Applied Numerical Mathematics 93 (2015) 123-139

Contents lists available at ScienceDirect LR
MATHEMATICS

Applied Numerical Mathematics IMACS

www.elsevier.com/locate/apnum

Particle methods for PDEs arising in financial modeling @CmssMark

Shumo Cui?, Alexander Kurganov **, Alexei Medovikov P

4 Mathematics Department, Tulane University, New Orleans, LA 70118, USA
b Susquehanna International Group, 401 City Avenue, Bala Cynwyd, PA 19131, USA

ARTICLE INFO ABSTRACT
Article history: We numerically study convection-diffusion equations arising in financial modeling. We
Available online 13 April 2014 focus on the convection-dominated cases, in which the diffusion coefficients are relatively

small. Both finite-difference and Monte-Carlo methods which are widely used in the
problems of this kind might be inefficient due to severe restrictions on the meshsize and
the number of realizations needed to achieve high resolution.

We propose an alternative approach based on particle methods which have extremely low

Keywords:

Convection-diffusion equations
Anisotropic diffusion
PDE-based bond pricing models

Deterministic and stochastic particle numerical diffusion and thus do not have the aforementioned restrictions. Our approach
methods is based on the operator splitting: The hyperbolic steps are made using the method of
Monte-Carlo method characteristics, while the parabolic steps are performed using either a special discretization

of the integral representation of the solution (which leads to a deterministic particle
method) or a stochastic random walk approach.
We apply the designed particle methods to a variety of test problems and the numerical
results indicate high accuracy, efficiency and robustness of both the deterministic and
stochastic methods. In addition, our numerical experiments clearly demonstrate that the
deterministic particle method outperforms its stochastic counterpart.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we are interested in development of highly accurate and efficient numerical method for multidimensional
convection-diffusion equations with strictly anisotropic diffusion acting in just one spatial direction. Such equations arise,
for instance, in bond pricing models. We will consider a particular example of the following linear two-dimensional (2-D)
convection-diffusion equation:

. o?
Ug +K[(X—X)U]X+XUy: - e (1.1)

subject to the singular initial condition

ux,y,0)=38(x—ro,y), (1.2)

where § stands for the Dirac delta-function and «, %, 0 and rq are positive constants. In Appendix A, we show how the
initial value problem (IVP) (1.1), (1.2) can be derived from the Vasicek bond pricing model [31].

* Corresponding author,
E-mail addresses: scui2@tulane.edu (S. Cui), kurganov@math.tulane.edu (A. Kurganov), Alexei.Medovikov@sig.com (A. Medovikov).
URL: http://www.math.tulane.edu/~kurganov (A. Kurganov).

http://dx.doi.org/10.1016/j.apnum.2014.04.005
0168-9274/© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:scui2@tulane.edu
mailto:kurganov@math.tulane.edu
mailto:Alexei.Medovikov@sig.com
http://www.math.tulane.edu/~kurganov
http://dx.doi.org/10.1016/j.apnum.2014.04.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2014.04.005&domain=pdf

124 S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139

Designing an efficient and highly accurate numerical method for the IVP (1.1), (1.2) is a challenging task due to the
following three reasons:

e The convection-diffusion equation (1.1) is typically convection-dominated since in many practical application o is very
small.

e The initial datum (1.2) is a singular §-function.

e The diffusion in (1.1) is strictly anisotropic, namely, it only acts in the x-direction.

We note that strictly anisotropic (singular) diffusion also arises in other financial models such as, for example, Asian
option in local volatility model [10] and option prices in the SABR stochastic volatility model [14].

The most popular numerical methods for convection-diffusion equations are finite-difference methods, see, e.g., [18].
However, when a finite-difference method is applied to (1.1), one has to deal with a very small diffusion in the x-direction
and the lack of diffusion in the y-direction. For example, a symmetric centered difference approximation of the convective
part of (1.1) will not be stable even when the mesh size is very small. Therefore one has to develop an upwind scheme
for (1.1), which may be stable but might be too diffusive (and thus inefficient) to achieve the desired resolution on a
reasonably coarse grid. Therefore, low-diffusion particle methods seem to be a good alternative to finite-difference schemes.

Particle methods were original developed for hyperbolic transport equation [9,16,15,17,22,27] and thus they can be di-
rectly applied to the inviscid version of (1.1). There are several ways to extend particle methods to convection-diffusion
equations [5,7,8,13,25,26]. However, not all of these methods would apply to the case of a strictly anisotropic diffusion as
n (1.1). The random walk approach from [5,13] would apply and as we demonstrate in Appendix B, it reduces the result-
ing stochastic particle method to the Monte-Carlo method for the corresponding stochastic differential equations (SDEs)
discussed in Appendix A.

In this paper, we propose a deterministic alternative to the random walk approach. The proposed method is based on
the fast explicit operator splitting method [3], according to which the 2-D convection equation is solved using the method
of characteristics, while the one-dimensional (1-D) heat equation is solved using a special discretization of the integral
representation of its exact solution.

The paper is organized as follows. First, a brief overview of the particle and splitting methods is given in Section 2. We
then introduce the new deterministic particle method in Section 3. In Appendix A, we discuss different bond pricing models
and derive the IVP (1.1), (1.2). Finally, the numerical results are presented in Section 4.

2. Background

In this section, we give a very brief overview of the particle method for transport equation and of the splitting methods.
2.1. Particle method for transport equations

Consider the 2-D linear transport equation

we + [ax, y)w], + [b(x, y)w]y =0 (2.1)

with variable coefficients a(x, y) and b(x, y). The main idea of particle methods is to seek solutions in the form of the linear
combination of §-functions,

N
whx y. 0 =Y ai0)8(x - xi(0). y — yi(0)). (2.2)
i=1

where (x;(t), yi(t)) is the position of the ith particle at time t and «;(t) is its weight. We would like to emphasize that
the introduced particles carry a certain amount of w, but they are mathematical objects rather than particles of a certain
material.

Plugging (2.2) into the weak formulation of (2.1) results in the following system of ODEs (see, e.g., [9,16,15,17,22]):

dx;(t)

e a(xi(t), yi(t). t),
dy(;t(t) = b(xi(0), yi(0), t), (2.3)
da;(t)

dt 0.

which describes the dynamics of the ith particle for i =1, ..., N. It follows from the third equation in (2.3) that the weights
remain constant in time (;(t) = «;(0)). The evolution of the particle positions is typically captured using a numerical ODE
solver.

