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NUMERICAL METHOD FOR OPTIMAL CONTROL PROBLEMS
GOVERNED BY NONLINEAR HYPERBOLIC SYSTEMS OF PDES∗

MICHAEL HERTY† , ALEXANDER KURGANOV‡ , AND DMITRY KUROCHKIN§

Abstract. We develop a numerical method for the solution to linear adjoint equations arising,
for example, in optimization problems governed by hyperbolic systems of nonlinear conservation
and balance laws in one space dimension. Formally, the solution requires one to numerically solve
the hyperbolic system forward in time and a corresponding linear adjoint system backward in time.
Numerical results for the control problem constrained by either the Euler equations of gas dynamics
or isothermal gas dynamics equations are presented. Both smooth and discontinuous prescribed
terminal states are considered.
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1. Introduction
In this paper, we develop novel numerical optimization methods for linear adjoint

equations arising formally from optimal control problems governed by hyperbolic sys-
tems of nonlinear PDEs. In particular, we focus on equations arising in optimization
problems governed by one-dimensional (1-D) hyperbolic systems of conservation and
balance laws. Such problems arise in a variety of applications such as gas dynamics,
fuel cell control, optimal treatment in cancer therapy, flow control design, traffic flow,
and many other areas, in which inverse problems for the corresponding initial value
problems (IVP) are to be solved. The mathematical formulation of the minimization
problem we are concerned with is stated as follows:

min
w0

J(w(·,T );wd(·)), (1.1)

where J is a given functional andw(x,t) is the unique entropy solution of the following
IVP for the hyperbolic systems of balance laws:

∂w(x,t)

∂t
+

∂f(w(x,t))

∂x
=h(w(x,t),x,t), x∈R, t∈ (0,T ],

w(x,0)=w0(x), x∈R.
(1.2)

Here, w : R× [0,T ]→R
s, w0(x) is an arbitrary bounded measurable function on R,

the corresponding nonlinear flux is denoted by f(w), h(w,x,t) is a source term, and
the terminal state wd(x) is prescribed at time t=T .

We consider among others the integral least-square cost functional of the form

J(w(·,T );wd(·)) :=
1

2

∫

R

|w(x,T )−wd(x)|
2
dx. (1.3)
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In recent years, PDE-constrained optimization problems governed by scalar
conservation and balance laws have been intensively studied both analytically
[5, 6, 32, 34, 8] and numerically [1, 9, 14, 17, 18, 32, 34, 8]. However, only a few
of the analytical results have been extended to the system case [6]. The analytical
results and the rigorous treatment of the optimal control problem is subject to the
fact that the semigroup generated by a nonlinear hyperbolic conservation/balance
law is generically nondifferentiable in L1 even in the 1-D scalar case. We refer to
[1, 2, 3, 4, 5, 8, 17, 18, 13, 14, 15, 16, 33] for more details on the differential struc-
ture of solutions. In the 1-D scalar case, convergence results for first-order numer-
ical schemes including shock variations have been established in [1, 9, 12, 14, 34],
where a variety of numerical methods for the optimal control problems governed by
scalar hyperbolic equations have been discussed. In particular, in the recent work on
scalar equations [17, 18], the linear adjoint equation has been discretized using a Lax-
Friedrichs-type scheme, obtained by including conditions along shocks and modifying
the Lax-Friedrichs numerical viscosity. Convergence of the modified Lax-Friedrichs
scheme has been rigorously proved in the case of a smooth convex flux function.
Convergence results on the linear adjoint equation in the scalar case have also been
obtained in [32] for the class of schemes satisfying the one-sided Lipschitz condition
(OSLC) and in [1] for a first-order implicit-explicit finite-volume method. To the best
of our knowledge, no convergence theory has been established for numerical methods
for control problems governed by hyperbolic systems of conservation/balance laws.

In this work, we numerically study the linear adjoint equations arising in the for-
mal optimality conditions to the problem (1.1), (1.2) and focus on designing numerical
methods in the case of systems. In order to develop a numerical scheme and test the
suggested procedure we only formally (in the case of smooth solutions) compute the
optimality system and numerically study the nonsmooth case. The main source of
difficulty for nonlinear hyperbolic system (1.2) comes from the loss of smoothness
of its solution, which may develop discontinuities even for infinitely smooth initial
conditions. In order to accurately capture the discontinuous parts of the solution,
one can use high-resolution shock capturing finite-volume methods. Our particular
choice is the second-order semi-discrete central-upwind scheme, which was introduced
in [23, 24, 25] as a reliable “black-box” solver for general hyperbolic systems of con-
servation and balance laws. The linear adjoint system, however, is a nonconservative
linear system of first-order PDEs with variable, generically discontinuous coefficients.
Therefore, it has to be treated differently. To the best of our knowledge, no high-
resolution numerical methods for liner hyperbolic systems with discontinuous coef-
ficients are available. We develop a second-order Roe-type scheme for the adjoint
equation. A detailed description of the proposed scheme is presented in Section 3.2.

A convergence analysis of the developed numerical method for the optimization
problem governed by nonlinear hyperbolic systems of PDEs as well as a numerical
treatment of the proposed conditions along a-priori known shock locations (see [6])
seems to be out of reach at this stage. The discussion of the convergence of the
proposed scheme applied to a scalar equation will be studied in a forthcoming paper.
Here, we focus on the development of a new numerical approach.

This paper is organized as follows. First, in Section 2, we introduce a Lagrange
functional for the optimization problem (1.1)–(1.3) and present the optimality system
for this problem. Then, in Section 3, we describe the designed optimization method.
In Section 3.1, we briefly review the central-upwind scheme used to solve the forward
equation. In Section 3.2, the proposed scheme for the adjoint system is presented in
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detail. Then, in Section 3.3, we describe a conservative nonlinear filter, which may
be used in the proposed optimization algorithm. Finally, Section 4 is dedicated to a
variety of numerical experiments.

2. Formal derivation of the linear adjoint equations
In this section, we formally derive the linear adjoint equations assuming (for now)

the solutions of (1.2) are sufficiently smooth. To this end, we consider the Lagrangian
corresponding to the constrained optimization problem (1.1)–(1.3):

L(w(·),q(·))=
1

2

∫

R

|w(x,T )−wd(x)|
2
dx

−

T∫

0

∫

R

q(x,t)

(
∂w(x,t)

∂t
+

∂f(w(x,t))

∂x
−h(w(x,t),x,t)

)
dxdt.

(2.1)

Integrating by parts and computing variations of the Lagrange functional (2.1) with
respect to w leads to the following adjoint system of linear equations:

−
∂q(x,t)

∂t
−

∂f(w)

∂w

∂q(x,t)

∂x
=

∂h(w,x,t)

∂w
q(x,t), x∈R, t∈ [0,T ), (2.2)

and the terminal condition

q(x,T )=w(x,T )−wd(x), x∈R, (2.3)

where ∂f
∂w and ∂h

∂w denote corresponding Jacobian matrices.
The coupled systems (1.1)–(1.3) and (2.2), (2.3) together with

q(x,0)=0 a.e. x∈R, (2.4)

represent the formal first-order optimality system for the problem (1.1)–(1.3), in which
(1.2) should be solved forward in time from t=0 to t=T , while the adjoint system
(2.2), (2.3) should be solved backward in time.

Note that it is well-known (see, e.g., [6, 8, 33]) that in the case of nonsmooth
solutions, the previous equations have to be complemented by variations of possible
shock positions in w. We refer the reader to the discussion in the Introduction on
further references and details on the arising additional equations. Here, we focus on a
numerical discretization of the backward problem (2.2), (2.3) in the case of a system
of hyperbolic equations.

3. Numerical method
In this section, we present the iterative algorithm for the optimal control problem

(1.1)–(1.3) based on the formal optimality system derived in Section 2. In order to
numerically construct the initial data, which minimize the cost functional (1.1), we

generate a sequence {w
(m)
0 (x)},m=0,1,2, . . . of initial conditions as described below.

In order to avoid an ambiguity, from now on the solution w0 of the optimization
problem (1.1)–(1.3) will be called the recovered initial data, while the corresponding
solution of the system (1.2) will be referred to as the recovered solution.

