerunner of the scheme fails to converge to equilibrium.
The new scheme is robust for shocks running into dry areas and for simulations including
Manning’s bottom friction term, which is singular at the wet/dry front.
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