S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139 125

For a general initial datum w(x, y, 0), the implementation of the particle method will require an approximation of the
initial datum by a linear combination of §-functions. This can be done, for instance, as follows. We divide the computational
domain £2 into a set of N nonoverlapping subdomains £2;: U:V:1 2; =82, ;N2 =0, Vi#1. We then set the location of
the ith particle, (x;(0), y;(0)), to be the center of mass of £2; and “place” the entire amount of w(x, y, 0) present in £2; into
the ith particle so that its initial weight is

a;(0) := / w(x, y,0)dxdy ~ |2;| w(x;(0), y;(0), 0). (2.4)
2

In (2.4), we have used the second-order midpoint rule to approximate the integral over £2;. A more accurate (special)
quadrature can be used if the function w(x, y,0) has singularities or is of a highly oscillatory nature.

2.2. Operator splitting methods

Consider a PDE of the following form:

We=L1w+ Low, (2.5)
where w = w(-,t) and £1 and £, are (linear) differential operators. We then split Eq. (2.5) into the two equations:
we=L1w
and
we=Low,

and denote their solution operators by S, and S, , respectively. A first-order splitting approximation [30] of the solution
of the original equation (2.5) can be then obtained either by

Wt + A = Sp, (ADSE, (ADW(-, 1) (2.6)
or by

Wit + At = Sr, (ADSL, (ADW(, 1), 2.7)
A second-order accurate approximations are obtained using the second-order Strang splitting [29], which results in either

W2, (Lt AD = Sg, (At/2)S, (ADSL, (AL/2)W(-, 1) (2.8)
or

W2 (-t 4 AD) = S, (AL/2)SL, (ADS L, (AL/2)W (-, 1), (2.9)

As it has been demonstrated in [20], the order of accuracy can be increased by taking a linear combination of (2.6)-(2.9),
and the third-order method developed in [20] reads

2
wO(b+ AL = §(wﬁ"’;l (.t 4 AD + wR (-, t + AD))
1
-5 (W e+ a0 +wil (., t+ Ap). (2.10)
3. Particle methods for (1.1), (1.2)

In this section, we introduce two particle methods for the IVP (1.1), (1.2).
The convection-diffusion equation (1.1) is split into the hyperbolic,

ue+ & [(R —x)u] + [xuly =0, (3.1)
and parabolic,
2
o
Ur = 7Uxx, (3-2)

parts. Our approach is based on the operator splitting described in Section 2.2: The hyperbolic part (3.1) is solved using the
particle method described in Section 2.1, while the numerical method for parabolic part (3.2) is based on either a random
walk approach (see Section 3.2.1) or a special discretization of the integral representation of the exact solution of the 1-D
heat equation (see Section 3.2.2). Here, we denote by Sy and Sp the numerical solution operators of the hyperbolic and
parabolic parts, respectively.

For simplicity of presentation, in the rest of this section, we will describe the first-order operator splitting only, where
we give the details of the solution operators Sy and Sp.

126 S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0)
0.03 0.035 0.04 0.045 0.05 0.055 0.06

Fig. 3.1. During the hyperbolic step, particles initially positioned at {x;(t), y;(t)} (marked by x’s) propagate along the characteristic lines to their new
positions {x;, y;} (marked by o’s).

3.1. Hyperbolic solution operator S3;(At)

Eq. (3.1) is the transport equation (2.1) with a(x, y,t) =« (X — x) and b(x, y, t) = x. Therefore the first two equations of
the ODE system (2.3) take the following form:

dx;(t .
Xdi) =k (X —x(®),
i=1,...,N. (3.3)
dyi(®) —x(®
dt —M s

Unlike the general system (2.3), the system (3.3) can be easily solved analytically and thus

Sp(AD[aid(x — xi(t), y — yi®)) | = aid(x — %, y — ¥7),

where

{x;‘ = (xi(t) —R)e ¥R 4 &,
i=1,....N. (3.4)

yi=yi(t) + Atk — ;(xi(t) —R)(e7¥At —1),
The hyperbolic step is schematically shown in Fig. 3.1.
3.2. Parabolic solution operator Sp (At)

Since the diffusion acts only in the x-direction, none of the methods from [7,8,25,26] applies to Eq. (3.2) studied in the
2-D domain. The random walk approach from [5,13] would apply (see Section 3.2.1), but it reduces to the Monte-Carlo
method for (A.1), and thus suffers of all disadvantages of stochastic methods. We propose an alternative deterministic
approach described in Section 3.2.2.

3.2.1. Random walk solution operator S%(At)
According to the random walk approach [5,13], we solve the IVP

0.2
U = —Uxx,
2

N (3.5)
u*(x,t) = Zoz,-é(x — x5y =),
i=1

by randomly perturbing the locations of each particle. Namely, we obtain
xi(t+ At =x7 + &,

yi(t+ At =y, (36)

where & ~ N(0, 0 +/At) is a normally distributed random number. Thus,

Sp(AD[ais(x—xF,y — yi)] =aid(x —xF — &,y — y]).

S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139 127

Since the distribution of &; is symmetric about 0, we also expect x;(t + At) to be symmetric about x;. This can be done
by replacing (3.6) with

Xok—1(t + At = X3 _1 + Eak—1, {sz(t + At) = X3, — Ex—1, (37)

y2k—1(t+At):y;k71, YZlc(t""At):y;k’

where the x-coordinates of each pair of particles, (Xor_1, yak—1) and (Xax, Y2x), get perturbations of the same magnitude, but
with different signs. Such modification results in halving the number of generated random numbers and leads to the exact
conservation of the first moment (the definition of the kth moment is given in (3.11) in Section 3.2.2). The latter guarantees
that the expectation of y(T), defined in (4.2) in Section 4, is calculated within the machine error as it will be demonstrated
in Section 4.

Equipped with Sy and S%, we can now solve the IVP (1.1), (1.2) using the operator splitting. Recall that the considered
initial condition (1.2) consists of just one particle initially located at (x1(0), ¥1(0)) = (ro, 0). The trajectory of this particle is
not deterministic due to the randomness of S%. Therefore, in order to obtain a numerical solution of (1.1), (1.2), one needs
to conduct a number of experiments, which would give several particle trajectories. By repeatedly doing such realizations,
we will obtain a series of samples whose mean approaches the bond price. As it is typical for stochastic numerical methods,
a high accuracy can be achieved only when the number of realization is very large.

As we show in Appendix B, the resulting stochastic particle method is in fact equivalent to the Monte-Carlo method for
the corresponding SDEs (A.1) and (A.3).