We assume that the two tolerance values, εJ for the cost functional J and ε∆J for
its change, have been chosen. Note that the second tolerance parameter ε∆J is needed
because the cost functional J may not converge to zero, and then the iterative process
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has to be stopped as the change of J becomes insignificant. The following algorithm
may be seen as a block Gauß-Seidel iteration. Compared with existing approaches
Steps 2, 5, and 6 in the algorithm below include novel contributions.

Algorithm 3.1.

Step 1. Choose an initial guess w
(0)
0 (x) for the initial data w0(x). Set m :=0.

Step 2. Numerically solve the hyperbolic system (1.2) with the initial state w0(x)=

w
(m)
0 (x) forward in time from t=0 to t=T by the central-upwind scheme

described in Section 3.1. We denote the obtained solution by w(m)(x,t).

Step 3. Compute the cost functional

J(w(m)(·,T );wd(·)) :=
1

2

∫

R

∣∣∣w(m)(x,T )−wd(x)
∣∣∣
2

dx.

Step 4. If either

J(w(m)(·,T );wd(·))≤ εJ ,

or

m>0 and
∣∣∣J(w(m)(·,T );wd(·))−J(w(m−1)(·,T );wd(·))

∣∣∣≤ ε∆J ,

stop the iteration process. Obtained w
(m)
0 (x) will be the approximation to the

optimal control.

Step 5. Numerically solve the adjoint system (2.2), (2.3) subject to the terminal con-

dition q(x,T )=w
(m)
0 (x)−wd(x) backward in time from t=T to t=0 using

the second-order upwind scheme described in Section 3.2. The solution is
denoted by q(m)(x,t).

Step 6. (This step may or may not be included.) In order to decrease the total vari-

ation of the latest control w
(m)
0 (x), apply one of the nonlinear filters F (de-

scribed in Section 3.3 below) to it:

w
(m)
0 (·) :=F

{
w

(m)
0 (·)

}
. (3.1)

Step 7. Update the control w
(m)
0 (x) using either a gradient descent or quasi-Newton

method [7, 22, 30].

Step 8. Set m :=m+1. Go to Step 2.

Remark 3.1. A choice of the initial guess w
(0)
0 (x) in Step 1 of the iteration process

may affect not only the overall convergence time, but also the numerical optimization
result itself (see Example 1 in Section 4.3) because the cost functional (1.3) may have
several local minima with respect to w0(x). Unless otherwise is indicated, in the

numerical experiments we choose the initial guess w
(0)
0 (x) according to the following

procedure.
We consider the IVP

∂ŵ(x,t)

∂t
+

∂f(ŵ(x,t))

∂x
=−h(ŵ(x,t),−x,T − t), x∈R, t∈ (0,T ],

ŵ(x,0)=wd(−x), x∈R,
(3.2)
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and numerically solve it forward in time by using the central-upwind scheme described

in Section 3.1. Then the initial guess w
(0)
0 (x) is chosen to be the solution of (3.2) at

time t=T . More precisely, we set

w
(0)
0 (x) := ŵ(−x,T ). (3.3)

Notice that (3.2) is obtained from (1.2) by formally reverting both t and x and
using wd as the initial condition. Clearly, for a time-reversible PDE this would give
the perfect initial guess. It is well-known that the nonlinear conservation laws are not
time-reversible because the solution dissipates at the presence of shock discontinuities;
see, e.g., [10, 26, 29]. However, the initial guess obtained using the above procedure
seems to be the perfect point to start the search for the optimal control.

Remark 3.2. Instead of the integral least-square cost functional (1.3) in Step 3 of
Algorithm 3.1 one may use its smoothed version defined by

Jδ(w(·,T );wd(·)) :=
1

2

∫

R

|(w∗ϕδ)(x,T )−(wd ∗ϕδ)(x)|
2
dx, (3.4)

where ϕδ : R→R is a smoothing kernel satisfying

ϕδ(x)=
1

δ
ϕ
(x
δ

)
, δ >0,

∫

R

ϕ(x)dx=1,

and ∗ denotes a componentwise convolution in x. In the numerical experiments re-
ported in Section 4, the Gaussian kernel ϕδ(x)=

1√
2πδ

e−x2/2δ2 has been used, but we

note that other smooth kernels give similar results.
In the case of Jδ and a scalar conservation law with convex flux function, rigorous

convergence results for several first-order finite-volume methods applied to both the
nonlinear forward equation (1.2) and the adjoint equation (2.2) have been established
(see, e.g., [1, 8, 32] for further discussion and references).

Remark 3.3. Note that the full solution q(m)(x,t) of the adjoint system does not
need to be stored during the iterations; only the result for q(m)(x,0) at time t=0 will
be used upon completion of the iteration in Step 5.

Remark 3.4. Applying a filter to w
(m)
0 in Step 6 is the way to adjust the current

initial guess and thus no formal restrictions on the filter should be enforced. Be-
cause the optimal control w0 of the optimization problem (1.1)–(1.3) is generically
nonunique, a filter will help to direct the optimization process towards the initial data
with the desired properties. However, in order to guarantee the convergence, the filter
should be switched off when the values of

J(w(m)(·,T );wd(·))

and/or

∣∣∣J(w(m)(·,T );wd(·))−J(w(m−1)(·,T );wd(·))
∣∣∣

are sufficiently small.
In addition, the filter does not have to be used at each m: It can be applied,

for example, only if the variation of w
(m)
0 (x) is large. In fact, because the filter
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will be eventually switched off, instead of a filter, one may also consider any type of

perturbation (including a random one) of w
(m)
0 in Step 6, namely any F{·}, which

will help to make sure that the filtered iterate w
(m)
0 satisfies the desired properties of

the optimal w0.
We would like to emphasize that both the type of the filer F and the way it is

being used in the algorithm may significantly affect the optimization result for the
recovered initial data in the case of time-irreversible PDEs. However, it rather should
be seen as an advantage because it provides a tool of enforcing convergence to the
best (in a certain sense) optimal control w0 in the problem (1.1)–(1.3).

Remark 3.5. If we use a steepest descent update in Step 7 for some stepsize σm>0
as

w
(m+1)
0 (x)=w

(m)
0 (x)−σmq

(m)(x,0),

then, due to a global finite-volume approximation of w, we obtain a piecewise polyno-

mial control w
(m+1)
0 in this step of Algorithm 3.1. The fact that the control w

(m+1)
0

is always piecewise polynomial prevents the accumulation of discontinuities in the
forward solution in our algorithm. Clearly, other (higher-order) gradient-based opti-
mization methods can be used to speed up the convergence, especially in the advance
stages of the above iterative procedure; see, e.g., [22, 30] for more details.

3.1. Godunov-type central-upwind scheme for (1.2). In Step 2 of Algo-
rithm 3.1, the hyperbolic system (1.2) is being solved using the second-order central-
upwind scheme introduced in [23]; see also [24, 25]. This scheme is a Riemann-
problem-solver-free Godunov-type finite-volume method, which can be applied as an
efficient highly accurate “black-box” solver to a wide variety of nonlinear hyperbolic
systems.

Here, we briefly describe the scheme. We consider the IVP (1.2). For simplicity,
we assume that h(w(x,t),x,t)≡0 and take a uniform spatial grid with xα :=α∆x.
Given the time level t∈ [0,T ], we assume that the cell averages over the cells Ij :=
[xj− 1

2
,xj+ 1

2
],

wj(t)≈
1

∆x

∫

Ij

w(x,t)dx, (3.5)

are available. They are then evolved in time using the semi-discrete central-upwind
scheme:

dwj(t)

dt
=−

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
, (3.6)

where the numerical flux Hj+ 1
2
is given by

Hj+ 1
2
:=

a+
j+ 1

2

f(w−
j+ 1

2

)−a−
j+ 1

2

f(w+
j+ 1

2

)

a+
j+ 1

2

−a−
j+ 1

2

+a+
j+ 1

2

a−
j+ 1

2

[
w+

j+ 1
2

−w−
j− 1

2

a+
j+ 1

2

−a−
j+ 1

2

−dj+ 1
2

]
. (3.7)

From now on we suppress the time-dependence of all indexed quantities in order to
shorten the notation. In (3.7), w−

j+ 1
2

and w+
j+ 1

2

are the left- and right-sided values of

the piecewise linear reconstruction of w,

w̃(x) :=
∑

j

{wj+sj(x−xj)}χIj
(x), χIj

(x)=

{
1, if x∈ Ij ,

0, otherwise,
(3.8)
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at the point x=xj+ 1
2
:

w−
j+ 1

2

:=wj+
∆x

2
sj , w

+
j+ 1

2

:=wj+1−
∆x

2
sj+1. (3.9)

To make the reconstruction (and thus the entire scheme) non-oscillatory, the slopes sj
have to be computed using a nonlinear limiter. In this paper we use the generalized
minmod limiter (see, e.g., [27, 28, 31, 35]):

sj :=minmod

(
θ
wj+1−wj

∆x
,
wj+1−wj−1

2∆x
, θ
wj−wj−1

∆x

)
, θ∈ [1,2], (3.10)

where the minmod function is defined as follows:

minmod(z1,z2, . . .) :=





min
j

{zj}, if zj >0,∀j,

max
j

{zj}, if zj <0,∀j,

0, otherwise.

(3.11)

Note that the parameter θ is used to control the amount of numerical dissipation:
Larger values of θ correspond to less dissipative schemes. Also note that in the vector
case, the minmod function (3.11) is applied in a componentwise manner.

The one-sided local speeds a−
j+ 1

2

and a+
j+ 1

2

in (3.7) can be estimated by

a−
j+ 1

2

:=min
{
λ1

(
A(w−

j+ 1
2

)
)
,λ1

(
A(w+

j+ 1
2

)
)
,0
}
,

a+
j+ 1

2

:=max
{
λs

(
A(w−

j+ 1
2

)
)
,λs

(
A(w+

j+ 1
2

)
)
,0
}
,

(3.12)

where λ1<λ2<...<λs are the eigenvalues of the Jacobian A := ∂f
∂w .

Finally, in the central-upwind flux (3.7), the built-in “anti-diffusion” term dj+ 1
2

is given by

dj+ 1
2
=minmod

(
w+

j+ 1
2

−w∗
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

,
w∗

j+ 1
2

−w−
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

)
, (3.13)

where the intermediate values w∗
j+ 1

2

are given by

w∗
j+ 1

2

=
a+
j+ 1

2

w+
j+ 1

2

−a−
j+ 1

2

w−
j+ 1

2

−
{
f(w+

j+ 1
2

)−f(w−
j+ 1

2

)
}

a+
j+ 1

2

−a−
j+ 1

2

; (3.14)

see [23] for details.
The semi-discretization (3.6), (3.7), (3.9)–(3.14) is a system of ODEs, which

should be integrated using a (nonlinearly) stable and sufficiently accurate ODE solver.
In our numerical experiments, we have used the third-order strong stability preserving
(SSP) Runge-Kutta method from [19, 20].

At the end, after solving the ODE system (3.6), (3.7), (3.9)–(3.14) from time t=0
to the final time t=T , we will obtain the set of cell averageswj(t

n) for n=0,1, . . . ,N ,
and thus the set of N+1 piecewise linear interpolants (3.8), reconstructed at the same
time levels t0,t1, . . . ,tN . These reconstructions are to be stored and then used in the
numerical solution of the adjoint system (2.2), (2.3), as it is described in the next
section.
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3.2. Upwind scheme for the adjoint system (2.2), (2.3). In this section,
we describe the second-order semi-discrete upwind scheme used in Step 5 of Algorithm
3.1 for solving the adjoint system of PDEs (2.2). Because w(x,t) has been computed
in Step 2, the system (2.2) is the following linear system with variable coefficients:

∂q(x,t)

∂t
+A(x,t)

∂q(x,t)

∂x
=B(x,t)q(x,t), x∈R, t∈ [0,T ), (3.15)

where

A(x,t) :=
∂f(w(x,t))

∂w
and B(x,t) :=−

∂h(w(x,t),x,t)

∂w
. (3.16)

To numerically solve the IVP (3.15), (2.3) backward in time, we proceed as follows.
We first diagonalize the matrix A(x,t):

A(x,t)=R(x,t)Λ(x,t)R−1(x,t), (3.17)

where Λ(x,t)=diag{λ1(x,t),λ2(x,t), . . . ,λs(x,t)}. We then introduce the characteris-
tic variables

ψ(x,t) :=R−1(x,t)q(x,t)

and rewrite the system (3.15) as

∂ψ(x,t)

∂t
+Λ(x,t)

∂ψ(x,t)

∂x

=R−1(x,t)

(
B(x,t)R(x,t)−

∂R(x,t)

∂t
−A(x,t)

∂R(x,t)

∂x

)
ψ(x,t).

Because Λ is diagonal, we now design the second-order semi-discrete upwind scheme
taking into account that the system is being solved backward in time:

dψj(t)

dt
=− [Λ+(xj ,t)ψ

+
x (t)+Λ−(xj ,t)ψ

−
x (t)]

+R−1(xj ,t)

(
B(xj ,t)R(xj ,t)−

∂R(xj ,t)

∂t
−A(xj ,t)

∂R(xj ,t)

∂x

)
ψj(t),

(3.18)
where ψj(t) :=ψ(xj ,t) and

Λ±=diag{λ±
1 (x,t),λ

±
2 (x,t), . . . ,λ

±
s (x,t)}

with λ+
i :=max{λi,0} and λ−

i :=min{λi,0}.
As before, we use the nonlinear minmod limiter to prevent (minimize) spurious

oscillations. The limiter is applied to the second numerical derivatives and thus the
values of ψ±

x are computed as follows:

ψ−
x (t)=

ψj−ψj−1

∆x
+minmod

(
ψj−2ψj−1+ψj−2

2∆x
,
ψj+1−2ψj+ψj−1

2∆x

)
,

ψ+
x (t)=

ψj+1−ψj

∆x
−minmod

(
ψj+1−2ψj+ψj−1

2∆x
,
ψj+2−2ψj+1+ψj

2∆x

)
,

(3.19)

where the minmod function is defined in (3.11).
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It is more convenient to rewrite the semi-discrete scheme (3.18), (3.19) in terms
of the original variables q. Denoting

qj(t) :=q(xj ,t), Rj(t) :=R(xj ,t), A±(x,t) :=R(x,t)Λ±(x,t)R−1(x,t),

defining the matrix

Pj+ 1
2
(t) :=Rj(t)R

−1
j+1(t), (3.20)

and omitting for simplicity the dependence of all indexed quantities on t, we obtain

dqj
dt

=−
[
A+(xj ,t)q

+
x +A−(xj ,t)q

−
x

]
+
(
B(xj ,t)−A(xj ,t)

∂R(xj ,t)

∂x
R−1(xj ,t)

)
qj ,

(3.21)
where

q−x =
qj−P−1

j− 1
2

qj−1

∆x

+Rjminmod


R−1

j

Pj+ 1
2
qj+1−2qj+P−1

j− 1
2

qj−1

2∆x
,R−1

j−1

Pj− 1
2
qj−2qj−1+P−1

j− 3
2

qj−2

2∆x


 ,

q+x =
Pj+ 1

2
qj+1−qj

∆x

−Rjminmod


R−1

j

Pj+ 1
2
qj+1−2qj+P−1

j− 1
2

qj−1

2∆x
,R−1

j+1

Pj+ 3
2
qj+2−2qj+1+P−1

j+ 1
2

qj

2∆x


 .

(3.22)
Notice that in order to use the semi-discrete scheme (3.21), (3.22), one has to

evaluate the matrices A(x,t) and B(x,t), defined in (3.16). Because the computed
solution of the IVP (1.2) is only available at the discrete time levels t0,t1, . . . ,tN , we will
only have A(x,tn) and B(x,tn) evaluated according to (3.16) with w(x,tn)= w̃(x,tn)
for n=0,1, . . . ,N . Therefore, the ODE system (3.21), (3.22) has to be integrated
backward in time using the ODE solver that uses the information from time levels
t0,t1, . . . ,tN only—not from any intermediate times. In the numerical experiments
reported in Section 4, we have used the one-step two-stages SSP Runge-Kutta (Heun)
method ([19, 20]), which satisfies the above requirement.