3.2.2. Deterministic solution operator 87'33 (AL)
Since Eq. (3.2) is linear, its solution satisfies the superposition principle and thus, we only need to show how the
parabolic solution operator acts on the ith particle. To this end, we simply solve the IVP
o2
U = — Uxx,
(=l (3.8)
ux, y.0=ais(x—x,y — yi),

exactly with the help of the heat kernel. This results in

2
o
u(x,y,t+At):ai(S(y—y;“)G(x—x;“,TAt), G(x,7) = e T, (3.9)

4T

Now, to complete the parabolic step, we need to obtain a particle approximation of (3.9). Since the parabolic operator
Sp acts in the x-direction only, we approximate (3.9) using Np new particles, each of which has the same y-coordinate
yi. This means that we place the new particles along the line y = y; at (x{ +¢;j,y7), j=1,..., Np, so that

Np
SRlais(x—x;,y —yi)] = Zﬂ,'jé(x —x =,y — Vi) (3.10)
j=1
The weights and locations of the new particles are determined using the conservation of the first K moments. The kth

moments of u are defined as

M (u) = jj ux, y,)xkdxdy, k=0,1,2,... (3.11)
]RZ

Thus, we need to select f; and ¢; such that

2
o fjé(y - y7) G(x — X7, %At)x" dxdy
R2

Np
ZZ'BU jja(x—xf+§j,y—y?‘)x"dxdy (3.12)
j=1 R2

fork=0,...,K—1.

Remark 3.1. We would like to remind the reader that u(x, y, t) is the probability density function (pdf) of the random vector
(x(t), y)T as discussed in Appendix A. In order to preserve some key properties of the random variable x(t) (note that
y(t) is not affected by the above particle approximation of (3.9)), we have to ensure that the particle approximation of
the pdf u satisfies the moment conservation property. For example, conserving the first three moments guarantees that the
mean and variance of the random variable x(t) are preserved.

128 S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139

Fig. 3.2. The exact solution (3.9) is replaced by N» =3 new particles, whose locations are indicated by the three arrows. Notice that the support of the
solution (3.9) is the line y = y;.

For example, if K =4, g;; and ¢; have to satisfy the following four conditions:

Np Np Np Np

D oBi=ai, Y Bigi=0, Y Bijlf =aic’At, Y B¢t =0
j=1 j=1 j=1 j=1

We thus need at least two new particles to have enough degrees of freedom. To avoid the unnecessary computational

burden, we choose the smallest sufficient N» = 2. Therefore, we will have two new particles with {; = —o+/At, £ = o /At

and the corresponding weights Bi1 = Bi» = «;/2.

Similarly, if first K = 6 moments are to be conserved, it will suffice to take Np =3 new particles with {1 = —o+/3At,
£ =0, {3 =0+/3At and the corresponding weights Bi1 = «;/6, Bi» = 2c;/3 and Bi3 = /6. The latter case is illustrated in
Fig. 3.2

After applying the parabolic solution operator SB, each particle is replaced by Np new particles, so that even though
initially we begin with just one particle (1.2), the total number of particles will grow exponentially fast and after n time
steps, there will be N”P particles, which will make the computational workload intolerably large and the overall method
will be impractical. To overcome this difficulty, some particles have to get merged upon completion of each S7DD step. The
idea of the merging procedure presented in Section 3.2.3 is to replace the particles that coalesce with a smaller number of
particles, while preserving (some of) the moments.

3.2.3. Merger procedure M

The main idea of the merger procedure, schematically presented in Fig. 3.3, is to introduce an auxiliary (Cartesian) grid
and to replace all of the particles that are located in the same cell with one new particle located at their center of mass.
The error introduced by such a replacement can be controlled by varying the size of the auxiliary grid which consists of the
cells Cjk_(x 1,x1+1) X (¥y_ 1 yk+1) of the size XH —xj 1 =Ax; by x,+ —X_ 1 = AYk.

Let us assume that after the parabollc splitting step, the total number of partlcle is N-Np and that Nj of them are
located in the auxiliary cell Cj,. We then merge these N j particles into one particle carrying the weight

Njk

=Y (313)

and located at the center of mass of the merged particles. Namely, the location of the new particle is (¢jk, njx) with
Nj N

1
DXt AD, == Y enyi(t+ AL, (3.14)
ﬂjk i—1 ﬂ]k i

Notice that the sums in (3.13), (3.14) are taken over all i such that (x;(t + At), y(t + At)) € Cj.
Finally, the merger procedure can be represented in the following operator form:

Ejk =

N-Np
M[> ais(x—xit+ Ab).y — yi(t + At))} =Y B —&jk. ¥ — M)

i=1 ik
where the summation on the right-hand side is taken over all of the auxiliary cells that contain any particles.

S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139 129

sxi . \ i ~

Fig. 3.3. The merger: In each auxiliary cell, the old particles (marked by x's) are replaced by the new particle (marked by o's), located at the center of
mass of the old particles. Notice the center of the mass does not coincide with the center of the cell.

4. Numerical results

In this section, we apply the designed particle methods to the IVP (1.1), (1.2). For the sake of brevity, we will denote by
D1, D2 and D3 the deterministic particle methods obtained using the first-, second- and third-order splitting, respectively.
A similar notation (R1, R2 and R3) will be used in the cases when the parabolic step is performed using the random walk.
We take the following values of the parameters:

x=0.025, ro =0.09, k=2, 0 =0.01 or 0.3. (4.1)

Our main goal is to calculate the following three integral quantities:

E(u; T) =j yu(x, y, T)dxdy, (4.2)
R2

V(u; T)=ﬂ(y—£(u; T))*u(x, y, T)dxdy, (4.3)
R2

Bu;T)= jfe‘yu(x, y, T)dxdy. (44)
R2

The quantities E, V are the expectation and variance of the path integral of the interest rate at time T, and B is the bond
price at time T.
For the particle approximation

N
uN(x,y,0 =) e (O8(x —xi(0), y — yi(D) (4.5)
i=1

taken at the final time T, Eqs. (4.2)-(4.4) reduce to

N N
E@":T) = [[¥ aiMs(x=xi(T), y — yi(T)) dxdy = Y ai(Tyi(Mwi(T),

R2 i=1 i=1

N
v(h;T) = H(y —EuM:T))* > ai(T)8(x —xi(T), y — yi(T)) dxdy
RZ i=1

N
= (M (yi(T) — E(u™: T))%,

i=1

N N
Bu:T) = [[e Y ai(Ms(x —x(T), y — yi(T)) dxdy = Y eri(T)e 1P,

R2 i=1 i=1

130 S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139

o =0.01 o =0.01
— =7 1 — =7
- - -
2 N + 2 ++
o -8 + o -8 +.
e B S s + I ot .
A -9 ++r T Jaafgry oy
= =]
& -10 % _10
S o -
—11 =11
. M X Y
0.5 0.6 0.7 0.8 0.9 1 11 -1 -0.5 0 0.5 1
loglﬂ(Nspl) logm(CPU tlme)
o =0.01 o =0.01
% M 6 M
g 7 =
o 7 o 7
N SR S BT
9 -8 L S s T 1 © -8 +og .
> t+4TT > +++++
S -9 1 B -9
- -
80 o0
2 -10 S 10
-1 R 11 Y
. RSN X N
0.5 0.6 0.7 0.8 0.9 1 1.1 -1 -0.5 0 0.5 1
logIO(Nsp]) 10g10(CPU tlme)

Fig. 4.1. Dependence of the errors V(u; 1) — V(uN;1) and B(u; 1) — B(u"; 1) on the number of splitting steps (Nspi ranges from 3 to 15) and the CPU
time for different splitting algorithms: o represents the third-order algorithm (2.10); + represents the second-order algorithms (2.8) (dot line) and (2.9)
(solid line), respectively; x represents the first-order algorithms (2.6) (dot line) and (2.7) (solid line), respectively. In those algorithms, £ is the hyperbolic
solution operator, while £, is the parabolic one. Here, o = 0.01.

Since the exact values of E, V and B are available [24], we can calculate the errors and thus to compare performances of
different particle methods. The errors in Section 4 are computed using the final time T = 1.

Remark 4.1. Note that when a deterministic particle method is used, the number of particles N changes at every time step.

4.1. Comparison of different splitting algorithms

In this section, we denote by N, the total number of splitting steps. We use a uniform auxiliary grid with Ax; =
AYy = h. The number of new particles generated at each deterministic parabolic step (described in Section 3.2.2) is taken
to be Np =2 for 0 =0.01 and Np =3 for 0 =0.3.

It is obvious that the merger procedure introduces errors. To prevent these errors from dominating, we take very small
h =107 for 6 =0.01 and h =3 x 10~ for ¢ = 0.3, which ensure that the merger error is substantially smaller than the
splitting error (in Section 4.3 we will show that the merger error is proportional to h2).

In Figs. 4.1 and 4.2, we plot the errors (in the logarithmic scale) for the deterministic particle methods implemented using
five different splitting algorithms. As one can clearly see from the graphs on the left, higher-order splitting outperforms the
lower-order ones and the desired order of accuracy is achieved for o = 0.01 (Fig. 4.1) and also in the computation of V
with o =0.3 (Fig. 4.2).

Notice, however, that the B-error for the D3 method saturates at about Ngp =9 (see the graphs on the upper row in
Fig. 4.2). We conjecture that the reason for such an error behavior is related to a small values of Np» = 3 and relatively large
value of h =3 x 1074, If Np is taken to be substantially larger and h is made much smaller, then the number of particles
would increase so dramatically that the method would become inefficient. This sets certain limitations on the applicability
of the proposed deterministic particle method. However, we would like to point out that even for the larger value of 0 = 0.3
the deterministic methods clearly outperforms its stochastic counterpart.

The graphs in the right columns in Figs. 4.1 and 4.2 clearly demonstrate that even though the third-order splitting
requires computing two first-order and two second-order splitting solutions, it is still much more efficient than the lower-
order splitting methods since it achieves the same size of the error using smaller amount of the CPU time. The experimental
order of convergence for the D3 method is shown in Table 4.1 for ¢ = 0.01. For o = 0.3 the V-errors still decrease very fast
while the B-errors saturate, as one can see in Table 4.2. Before reaching the saturation, the superconvergence of B-errors
can be observed.

Notice that the D3 method captures the expectation E within the machine accuracy. This occurs because E is captured
by the first moment of particles, which is not affected by the parabolic step as soon as the first moment is conserved. Also,

S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139 131

-4
= N
- +
g g ° N M
¢ P9 -6 Ty
) M
= =R
& &
° s ®
-9
T R ~10 . .
05 06 07 08 09 1 11 0 05 1 15
log10(Nsp1) log10(CPU time)
=03 =03

e e

et 1 o -4

B A

9 -5 ’ R S e] g-s +++++

> THLTT > Ty

S -6] 5 -6

— —

&0 &0

9 -7 1 o-7

-8 -8
‘ ‘ ‘ ‘ ‘ ‘ 8 ‘ ‘ ‘ S
05 06 07 08 09 1 11 0 05 1 1.5
log10(Nsp1) log1o(CPU time)

Fig. 4.2. The same as in Fig. 4.1, but for 0 =0.3.

Table 4.1
Dependence of the errors E(u; 1) — E(uM; 1), V(u; 1) — V(@™; 1) and B(u; 1) — B(uM; 1) on
the number of splitting time steps for the D3 method for 0 =0.01, Np =2.

6 =0.01, Np =2

Nipl h E-error V-error rate B-error rate

1 1.00E—05 139E-17 2.56E-07 - 1.21E-07 -

2 1.00E—-05 1.39E-17 231E-08 3.47 1.10E—-08 3.46

4 1.00E—05 1.39E-17 1.60E—09 3.85 7.58E—10 3.86

8 1.00E—-05 6.94E—17 1.03E—-10 3.96 4.78E—11 3.99

16 1.00E—-05 1.25E-16 1.83E—-12 5.81 4.33E-13 6.79
Table 4.2

Dependence of the errors E(u; 1) — E(uN; 1), V(u; 1) — V(@M; 1) and B(u; 1) — BN; 1) on
the number of splitting time steps for the D3 method for 0 =0.3, Np =3.

=03 Np=3

Nipl h E-error V-error rate B-error rate

1 3.00E—04 6.94E—18 2.30E-04 - 1.07E—04 -

2 3.00E—04 2.08E—17 2.08E—05 3.47 9.21E-06 3.54
4 3.00E-04 1.39E-17 1.44E—-06 3.85 5.11E-07 4.17
8 3.00E—04 2.50E—16 9.21E-08 3.97 791E-11 12.66
16 3.00E—04 2.03E-15 1.57E—-09 5.87 1.02E-08 —7.01

with the first moment conserved in the merger step and exact hyperbolic solution operator, E is computed exactly (up to
the machine error) throughout the entire algorithm.