Remark 3.6. Note that if we either consider a scalar case of the problem (3.15),
(2.3), for which R(x,t)≡1, or simplify the semi-discrete scheme (3.21), (3.22) by
locally freezing the coefficient matrix A(x,t) at the point (xj ,t), that is, by setting
A(x,t)≡A(xj ,t) and thus R(x,t)≡R(xj ,t) and ∂R(x,t)/∂x≡0 for x near xj , then
the second-order semi-discrete upwind scheme reduces to

dqj
dt

=−
[
A+(xj ,t)q

+
x +A−(xj ,t)q

−
x

]
+B(xj ,t)qj . (3.23)

Here, q±x are given by (3.22) with Pj+ 1
2
≡ Is, ∀j, where Is states for the s×s identity

matrix.

Remark 3.7. The first-order version of the semi-discrete upwind scheme (3.21),
(3.22) is obtained by replacing (3.22) with

q−x =
qj−P−1

j− 1
2

qj−1

∆x
, q+x =

Pj+ 1
2
qj+1−qj

∆x
. (3.24)
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3.3. Conservative nonlinear filters. In this section, we briefly describe
conservative nonlinear filters, which may be used in Step 6 of Algorithm 3.1 to reduce

the total variation of the iterates w
(m)
0 . These filters were proposed in [11].

The simplest filter applied to the set of cell averages of a conservative variable φ
satisfies the following properties (for details, see [11, Algorithm 2.2]):

1. After the filter has been applied, the total variation of φ,

TV (φ) :=
∑

j

|φj+1−φj |,

must not increase and the number of updated values of φj should be as small
as possible.

2. If φj is a local maximum (minimum) then φj is decreased (increased) and one

of the neighboring values, either φj−1 or φj+1, is increased (decreased) in a

way that
∑

jφj∆xj does not change.

3. The filtering processes must not introduce additional artificial oscillations and
thus the sign of both φj+1−φj and φj−φj−1 should not change.

The way this filter acts on a discrete set of values is schematically shown in figure
3.1.

 

 

before filtering
after filtering

Fig. 3.1. Conservative nonlinear filter.

Notice that the filter, described above, is not restricted to a uniform grid case.
Because after applying the filter the extrema will consist of at least two neighboring
cell averages (see figure 3.1), the equal neighboring values can be combined into new
cell averages over larger cells (plateaus) without loss of information. One may consider
applying the filter again then as it is described in [11, Algorithm 2.4]. Applying the
filter ` times, combining the cell averages each time into platos, leads to the result that
consists of plateaus of length `+1 (at least). In the numerical experiments, presented
in Section 4, we have used the conservative nonlinear filter with `=10 (examples 2b,
4b, and 5b).

4. Numerical optimization results
In this section, the performance of the optimization method described in Algo-

rithm 3.1 is demonstrated on several examples of PDE-constrained control problems
governed by the systems of conservation laws. We begin with considering the opti-
mization problem (1.1)–(1.3) governed by the Euler equations of gas dynamics and
solve this problem with a smooth prescribed solution. We then consider two exam-
ples with the system (1.2) being the isothermal gas dynamics equations. Finally, we
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consider several examples of the control problem governed by Euler equations of gas
dynamics with discontinuous prescribed terminal states.

In all of the numerical experiments except for the ones reported in examples 1

and 2, we choose the initial guess w
(0)
0 according to (3.3) by numerically solving the

IVP (3.2) using the central-upwind scheme described in Section 3.1. In Example 1,
we illustrate that the choice of the initial guess is very important in the nonsmooth
cases.

The forward IVP (1.2) is numerically solved by the same central-upwind scheme.
We have used the minmod parameter θ=1.3 in all of the numerical experiments except
for Example 4, where θ=1.1 has been used.

In all of the numerical experiments except for Example 2, we select a sufficiently
large computational domain so that the solution remains flat at its endponts. We
then use the Neumann boundary conditions together with the ghost cell technique to
minimize any possible reflected waves.

Notice that if the filter (Step 6) in Algorithm 3.1 is switched on, the same notation

w
(m)
0 is used for both filtered and unfiltered controls. In all of the numerical examples,

whenever the filter has been employed for the iteration step m, we plot the cost
functional (1.3) (or its smoothed version (3.4)) that corresponds to the filtered initial

data w
(m)
0 .

4.1. Isothermal gas dynamics equations. We consider the optimization
problem (1.1)–(1.3) governed by the isothermal gas dynamics equations. We minimize
the cost functional,

J(w(·,T );wd(·))=
1

2

∫

R

∣∣(ρ(x,T ),M(x,T ))T −(ρd(x),Md(x))
T
∣∣2dx, (4.1)

or its smoothed version (3.4) subject to the system of isothermal gas dynamics equa-
tions,

∂

∂t

[
ρ
M

]
+

∂

∂x

[
M

ρu2+p

]
=0, p= c2ρ, (x,t)∈R×(0,T ]. (4.2)

Here, ρ, u, M≡ρu, and p are the density, velocity, momentum, and pressure, re-
spectively, and c is a positive constant, which has been taken c=1 in the numerical
experiments reported in examples 3 and 4. Here,

w(x,t)=(ρ,M)T , f(w)=(M,ρu2+p)T , h(w,x,t)=0,

and the terminal state,

wd(x) :=
(
ρd(x),Md(x)≡ρd(x)ud(x)

)T
,

is as before prescribed at time t=T .
To implement the upwind scheme from Section 3.2 for the adjoint problem (2.2),

(2.3), we compute the matrices A(x,t) and B(x,t), which are

A(x,t)=

[
0 1

c2−u2 2u

]
, B(x,t)≡0.

Then, the diagonalization (3.17) of A(x,t) results in

R(x,t)=

[
1 1

u−c u+c

]
, Λ(x,t)=

[
u−c 0
0 u+c

]
, R−1(x,t)=

1

2c

[
c+u −1
c−u 1

]
.
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Finally, we numerically solve the adjoint equation (3.15) by the semi-discrete
upwind scheme (3.21), (3.22), where the matrix Pj+ 1

2
defined in (3.20) and its inverse

P−1
j+ 1

2

are

Pj+ 1
2
=

[
1 0

uj−uj+1 1

]
, P−1

j+ 1
2

=

[
1 0

uj+1−uj 1

]
,

and because c is constant,

∂R(xj ,t)

∂x
=

∂u(xj ,t)

∂x

[
0 0
1 1

]
.

In the latter formula, we use the minmod function to evaluate the velocity derivatives:

∂u(xj ,t)

∂x
=minmod

(
θ
uj+1−uj

∆x
,
uj+1−uj−1

2∆x
, θ

uj−uj−1

∆x

)
.

In the numerical experiments reported below, we have chosen the same value of the
parameter θ, which has been used in (3.9), (3.10).

4.2. Euler equations of gas dynamics. In order to numerically solve the
control problem (1.1)–(1.3) constrained by the Euler equations of gas dynamics, we
minimize the following functional:

J(w(·,T );wd(·))=
1

2

∫

R

∣∣(ρ(x,T ),M(x,T ),E(x,T ))T −(ρd(x),Md(x),Ed(x))
T
∣∣2dx.