The results for similar experiments with the stochastic particle method confirm that the third-order splitting is advan-
tageous compared to the low-order ones. We therefore will only use the third-order splitting method in the rest of the

paper.
4.2. Dependence of the errors on Np

In this section, we compare the numerical results obtained using Np =2 and Np =3 (recall that Np is the number of
new particles appearing at the end of the parabolic step). As we have pointed out in Section 3.2.2, bigger N allows one to
conserve more moments. However, it is not clear whether taking N» > 2 will improve the quality of numerical solution. To
verify this, we apply the D3 method with Np =2 and Np =3 to the same IVP (1.1), (1.2), (4.1). The obtained results are
plotted in Figs. 4.3 and 4.4. As one can see, when o = 0.01 the error with Np =3 remains the same as with Np =2 (see

132

S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139

o =0.01 0 =0.01
®
—9ot ol .
8 -95 5 -95 X
o} =
- - X
9 —10f i x
M aa] x
g -105 5 -10.5}
- - X
o0) «
2 M o -1y »
X
-115 -11.5} x
L L L L L L L & L
05 06 07 08 09 1 11 0.5 1 15
log10(Nsp1) log10(CPU time)
0 =0.01 0 =0.01
-85 -8.5
X
= -9 = -9
[=] Q X
o 2 y
5 -95 g 95
1 1 X
2 0 2 1o x
= =]
&0 & x
o ~10.5¢ & —10.5 «
= 2 o
-1 -11 X
X
05 06 07 08 09 1 11 0.5 1 1.5
log10(Nsp1) log10(CPU time)

Fig. 4.3. Dependence of the errors V (u; 1) — V(u"; 1) and B(u; 1) — B(u"; 1) on the number of splitting steps (Nspi ranges from 3 to 15) and the CPU time

for N» =3 (marked by o) and N =2 (marked by x). Here, o =0.01.

o=0.3

XXX X
><><

-10t. . . . % . . -10t . . .
05 06 07 08 09 1 1.1 0.5 1 15
loglo(Nspl) IOg]_()(CPU tlme)
o=0.3 =03
- - @ .
-55 -5.5F
X
= 6 = Y
g s .
=~ —6.5 =~ —6.5 X
4 © “
E/ -7 E/ =7r X
© © x
- - x
o0 -7.5 o0 -7.5
[e] o) X
- I X
-8 -8t x
X
05 06 07 08 09 1 11 0.5 1 15
log10(Nsp1) log1o(CPU time)

Fig. 4.4. The same as in Fig. 4.3, but for 0 =0.3.

Fig. 4.3), while the overall method becomes less efficient (see the graphs on the right in Fig. 4.3). We will therefore take
Np =2 in the rest of the paper when o =0.01.

However, when o = 0.3 the B-errors for Np =2 and Np =3 are different and it is clearly better to take Np =3 (see
Fig. 4.4). Our additional numerical experiments (not reported in this paper) clearly indicate that taking Np =4 or larger
does not necessarily lead to substantial further improvement in accuracy while significantly affecting the efficiency of the
D3 method.

S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139 133

Table 4.3
Dependence of the errors E(u; 1) — EM; 1), V(u; 1) — V(@N; 1) and B(u; 1) — B(uM; 1) on
the size of auxiliary cells for the D3 method for o =0.01.

6 =0.01, Np =2

Nipi h E-error V-error rate B-error rate
20 2.56E—03 1.39E-17 454E-06 - 2.15E—-06 -

20 1.28E-03 139E-17 4.84E—-07 3.23 229E-07 3.23
20 6.40E—04 416E-17 3.70E-08 3.71 1.75E—08 3.71
20 3.20E—04 2.78E—17 549E—-09 275 2.61E-09 275
20 1.60E—04 1.39E-17 1.56E—09 1.82 7.39E—-10 1.82
20 8.00E—05 2.78E—17 4.61E-10 1.76 2.19E-10 175
20 4.00E—-05 2.78E—17 110E-10 2.07 5.24E—-11 2.06
20 2.00E—05 1.39E-17 1.85E—11 2.57 9.10E—12 2.53
20 1.00E—-05 9.71E-17 2.81E-12 272 1.68E—12 244

Table 4.4

Dependence of the errors E(u; 1) — E(uN; 1), V(u; 1) — V(N; 1) and B(u; 1) — B@™;1) on
the size of auxiliary cells for the D3 method for o = 0.3.

6=03 Np=3

Nipi h E-error V-error rate B-error rate
20 7.68E—02 6.25E—17 243E-03 - 1.14E-03 -

20 3.84E—-02 1.46E—16 531E-04 219 249E-04 219
20 1.92E-02 3.47E-17 2.83E—05 4.23 1.35E-05 4.21
20 9.60E—03 2.15E—16 7.04E—06 2.01 335E-06 2.01
20 4.80E—-03 4.02E—16 1.33E—-06 2.40 6.39E—-07 2.39
20 2.40E—03 6.94E—17 3.80E—07 1.81 1.88E—07 177
20 1.20E—03 5.55E—-17 1.03E-07 1.88 5.62E—08 174
20 6.00E—04 8.60E—16 1.91E-08 243 1.61E—08 1.80
20 3.00E—04 1.78E—15 2.84E-09 275 8.38E—-09 0.94

Remark 4.2. We would like to emphasize that choosing bigger N and conserving more moments only improves the ac-
curacy of the numerical solution locally at the parabolic step. When Np = 3 the two extra moments, which are conserved in
the parabolic step ((3.12) with k=5 and 6), are not conserved in the merger procedure. This explains why the effort of
conserving more moments does not necessarily result in a better numerical solution.

4.3. Experimental study of merger errors

In this section, we demonstrate that the merger errors are proportional to the size of auxiliary cells (h2). To this end,
we keep the number of splitting step to be a large constant (Ngp = 20) so that the merger error is expected to dominate
the splitting one. The obtained results are shown in Tables 4.3 and 4.4, where the expected rates of convergence can be
observed for o = 0.01 and for computing V with o = 0.3. When B is computed with o = 0.3, the expected convergence
rate is achieved before B-error saturates.