(4.3)
Here,

w(x,t)=(ρ,M,E)T , f(w)=(M,ρu2+p,u(E+p))T , h(w,x,t)=0,

where ρ, u, M≡ρu, p, and E are the density, velocity, momentum, pressure, and
total energy, respectively. The governing hyperbolic system of conservation laws is

∂

∂t




ρ
M
E


+ ∂

∂x




M
ρu2+p
u(E+p)


=0, E=

p

γ−1
+

1

2
ρu2, (x,t)∈ I×(0,T ], (4.4)

where γ is an adiabatic constant taken to be γ=1.4, which corresponds to diatomic
ideal gases. The terminal state,

wd(x) :=
(
ρd(x),Md(x)=ρd(x)ud(x),Ed(x)=

pd(x)

γ−1
+

1

2
ρd(x)u

2
d(x)

)T
,

is as before prescribed at time t=T .
To implement the upwind scheme from Section 3.2 for the adjoint problem (2.2),

(2.3), we compute the matrices A(x,t) and B(x,t), which are

A(x,t)=




0 1 0
γ−3
2 u2 (3−γ)u γ−1

−γE
ρ u+(γ−1)u3 γE

ρ + 3
2 (1−γ)u2 γu


 , B(x,t)≡0.
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Then, the diagonalization (3.17) of A(x,t) results in

Λ(x,t)=diag{λ1(x,t),λ2(x,t),λ3(x,t)}, λ1(x,t)=u−c, λ2(x,t)=u, λ3(x,t)=u+c,
(4.5)

where c :=
√

γp
ρ is the speed of sound. The matrices R(x,t) and R−1(x,t) defined in

(3.17) are given by

R(x,t)=




1 1 1
u−c u u+c
H−cu 1

2u
2 H+cu


 , R−1(x,t)=




1
2 (b1+

u
c )

1
2 (−b2u−

1
c )

1
2b2

1−b1 b2u −b2
1
2 (b1−

u
c )

1
2 (−b2u+

1
c )

1
2b2


 ,

where b1 :=
1
2b2u

2, b2 :=
γ−1
c2 , and the enthalpy H := E+p

ρ .

In examples 2, 5, and 7, we numerically solve the adjoint equation (3.15) by the
semi-discrete upwind scheme (3.23), where q±x (t) are given by (3.22) with Pj+ 1

2
≡ I3,

∀j.
Finally, in the numerical experiments reported in Example 6, we have used the

semi-discrete upwind scheme (3.21), (3.22) to solve the adjoint problem (3.15). In
this case, the matrix Pj+ 1

2
defined in (3.20) is given by

Pj+ 1
2
=




1 0 0
uj−

cj
cj+1

uj+1
cj

cj+1
0

1
2

(
uj−

cj
cj+1

uj+1

)2
cj

cj+1

(
uj−

cj
cj+1

uj+1

) (
cj

cj+1

)2


 ,

and thus,

P−1
j+ 1

2

=




1 0 0
uj+1−

cj+1

cj
uj

cj+1

cj
0

1
2

(
uj+1−

cj+1

cj
uj

)2
cj+1

cj

(
uj+1−

cj+1

cj
uj

) (
cj+1

cj

)2


 ,

and the derivative
∂R(xj ,t)

∂x in (3.21) is computed by substituting x=xj into

∂R

∂x
=

∂u

∂x




0 0 0
1 1 1
−c u c


+ ∂c

∂x




0 0 0
−1 0 1
−u 0 u


+ ∂H

∂x



0 0 0
0 0 0
1 0 1


 .

The derivatives on the right-hand side of the latter formula are evaluated using the
minmod limiter as follows:

∂g(xj ,t)

∂x
=minmod

(
θ
gj+1−gj

∆x
,
gj+1−gj−1

2∆x
, θ

gj−gj−1

∆x

)
,

where the function g is either u, c, or H. In Example 6, we have taken θ=1.3.

4.3. Numerical examples.

Example 1: Inviscid Burgers equation with discontinuous wd. Let us
consider a simple scalar example, where the optimal control problem is governed by
the inviscid Burgers equation,

∂w(x,t)

∂t
+

∂

∂x

(
w(x,t)2

2

)
=0, (4.6)
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subject to the discontinuous terminal datum

wd(x)=

{
1, if 0≤x≤1,

0, otherwise,
(4.7)

prescribed at T =1. We solve the problem in the interval [−1,2] on a uniform grid
with ∆x=1/200. We take εJ =3 ·10−2 and ε∆J =10−7 in the stopping criteria in
Step 4 of Algorithm 3.1.

One can show that the optimal solution is obtained for

w0(x)=





1, if − 1
2 <x≤0,

1−x, if 0<x≤1,

0, otherwise,

for which

w(x,T )=





x+ 1
2 , if − 1

2 ≤x≤ 1
2 ,

1, if − 1
2 ≤x≤1,

0, otherwise

and J(w(·,T ),wd(·))=1/24.

We first take the initial guess w
(0)
0 according to (3.3) and show it together with the

corresponding solution w(0)(x,1) in figure 4.1. As one can see the optimal solution
is quite accurately recovered with no iterations required just by this initial guess.
The convergence of Algorithm 3.1 (with the filter in Step 6 being switched off) is
demonstrated in figures 4.2 and 4.4 (left).

−1 0 1 2
0

0.5

1

1.5
0 iterations

w
0

−1 0 1 2
0

0.5

1

1.5
0 iterations

w

Fig. 4.1. Example 1: Left: Initial guess w
(0)
0 (x) (plotted with points) obtained according to

(3.3); Right: Recovered solution w(0)(x,1) (plotted with points) and the terminal state ud(x) (dashed
line).

On the other hand, if one takes a different initial guess, the optimal solution may
or may not be recovered. For instance, let us take

w
(0)
0 (x)≡0. (4.8)

The recovered solution is now different (see figure 4.3), and as one can see in figure
4.4 (right), the value of the cost functional stabilizes at about 0.16593, which is about
4 times larger than the actual minimal value. The reason for the failure of the initial
guess (4.8) is that the studied minimization problem may have several local minima.
This stresses the importance of selecting the initial guess according to (3.3) in the
case of discontinuous terminal state.



M. HERTY, A. KURGANOV, AND D. KUROCHKIN 29

−1 0 1 2
0

0.5

1

1.5
25 iterations

w
0

−1 0 1 2
0

0.5

1

1.5
25 iterations

w

Fig. 4.2. Example 1: Left: w
(25)
0 (x) (plotted with points); Right: Recovered solution w(25)(x,1)

(plotted with points) and the terminal state wd(x) (dashed line). The initial guess is chosen according
to (3.3).

−1 0 1 2
0

0.5

1

1.5
66 iterations

w
0

−1 0 1 2
0

0.5

1

1.5
66 iterations

w

Fig. 4.3. Example 1: Left: w
(66)
0 (x) (plotted with points); Right: Recovered solution w(66)(x,1)

(plotted with points) and the terminal state wd(x) (dashed line). The initial guess is chosen according
to (4.8).
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Fig. 4.4. Example 1: Dependence of the cost functional for the initial guess, w
(0)
0 (x), given by

(3.3) (left) and by (4.8) (right).

Example 2: wd is a smooth solution of the Euler equations. We first
consider the optimization problem (1.1), (4.3), (4.4) in the case of smooth terminal
state wd(x)=(ρd(x),Md(x),Ed(x))

T , which is a solution of a time-reversible IVP for
the Euler equation of gas dynamics.

We solve the problem in the interval [0,1] with the periodic boundary conditions.
The terminal state is the solution of the system (4.4) subject to the smooth 1-periodic
initial data

(ρ(x,0),u(x,0),p(x,0))=(1+0.2sin(2πx),1,1).

It is easy to show that the solution of this IVP admits a unique smooth solution

(ρ(x,t),u(x,t),p(x,t))=(1+0.2sin(2π(x− t)),1,1), (x,t)∈ [0,1]× [0,T ],

for any T . In our numerical experiments, we have taken T =0.16 and thus the corre-
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Fig. 4.5. Example 2: Recovered initial data
(

ρ
(m)
0 (x),u

(m)
0 (x),p

(m)
0 (x)

)

for m=1,4,20,100
(plotted with points) and the exact initial data (dashed line).

sponding terminal state is

(ρd(x),ud(x),pd(x))=(1+0.2sin(2π(x−0.16),1,1). (4.9)

Because the solution of the IVP studied in this example is time-reversible, the
initial guess chosen in accordance with (3.2), (3.3) would be the optimal control
for the problem (1.1), (4.3), (4.4) and no iterations would be required. In order
to demonstrate the convergence of Algorithm 3.1 (implemented without Step 6), we
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Fig. 4.6. Example 2: Recovered solution
(

ρ(m)(x,0.16),p(m)(x,0.16),u(m)(x,0.16)
)

for m=

1,4,20,100 (plotted with points) and the terminal state
(

ρd(x),ud(x),pd(x)
)

(dashed line).

choose the following constant initial guess:

(
ρ
(0)
0 (x),u

(0)
0 (x),p

(0)
0 (x)

)
≡ (0.01,0,0.01). (4.10)

The obtained numerical results for the recovered initial data(
ρ
(m)
0 (x),u

(m)
0 (x),p

(m)
0 (x)

)
are shown in figure 4.5 for m=1,4,20,100. The cor-

responding recovered solutions at T =0.16 are presented in figure 4.6. Finally, in
figure 4.7 we show the behavior of the L1-errors and minimization functional (4.3)
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Fig. 4.7. Example 2: Dependence of the logarithm of the cost functional (4.3) (left) and the
L1-errors (right) on the number of iterations.

using a logarithmic scale. All of the computations have been performed using a
uniform grid with ∆x=1/200.

As one can see in figures 4.5–4.7, even for the “unprepared” initial guess (4.10),
our method achieves very high resolution of all components of the solution.

Example 3: wd is a continuous solution of the isothermal gas dynam-
ics equations. In this example, we consider the optimization problem (1.1), (4.1)
governed by the isothermal gas dynamics equation (4.2) with the continuous terminal
state wd(x)=(ρd(x),Md(x))

T prescribed at time T =0.15. We solve the problem in
the interval [−0.5,1.5] and use a uniform grid with ∆x=1/200.

The terminal state wd is a solution of the isothermal gas dynamics equation (4.2)
subject to the following discontinuous initial data:

(ρ(x,0),u(x,0))=

{
(1,−2), if x≤0.5,

(1,2), if x>0.5.
(4.11)

In the experiments, we obtain wd numerically using the second-order semi-discrete
central-upwind scheme (Section 3.1) on a uniform grid with ∆x=1/200. The opti-
mization is performed on the same uniform grid with εJ =3 ·10−5 and ε∆J =10−12 in
the stopping criteria in Step 4 of Algorithm 3.1.

The initial guess
(
ρ
(0)
0 (x),u

(0)
0 (x)

)
obtained by (3.3) is shown in figure 4.8 (left),

and the corresponding solution,
(
ρ(0)(x,0.15),u(0)(x,0.15)

)
, is shown in figure 4.8

(right). We would like to point out that it is not surprising that the discrepancy in

the control w
(0)
0 and the original initial data (4.11) is located near x=0 (see figure 4.8,

left). One can easily see that the solution of the IVP (4.2), (4.11) is not time-reversible
and it is discontinuous exactly at (x,t)=(0,0).
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Fig. 4.8. Example 3: Left: Initial guess

(

ρ
(0)
0 (x),u

(0)
0 (x)

)

(plotted with points) and the initial

data (4.11) (dashed line); Right: Recovered solution
(

ρ(0)(x,0.15),u(0)(x,0.15)
)

(plotted with points)

and the terminal state
(

ρd(x),ud(x)
)

(dashed line).

Though the results presented in figure 4.8 already look quite good, we would like
to improve the solution by applying Algorithm 3.1.

Example 3a: We first implement Algorithm 3.1 without Step 6, that is, with the

filter being switched off. The recovered initial data
(
ρ
(2361)
0 (x),u

(2361)
0 (x)

)
are shown

in figure 4.9 (left) and the corresponding recovered solution is plotted in figure 4.9
(right). In figure 4.10, we demonstrate the behavior of the L1-errors together with the
cost functional (4.1) form=1, . . . ,9750 iterations using a logarithmic scale. As one can
clearly see, given the tolerance values the solution has been fully recovered. Moreover,
the cost functional keeps decreasing (see figure 4.10, left), and the recovered solution,
in fact, can be further improved. The initial data, however, do not fully match the
original initial conditions (4.11). To decrease the total variation of the recovered
initial density, we switch on the filter.
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Fig. 4.9. Example 3a: Left:
(

ρ
(2361)
0 (x),u

(2361)
0 (x)

)

(plotted with points) and the initial

data (4.11) (dashed line); Right: Recovered solution
(

ρ(2361)(x,0.15),u(2361)(x,0.15)
)

(plotted with

points) and the terminal state
(

ρd(x),ud(x)
)

(dashed line).
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Fig. 4.10. Example 3a: Dependence of the logarithm of the cost functional (4.1) (left) and the
L1-errors (right) on the number of iterations.
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Fig. 4.11. Example 3b: Left:
(

ρ
(40)
0 (x),u

(40)
0 (x)

)

(plotted with points) and the initial data

(4.11) (dashed line); Right: Recovered solution
(

ρ(40)(x,0.15),u(40)(x,0.15)
)

(plotted with points)

and the terminal state
(

ρd(x),ud(x)
)

(dashed line).
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Fig. 4.12. Example 3b: Dependence of the logarithm of the cost functional (4.1) (left) and the
L1-errors (right) on the number of iterations.
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Example 3b: We now switch the filter in Step 6 of Algorithm 3.1 on. We
implement the filter with `=10 (see Section 3.3 for details). The filter is applied to

variables ρ
(m)
0 and u

(m)
0 at every third step starting from m=0.

The recovered initial data w
(40)
0 (x) and solution w(40)(x,0.15) are shown in figure

4.11, where one can see a remarkably sharp recovery of the discontinuous initial data.
The L1-errors and the cost functional (4.3) are plotted in figure 4.12 for m=1, . . . ,64
iterations using a logarithmic scale. Because the filter is used, the curves in figure
4.12 do not decay in such a smooth and monotone manner as they do in the unfiltered
case (figure 4.10), but both the cost functional J and L1-errors decrease much faster
now though they occasionally have small jumps up. The jumps of the cost functional
are due to the filter which shifts the control towards the initial data with smaller
total variation so that the control update in Step 7 of Algorithm 3.1 results in the
convergence towards the initial data, which are very similar to (4.11).

Example 4: wd is a discontinuous solution of the isothermal gas dynam-
ics equations. In this example, we consider the optimization problem (1.1), (4.1),
(4.2) with the terminal state wd(x)=(ρd(x),Md(x))

T containing two shock waves (it
is prescribed at T =0.2). We again solve the problem in the interval [−0.5,1.5] and
use a uniform grid with ∆x=1/200.
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Fig. 4.13. Example 4: Left: Initial guess
(

ρ
(0)
0 (x),u

(0)
0 (x)

)

(plotted with points) and the initial

data (4.12)(dashed line); Right: Recovered solution
(

ρ(0)(x,0.2),u(0)(x,0.2)
)

(plotted with points)

and the terminal state
(

ρd(x),ud(x)
)

(dashed line).

The terminal state is a solution of (4.2) subject to the following Riemann initial
data:

(ρ(x,0),u(x,0))=

{
(0.17,2), if x≤0.5,

(0.17,−2), if x>0.5.
(4.12)

As in Example 3, we obtain wd numerically using the second-order semi-discrete
central-upwind scheme on a uniform grid with ∆x=1/200. The optimization is per-
formed on the same uniform grid with εJ =3 ·10−5 and ε∆J =10−12 in the stopping
criteria in Step 4 of Algorithm 3.1.

The initial guess obtained by (3.3) and the corresponding solution,(
ρ(0)(x,0.2),u(0)(x,0.2)

)
, are shown in figure 4.13. As one can see there, the solu-

tion is not well recovered near the discontinuities yet. In order to improve the result,
we implement the optimization Algorithm 3.1 with the filter in Step 6 being switched
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Fig. 4.14. Example 4: Left:

(

ρ
(17)
0 (x),u

(17)
0 (x)

)

(plotted with points) and the initial data (4.12)

(dashed line); Right: Recovered solution
(

ρ(17)(x,0.2),u(17)(x,0.2)
)

(plotted with points) and the

terminal state
(

ρd(x),ud(x)
)

(dashed line).
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Fig. 4.15. Example 4: Dependence of the logarithm of the cost functional (4.1) (left) and the
L1-errors (right) on the number of iterations.

off. The results are shown in the figure 4.14 and the cost functional (4.3) together
with the corresponding L1-errors for the recovered ρ and u are presented in figure 4.15
for m=1, . . . ,511 iterations, though to achieve the desired accuracy, only 17 iterations
were needed.