4.4. Comparison of deterministic and stochastic approaches

We now turn to the comparison between the stochastic and deterministic ways of approximating the parabolic solution
operator (see Section 3.2.2 and Section 3.2.1). To prevent either merger or splitting error from dominating in the numerical
experiments, we keep the balance between h and Ngp. Since the splitting error is expected to be of the third-order while
the merger one is only second-order, we introduce the parameter

C:=h*(Ngp)’

which is being fixed. The errors in the results obtained by the D3 method are shown in Tables 4.5 and 4.6, where one
can clearly observe a high experimental order of convergence for & =0.01 and for computing V with o = 0.3, while once
again when B is computed for o = 0.3, the high experimental order is achieved before the B-error saturates when we use
Nepi =16 and h=3 x 1074,

The D3 and R3 methods are compared in Fig. 4.5, where we plot their errors as functions of the CPU time (in the
logarithm scale). As one can see there, the deterministic approach is more efficient. Also, we would like to point out that
even though some of the results for the D3 method are affected by the error saturation (see the lower left graph in Fig. 4.5),
the D3 method clearly outperforms the R3 one.

134 S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139

Table 4.5
Dependence of the errors E(u; 1) — E(uM; 1), V(u; 1) = V(@N; 1) and B(u; 1) — B(u™; 1) on both Ngy and h for the D3 method
for 0 =0.01, Np =2 and the fixed parameter C: As Ngp is doubled, h is multiplied by factor of 2v2)~.

6 =001, Np =2

Nipl h E-error V-error rate rate B-error rate rate
W.L.t. Ngp w.r.t. h W.L.t. Ngpi w.r.t. h

1 6.40E—04 1.39E-17 2.56E—07 - - 1.21E-07 - -

2 2.26E—-04 1.39E-17 2.31E-08 3.47 231 1.10E—-08 3.46 2.30
4 8.00E—05 1.39E-17 1.60E—09 3.85 2.57 7.55E—10 3.86 2.58
8 2.83E-05 1.39E-17 9.58E—11 4.06 2.71 4.45E—11 4.08 2.72
16 1.00E—-05 1.25E—-16 1.83E—12 5.71 3.80 4.33E-13 6.68 4.45

Table 4.6

Dependence of the errors E(u; 1) — E(uM; 1), V(u; 1) = V(@™; 1) and B(u; 1) — B(u™; 1) on both Ngy and h for the D3 method
for 0 =0.3, Np =3 and the fixed parameter C: As Ny is doubled, h is multiplied by factor of 2v2)~L.

=03 Np=3

Nipl h E-error V-error rate rate B-error rate rate
W.L.t. Ngp w.r.t. h W.L.t. Ngp) w.r.t. h
1 1.92E—-02 6.94E—18 230E-04 - - 1.07E—04 - -
2 6.79E—03 2.08E—17 2.08E-05 347 2.31 9.21E—-06 3.54 2.36
4 2.40E—-03 2.78E—17 1.43E—-06 3.86 2.57 5.04E—07 4.19 2.79
8 8.49E—04 3.12E-16 831E-08 411 2.74 4.38E—09 6.85 4.57
16 3.00E—-04 2.03E-15 1.57E-09 5.73 3.82 102E-08 —1.22 —0.81
o =0.01 o=0.01
-7 -7 : : : : :
x X
—~ -8f X —~ -8f x 1
- X - X
o % o
& s o
g %o g -or o 1
O €]
5 O \>/ O
o -10r o o -10f (@] 1
— — [©]
80 O 5 o0 o}
°) 0]) %0
= 11y SN = -1y 01
O
-12 : : : : : -12 : : : : :
-2 -1.5 -1 -0.5 0 0.5 1 -2 -15 -1 -0.5 0 0.5 1
log10(CPU time) log10(CPU time)
0=0.3 =03
-4 -4
X
X x
™ 57 X m —5} X B
2 x| & p *
56 g
1 O ' O
-6}]
8 o o} 2 o
S - o S)
g § ° |
=~ _gl O o 09 - O o
O @)
@
-9 : ; : . : -8 : : : . :
-2 -15 -1 -0.5 0 0.5 1 -2 -1.5 -1 -0.5 0 0.5 1
log10(CPU time) log10(CPU time)

Fig. 4.5. Dependence of the errors V (u; 1) — V (uM; 1) and B(u; 1) — B(u"N; 1) on the CPU time for the D3 (marked by o's) and R3 (marked by x’s) methods.
Here, 0 =0.01 for upper graphs and ¢ = 0.3 for the lower ones.

4.5. Recovery of the point values out of the particle solutions

If one is interested in obtaining point values of the computed solutions, they must be recovered from the particle
solution (4.5). A canonical approach is to use a smooth approximation of §-functions which gives
N

uf (%, y,) =uN Xy, 0 G = Y i) (x = xi(0), y — yi(D)),
i=1

S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139 135

o =0.01, D3 method o =0.01, R3 method

12000 12000 12900
‘ ‘ 10000

8000

6000 6000 -
6000
0. 0.07 0. 0.07 {14000
0.01 = 0.01
0035 g 0055 0.035 2000
x 006 004 Y x 0.06 0.04 Y 0
o = 0.3, D3 method o= 0.3, R3 method
15 15 &
‘ | 12
10 10
9
5 5
6
0 0.4 0 0.4
-0.5 -0.5) 3
0.5 -0. 0.5 ¥ -0.
- -0.4 = -0.4 0

Fig. 4.6. Recovered point-values out of the particle solutions, computed by the D3 (left) and R3 (right) methods. We have used (4.6) with ¢ = 0.0015 for
o =0.01 (upper two graphs) and € = 0.04 for o = 0.3 (lower two graphs).

D3 method R3 method
04 0.4
0.2 02
0 0
-0.2 -0.2
0456 03 o0 03 06 09 0456 03 0 03 06 09

Fig. 4.7. The contour lines of u =0.03 ||u||« for the recovered solutions. The contour lines for the D3 method is shown on the left and the ones for the R3
method are on the right. The small loops are the contour lines for solution with o = 0.01, while the bigger loops are for & = 0.3. The areas enclosed by
the bigger loops are approximately 900 times larger than the area enclosed by the smaller ones.

where ¢, is a mollifier, see, e.g., [5,6,27]. In our numerical experiments, we take

_ x2+y2

1
é's(xv}’):me e (4.6)

In Fig. 4.6, we show the solutions recovered from the D3 and R3 particle approximations at time t =1 for both 0 =0.01
and o = 0.3. The presented results are recovered from the same number of particles for both methods, which are 84898 for
o =0.01 and 396444 for o = 0.3. Those are the numbers of particles left at the final time when the D3 method is used:
For o = 0.01 we pick h =107, Ny, = 16, Np =2 and for o = 0.3, we take h =3 x 1074, Ny = 16, Np = 3. We would
like to emphasize that the computational domain has to be substantially enlarged for the larger value of o, which makes it
much more challenging to achieve high resolution at a reasonable computational cost. In Fig. 4.7, we compare the contour
lines of u =0.03 ||u||o for 0 =0.01 and o = 0.3 (the same contour lines are also shown in Fig. 4.6). It shows that the area
of the computational domain is approximately enlarged by a factor of 900 when o is increased from o =0.01 to o =0.3.