As one can see in figure 4.15 (left), the cost functional keeps decreasing mono-
tonically while the L1-errors plotted in figure 4.15 (right), on the contrary, do not
experience monotone behavior in this example. As one can see, the quality of the
recovered solution gets improved, while the recovered initial data do not approach
(4.12). The latter is explained by nonuniqueness of the optimal control in the case
of discontinuous terminal state. We would like to point out that switching the filter
in Step 6 of Algorithm 3.1 on leads to no further improvement, unless the filter is

applied to ρ
(m)
0 with extremely large `. This would be equivalent to searching an

optimal control among the initial conditions with constant ρ, which is obviously not
a generic case.
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Fig. 4.16. Example 5: Left: Initial guess
(

ρ
(0)
0 (x),u

(0)
0 (x),p

(0)
0 (x)

)

(plotted with points) and

the Sod initial data (dashed line); Right: Recovered solution
(

ρ(0)(x,0.16),u(0)(x,0.16),p(0)(x,0.16)
)

(plotted with points) and the terminal state
(

ρd(x),ud(x),pd(x)
)

(dashed line).

Example 5: wd is a solution of the Sod shock tube problem. In this
example, the terminal state wd(x)=(ρd(x),Md(x),Ed(x))

T is a nonsmooth solution
of the Sod shock tube problem for the Euler equations of gas dynamics.

We solve the optimization problem (1.1), (4.3), (4.4) in the interval [0,1] using a
uniform grid with ∆x=1/200. The terminal state wd is prescribed at time T =0.16
and obtained by numerically solving the system (4.4) subject to the following Riemann
initial data:

(ρ(x,0),u(x,0),p(x,0))=

{
(1.000,0,1.0), if x≤0.5,

(0.125,0,0.1), if x>0.5.
(4.13)

The solution is computed using the second-order semi-discrete central-upwind scheme
(Section 3.1) on a uniform grid with ∆x=1/200. In this example, we use εJ =10−5

and ε∆J =10−12 in the stopping criteria in Step 4 of Algorithm 3.1 and solve the
optimization problem on the same uniform grid.

As one can see in figure 4.16, the initial guess obtained by (3.3) (shown in figure
4.16, left) immediately leads to a very accurate recovered solution (shown in figure
4.16, right). To reach the desired tolerance, we proceed according to Algorithm 3.1.

Example 5a: We first implement Algorithm 3.1 with the nonlinear filter
switched off (that is, with Step 6 omitted). The recovered initial data are shown
in figure 4.17 (left). In figure 4.17 (right), we plot the corresponding recovered so-
lution, and the behavior of the L1-errors together with the cost functional (4.3) are
shown in figure 4.18 using a logarithmic scale.

We would like to point out that in this example, the iteration process stops based
on the second stopping criterion in Step 4 of Algorithm 3.1 because the size of cost
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Fig. 4.17. Example 5a: Left:
(

ρ
(114)
0 (x),u

(114)
0 (x),p

(114)
0 (x)

)

(plotted with points) and the Sod

initial data (dashed line); Right: Recovered solution
(

ρ(114)(x,0.16),u(114)(x,0.16),p(114)(x,0.16)
)

(plotted with points) and the terminal state
(

ρd(x),ud(x),pd(x)
)

(dashed line).
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Fig. 4.18. Example 5a: Dependence of the logarithm of the cost functional (4.3) (left) and the
L1-errors (right) on the number of iterations.

functional J stays above εJ =10−5; see figure 4.18 (left). Moreover, one can see
why having the second stopping criterion is important: if it is removed, the iteration
process would never stop because the tolerance level εJ =10−5 will never be achieved.
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Fig. 4.19. Example 5b: Left: Recovered initial data
(

ρ
(167)
0 (x),u

(167)
0 (x),p

(167)
0 (x)

)

(plotted with points) and the exact initial data (dashed line); Right: Recovered solu-
tion

(

ρ(167)(x,0.16),u(167)(x,0.16),p(167)(x,0.16) (plotted with points) and the terminal state
(

ρd(x),ud(x),pd(x)
)

(dashed line).
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Fig. 4.20. Example 5b: Dependence of the logarithm of the cost functional (4.3) (left) and the
L1-errors (right) on the number of iterations.

Example 5b: We then repeat the previous example, but the nonlinear filter
described in Section 3.3 is now switched on (that is, Step 6 is included). The filter

with `=10 is applied to the variables ρ
(m)
0 , u

(m)
0 , and p

(m)
0 at every other iteration

step starting from m=0.
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The recovered initial data,
(
ρ
(167)
0 (x),u

(167)
0 (x),p

(167)
0 (x)

)
, and the corresponding

solution of (4.4) are shown in figure 4.19. In figure 4.20, we plot the cost functional and
L1-errors for m=1, . . . ,491 iterations. The obtained results clearly demonstrate how
powerful the filtering mechanism can be. Even though the recovered solution plotted
in figure 4.19 (right) is not better than its counterpart from Example 5a, the recovered
initial data are almost perfect; see figure 4.19 (left). We would like to emphasize that
the recovered initial data obtained in Example 5b are better than the corresponding
optimization result in Example 5a just in the sense that it has a much smaller total
variation: this is achieved using the nonlinear filter that affects the local extrema and
thus reduced the total variation of the recovered initial data. Notice that the number
of iterations has increased and that the iteration process now stops based on the first
stopping criterion in Step 4 of Algorithm 3.1 (see figure 4.20 (left)), and hence the
accuracy is improved. Moreover, as one can see from the plot of the cost functional,
the accuracy can be further improved. However, neither the solution nor the recovered
initial data will change qualitatively. Also notice that unlike in Example 5a, neither
the cost functional (4.3) nor the L1-errors of the recovered solutions exhibit monotone
behavior when the filter is applied. On one hand, this slows down the convergence of
the proposed iteration process, but on the other hand, it helps to further minimize
the cost functional (4.3).
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Fig. 4.21. Example 6: Left: Initial guess
(

ρ
(0)
0 (x),u

(0)
0 (x),p

(0)
0 (x)

)

(plotted with points) and

the initial data (4.14) (dashed line); Right: Recovered solution
(

ρ(0)(x,0.2),u(0)(x,0.2),p(0)(x,0.2)
)

(plotted with points) and the terminal state
(

ρd(x),ud(x),pd(x)
)

(dashed line).

Example 6: wd is a discontinuous solution of the Euler equations of
gas dynamics. In this example, we again consider the optimization problem (1.1),
(4.3), (4.4), which is solved in the interval [0,1] using a uniform grid with ∆x=1/200.
The terminal state wd(x), prescribed at T =0.2, is a solution of (4.4) subject to the
following Riemann initial data:

(ρ(x,0),u(x,0),p(x,0))=

{
(1.000,0.75,1.0), if x≤0.35,

(0.125,0.00,0.1), if x>0.35.
(4.14)
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Fig. 4.22. Example 6a: Left: Recovered initial data
(

ρ
(50)
0 (x),u

(50)
0 (x),p

(50)
0 (x)

)

(plotted with points) and the initial data (4.14) (dashed line); Right: Recovered so-
lution

(

ρ(50)(x,0.2),u(50)(x,0.2),p(50)(x,0.2)
)

(plotted with points) and the terminal state
(

ρd(x),ud(x),pd(x)
)

(dashed line).
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Fig. 4.23. Example 6a: Dependence of the logarithm of the cost functional (4.3) (left) and the
L1-errors (right) on the number of iterations.

We compute wd(x) numerically using the second-order semi-discrete central-upwind
scheme (Section 3.1) on a uniform grid with ∆x=1/200. The initial guess,(
ρ
(0)
0 (x),u

(0)
0 (x),p

(0)
0 (x)

)
, chosen according to (3.3), and the corresponding solution,(

ρ(0)(x,0.2),u(0)(x,0.2),p(0)(x,0.2)
)
, are shown in figure 4.21. As one can see, this

initial guess leads to a quite accurate recovered solution (see figure 4.21, right).
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Fig. 4.24. Example 6b: Left: Recovered initial data
(

ρ
(408)
0 (x),u

(408)
0 (x),p

(408)
0 (x)

)

(plotted with points) and the initial data (4.14) (dashed line); Right: Recovered so-
lution

(

ρ(408)(x,0.2),u(408)(x,0.2),p(408)(x,0.2) (plotted with points) and the terminal state
(

ρd(x),ud(x),pd(x)
)

(dashed line).
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Fig. 4.25. Example 6b: Dependence of the logarithm of the cost functional (4.3) (left) and the
L1-errors (right) on the number of iterations.