As one can see, the D3 solution is not as smoothly recovered as the R3 one. The main reason is the difference in the
structure of particle locations, which is plotted in Fig. 4.8. While the R3 particles are distributed rather uniformly (since in
the deterministic particle method, each particle trajectory is completely independent of the trajectories of other particles,
see Section 3.2.1), the distribution of the D3 particles is affected by the anisotropy in the diffusion operator: All of the
deterministic particles are emerged out of one initial particle and thus aligned in the direction determined by the convective
term in (1.1). While the values of E, V and B computed by the D3 method are clearly more accurate than the corresponding
values obtained by the R3 method (see Section 4.4), recovering point values of the solution is a more challenging task as it
is often the case when the solution is to be recovered from its particle distribution, see, e.g., [1,2,4].

Acknowledgement

The work of S. Cui and A. Kurganov was supported in part by the NSF Grant DMS-1115718.

136 S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139

o = 0.01, D3 method o = 0.01, R3 method
0.07

0.06

0.04 0.04

0.01 0.02 0.03X 0.04 0.05 0.06 0.01 0.02 0.03X 0.04 0.05 0.06
o = 0.3, D3 method o = 0.3, R3 method
0.4 0.4

0.2

IR\

-0.4 -0.4
-06 -0.3 Ox 03 06 09 -06 -0.3 Ox 03 06 09

Fig. 4.8. The positions of particles obtained by the D3 (left) and R3 (right) methods. The size of each particle is proportional to its weight.

Appendix A. Derivation of (1.1), (1.2)

In this section, we briefly review several bond pricing models. Such mathematical models are based on either SDEs or
partial differential equations (PDEs). For an extensive discussion on continuous time stochastic processes and the relation-
ship between SDEs and PDEs we refer the reader to [23].

After purchasing a non-callable zero-coupon bond, the buyer will receive a fixed final amount of money at future time T,
which is called the maturity. Final amount or face value can be very different, but we assume that it is equal to 1 unit of
money. The price of bond is of great importance and interest. The tools determining the fair price of bond are called bond
pricing models.

There are many factors involved in the bond pricing valuation, like dominated interest rate, probability of default of the
issuer, supply and demand, human psychology, etc. For development of short rate models to defaultable bonds we refer the
reader to [28], which discusses credit derivative pricing models in the case of a non-zero default probability with expected
default payoff.

For the sake of simplicity, we only consider the main factor of the short rate (interest rate), that is, we assume that the
bond price at time ty with maturity T only depends on the (future) short rates in the time interval [tg, T]. The Vasicek
model [31] is one of the SDEs which describes the evolution of the stochastic interest rate. The model gives the short term
rate x(t) as a solution of the following SDE:

dx(t) = k (X — x(t))dt + odW¢, (A1)

where W; is a Wiener process which models the randomness of market. The standard deviation parameter o gives the
volatility of the interest rate. The long term mean level is X: We assume that in the long run the trajectories of the interest
rate will stay around X. When the interest rate runs far from the mean level, ¥ characterizes the speed at which the
trajectories tend to return to the mean level. Even though a particular trajectory is random, the stochastic properties of the
process are completely characterized by the parameters «, X, o and initial condition rg := x(to).

Given the interest rate x(t), the bond price at time to with maturity T is given by

T
B(to,T):E|:exp:—/x('c)d'c”, (A.2)

to
where E is an expectation. We define the accumulative integral of x(t) by
t
y(©) = /X(t) dt, t>to,
to

which can obviously be rewritten in the form of the SDE

dy(t) =x(t)dt, t=>to, (A3)

S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139 137

0.081

0.061

X(t)

0.021

Fig. A.1. The left figure depicts 200 trajectories generated by the Vasicek model (A.1). One of the trajectories is plotted in black and the long term mean
level X is plotted using a dotted line. On the right, the final values of the trajectories (at time t = 2) are represented in a histogram, which approximates
the transitional pdf of x(2) (the smooth line).

0.08}

Fig. A.2. Typical trajectories of y(t). The left figure depicts 200 trajectories of y(t). On the right, the final values of the trajectories (at time t =2) are
represented in a histogram, which approximates the transitional pdf of y(2) (the smooth line).

supplemented with the initial condition y(tp) = 0. The bond price formula (A.2) can then be also written as

B(to, T) = E[exp{—y(T)}], (A4)

which indicates that B(tg, T) can be computed directly from the pdf of y(T).

For numerical methods for SDE models, we refer the reader, e.g., to [21]. The most popular numerical methods for SDEs
are Monte-Carlo methods, which generate trajectories of x(t) and y(t) in order to obtain an approximation of their pdf's. A
large number of realization is typically needed to obtain a good approximation, see, e.g., [12]. To illustrate this, we solve the
SDEs (A.1) and (A.3) with the parameters o =0.01, x = 2, X = 0.025 and initial condition x(0) = 0.07 using a Monte-Carlo
method and show the obtained solutions in Figs. A.1 and A.2.

Unlike the SDE models, the PDE ones are based on the evolution of the transitional pdf’s. Consider a more general system
of SDEs,

dx(t) = a(x, t)dt + b(x, t)dW,,

for which one can write the Fokker-Planck equation to describe the evolution of the corresponding transitional pdf of x(t):

3 1 92
Ot = — X,: o (@G 00) + 5 2 0xidx; [[bx. 0BT x, 0)];u],

ij
where (-); denotes the ith component of the vector and [-];; denotes the (i, j) entry of the matrix. The corresponding initial
condition is
u(x,0) =38(x — x(0)),

where § is the Dirac §-function.
If we take

T X T
X0 =(x®,y®) . a&x=(k&=x,%), bxt=(,0",
we obtain the SDE system, which in turn leads to the corresponding Fokker-Planck equation and initial condition (see [23]):

2

. o
U+ k[—xu] +xuy = — Uxe (A.5)

ux,y,0)=38(x—ro,y), (A.6)

138 S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139

where the parameters «, X, 0 and ro are the same as in Eq. (A.1). The IVP (A.5), (A.6) is exactly the IVP (1.1), (1.2), which
is studied in this paper. Its solution, u(x, y, t), gives us the transitional pdf of (x(t), y(t)). Then, one can compute the bond
price as a weighted integral of u(-,-, T):

B(to, T) = E[e Y™] = fje’yu(x, y, T)dxdy. (A7)
R2

Remark A.1. Another way to derive a PDE model associated with the SDE (A.1) is to use the Kolmogorov backward equation
and Feynman-Kac formula (similarly to the approach in [11,19]), which result in the following PDE for the bond price
B(x,t):

2
N o
Bt + k(X —x)By+ xB + 73,(,(20, (A.8)

which has to be solved backward in time, that is, a final time condition, the so-called payoff function, has to be prescribed.
One can show that if the payoff function is

B(x,T)=1, (A9)
then the bond prices computed using (1.1), (1.2) and (A.8), (A.9) are the same.