In order to further improve the result, we proceed according to the optimization
Algorithm 3.1 with εJ =3 ·10−5 and ε∆J =10−12 in the stopping criteria in Step 4
of the algorithm. In this example, we solve the backward problem (3.15) using the
semi-discrete scheme (3.21), (3.22). Although, this scheme is more computationally
expensive for a single iteration than its simplified analog, (3.23), (3.22) with Pj+ 1

2
≡ I3,
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it leads to a faster convergence in terms of number of iterations because the gradient
direction is found more accurately. In addition, the use of a more accurate scheme
(3.21), (3.22) allows one to achieve smaller values of the cost functional on a given
computational grid as is clearly confirmed by our numerical experiments, which are
not reported here for the sake of brevity.

Example 6a: First, Algorithm 3.1 is implemented with the filter be-
ing switched off, that is, Step 6 is not included. The recovered initial data(
ρ
(50)
0 (x),u

(50)
0 (x),p

(50)
0 (x)

)
and the corresponding recovered solution are shown in

figure 4.22. In figure 4.23, we show the behavior of the cost functional (4.3) and the
L1-errors for m=1, . . . ,168 iterations using a logarithmic scale. As one can see, in this
case, the use of Algorithm 3.1 without the nonlinear filter does not lead to any quali-
tative change in either the recovered initial data or recovered solution in comparison
to w0

0(x) or w
0(x,0.2), respectively.

Example 6b: We now switch the nonlinear filter in Step 6 of Algorithm 3.1 on.

The filter is implemented with `=10 and it is applied to the variables ρ
(m)
0 , u

(m)
0 , and

p
(m)
0 at every second iteration step starting from m=0.

The recovered initial data
(
ρ
(408)
0 (x),u

(408)
0 (x),p

(408)
0 (x)

)
are shown in figure 4.24

(left) and the corresponding recovered solution is plotted in figure 4.24 (right). As one
can see, the solution is still accurately recovered (see figure 4.24, right) and is very
similar to the one obtained in Example 6a without the filter (see figure 4.22, right).
However, the computed optimal controls are very different—the recovered initial data
in Example 6b are nearly monotone and thus have much smaller total variation than
the recovered initial data obtained in Example 6a (compare the left graphs in figures
4.24 and 4.22).

In figure 4.25, we plot the cost functional (4.3) and the L1-errors form=1, · · · ,2728
iterations using a logarithmic scale. As in the previous examples, the use of the filter
leads to a nonmonotone behavior of these quantities and thus to somewhat slower
convergence.

Example 7: wd is a perturbed solution of the Sod shock tube problem.
Here, we again consider the optimization problem (1.1), (4.3), (4.4) and solve it in the
interval [−1,2] using a uniform grid with ∆x=1/200. To obtain the terminal state
wd(x)=(ρd(x),Md(x),Ed(x))

T prescribed at time T =0.16, we numerically solve the
system (4.4) subject to the Sod initial data (4.13) on [−1,2] using the second-order
semi-discrete central-upwind scheme (Section 3.1) on a uniform grid with ∆x=1/200,
and then add independent random variables δρj , δuj , and δpj to the density, velocity,
and pressure fields of the computed solution of the Sod shock tube problem, respec-
tively. The noise,

δρj ,δuj ,δpj ∝N (0,0.04),

where N (µ,σ) states for the normal distribution with mean µ and variance σ2, is
added on the interval x∈ [0,1] only.

In this example, we minimize a smoothed version (defined in (3.4)) of the func-
tional (4.3):

Jδ(w(·,T );wd(·))=
1

2

∫

R

∣∣∣
(
(ρ∗ϕδ)(x,T ),(M∗ϕδ)(x,T ),(E ∗ϕδ)(x,T )

)T

−
(
(ρd ∗ϕδ)(x),(Md ∗ϕδ))(x),(Ed ∗ϕδ))(x)

)T ∣∣∣
2

dx,

(4.15)
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Fig. 4.26. Example 7: Left: Initial guess
(

ρ
(0)
0 (x),u

(0)
0 (x),p

(0)
0 (x)

)

; Right: Recovered solu-

tion
(

ρ(0)(x,0.16),u(0)(x,0.16),p(0)(x,0.16)
)

(solid line) and the terminal state
(

ρd(x),ud(x),pd(x)
)

(plotted with points).
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Fig. 4.27. Example 7: Left: Recovered initial data
(

ρ
(188)
0 (x),u

(188)
0 (x),p

(188)
0 (x)

)

; Right:

Recovered solution
(

ρ(188)(x,0.16),u(188)(x,0.16),p(188)(x,0.16) (solid line) and the terminal state
(

ρd(x),ud(x),pd(x)
)

(plotted with points).

where we take δ=0.02. We use Algorithm 3.1 with J replaced with Jδ and the filter
in Step 6 switched off. We use εJ =3 ·10−5 and ε∆J =10−12 in Step 4 of Algorithm
3.1.
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Fig. 4.28. Example 7: Smoothed recovered solution
(

ρ
(188)
δ

(x,0.16),u
(188)
δ

(x,0.16),p
(188)
δ

(x,0.16)
)

(plotted with points) and smoothed terminal state
(

ρd,δ(x),ud,δ(x),pd,δ(x)
)

(dashed line).
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Fig. 4.29. Example 7: Dependence of the logarithm of the cost functional (4.15) (left) and the
smoothed L1-errors (right) on the number of iterations.

Due to the randomness in the terminal data, the solution of this optimization
problem is not expected to be fully recovered for any initial guess. The initial guess,(
ρ
(0)
0 (x),u

(0)
0 (x),p

(0)
0 (x)

)
, chosen according to (3.3), and the corresponding solution,
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(
ρ(0)(x,0.16),u(0)(x,0.16),p(0)(x,0.16)

)
, are shown in figure 4.26. As one can see, this

initial guess results as usual in a quite good recovered solution w(0) (figure 4.26, right)
which is, however, not nearly as oscillatory as wd is.

We implement Algorithm 3.1 and achieve the desired tolerance after 188 itera-
tions. The obtained optimization results are shown in figure 4.27. As one can see,

both the recovered initial data,
(
ρ
(188)
0 (x),u

(188)
0 (x),p

(188)
0 (x)

)
, plotted on the left,

and the corresponding solution,
(
ρ(188)(x,0.16),u(188)(x,0.16),p(188)(x,0.16), plotted

on the right, are much more oscillatory than the initial approximation shown in figure
4.26, but the recovered solution is still not nearly as oscillatory as the terminal state
is. On the other hand, the smoothed recovered solution is very close to the smoothed
terminal state, as it is demonstrated in figure 4.28. This is also confirmed in figure
4.29, where we show the behavior of the cost functional (4.15) and the smoothed
L1-errors using a logarithmic scale.

5. Conclusions
In this paper, we have proposed a numerical method (described in Section 3)

for solving the optimal control problem (1.1), (1.2) with the cost functional given by
either (1.3) or its smoothed version (3.4). The method has been tested on a number
of numerical examples presented in Section 4. The obtained results demonstrate high
accuracy of the developed algorithm both in smooth and nonsmooth cases.

In the case of sufficiently smooth solutions, the proposed Algorithm 3.1 without
filtering (that is, with Step 6 omitted) corresponds to a block Gauß-Seidel iteration
applied to the system of necessary first-order optimality conditions (1.1)–(1.3), (2.2)–
(2.4). The adjoint equation (2.2) is a system of nonconservative hyperbolic equations
with variable, possibly discontinuous coefficients. In Section 3.2, we have developed
a new upwind scheme for (2.2), (2.3). The new scheme is an extension of the upwind
scheme proposed in [21] for scalar transport equations with variable coefficients.

While a proof of convergence of the proposed optimization method for systems
of PDEs seems to be out of reach at this stage, the convergence in the scalar case
will be studied in the future work. A rigorous proof of convergence including nons-
mooth solutions usually relies on sufficiently smooth cost functionals. This is typically
achieved by a convolution (see Remark 3.2). Applying the filtering in Step 6 of the
proposed algorithm serves a similar purpose: It reduces small oscillations in both the
reconstructed control and the solution.
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