We note that Eq. (A.8) is different from Eq. (1.1) studied in this paper though they both are derived from the same
SDE (A.1).

Appendix B. Random walk as a Monte-Carlo method

In this section, we demonstrate that the stochastic particle method applied to the IVP (1.1), (1.2) is equivalent to the
Monte-Carlo method applied to the corresponding SDEs (A.1) and (A.3).

Recall that the considered initial condition (1.2) consists of just one particle initially located at (x1(0), y1(0)) = (ro, 0).
The trajectory of this particle is not deterministic due to the randomness of S%.. Therefore, in order to obtain a numerical
solution of (1.1), (1.2), one needs to conduct a number of experiments, which would give several particle trajectories. Each
particle trajectory by itself can give an approximation of the random variable e=¥™). By repeatedly doing such realizations,
we will obtain a series of samples whose mean approaches the bond price.

For computational simplicity, we initially set N particles at (rg, 0), each with the weight 1/N. These particles spread at
latter time due to the random perturbation in S%. The resulting bond price computed by (A.7) can be proved equivalent to
averaging the bond prices from each trajectory. Furthermore, the obtained N particles form particle solution of the pdf of
(x(@), y(©)).

According to the derivation of (1.1) given in Appendix A, the x-coordinate of the particle corresponds to the interest rate.
We will now show that solving (1.1) using s;g is equivalent to solving the SDEs (A.1) and (A.3) by a Monte-Carlo method.
Thus, the designed random walk based particle method is in fact a Monte-Carlo method for (A.1) and (A.3).

Indeed, the evolution of x;(t) is determined by the initial condition x;(0) =r¢ and the following update formula:

Xi(t + At) = (xi(t) —R)e A+ R+ ¢,

which is the combination of Egs. (3.4) and (3.6) for x;(t). Adding the random numbers &;’s at each time step can be
interpreted as a numerical treatment of the Wiener term odW; in (A.1). Thus, x;(t) actually gives a numerical solution of
the SDE (A.1).

The y-coordinate also has its connection to the SDE (A.3). Since the operator Sp does not effect the y-coordinate, the
evolution of y;(t) is only determined by Sz, which is given by (2.3). This means that y;(t) is an anti-derivative of x;(t).
Given its initial condition y;(0) =0, the y-coordinate of the particles is in fact a numerical approximation of y(t) in (A.3).

References

[1] A. Chertock, A. Kurganov, On a practical implementation of particle methods, Appl. Numer. Math. 56 (2006) 1418-1431.

[2] A. Chertock, A. Kurganov, Computing multivalued solutions of pressureless gas dynamics by deterministic particle methods, Commun. Comput. Phys. 5
(2009) 565-581.

[3] A. Chertock, A. Kurganov, On splitting-based numerical methods for convection-diffusion equations, in: G. Puppo, G. Russo (Eds.), Numerical Methods
for Balance Laws, vol. 24, Aracne editrice S.r.I, Roma, 2009, pp. 303-343.

[4] A. Chertock, A. Kurganov, Y. Rykov, A new sticky particle method for pressureless gas dynamics, SIAM]. Numer. Anal. 45 (2007) 2408-2441.

[5] A. Chorin, Numerical study of slightly viscous flow,]. Fluid Mech. 57 (4) (1973) 785-796.

[6] G.-H. Cottet, P. Koumoutsakos, Vortex Methods, Cambridge University Press, Cambridge, 2000.

[7] G.-H. Cottet, S. Mas-Gallic, A particle method to solve transport-diffusion equations, part 1: the linear case, Tech. Rep. 115, Ecole Polytechnique,
Palaiseau, France, 1983.

[8] P. Degond, S. Mas-Gallic, The weighted particle method for convection-diffusion equations. part 1 and part 2, Math. Comput. 53 (1989) 485-525.

[9] M.W. Evans, FH. Harlow, The particle-in-cell method for hydrodynamic calculations, Tech. Rep. LA-2139, Los Alamos Scientific Laboratory, 1957.

http://refhub.elsevier.com/S0168-9274(14)00065-8/bib434B70617274s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib434B6D756C746976616Cs1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib434B6D756C746976616Cs1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib434B6364726576696577s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib434B6364726576696577s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib434B52796Bs1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib43686F72696Es1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib436F744B6F75s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib434D3833s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib434D3833s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib444D6173s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib457661486172s1

S. Cui et al. / Applied Numerical Mathematics 93 (2015) 123-139 139

[10] P. Foschi, S. Pagliarani, A. Pascucci, Approximations for Asian options in local volatility models, J. Comput. Appl. Math. 237 (2013) 442-459.

[11] C.W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, Springer, 2002.

[12] P. Glasserman, Monte Carlo Methods in Financial Engineering (Stochastic Modelling and Applied Probability), vol. 53, Springer, 2003.

[13] M. Griebel, M. Schweitzer, A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs, SIAM J. Sci. Comput. 22
(2000) 853-890 (electronic).

[14] O. Grishchenko, X. Han, V. Nistor, A volatility-of-volatility expansion of the option prices in the SABR stochastic volatility model. Preprint available at
SSRN: http://dx.doi.org/10.2139/ssrn.2374004,.

[15] F. Harlow, The particle-in-cell computing method for fluid dynamics, in: B. Alder, S. Fernbach, M. Rotenberg (Eds.), Methods in Computational Physics,
vol. 3, Academic Press, New York, 1964, pp. 319-343.

[16] EH. Harlow, A machine calculation method for hydrodynamic problems, Tech. Rep. LAMS-1956, Los Alamos Scientific Laboratory, 1956.

[17] RW. Hockney,].W. Eastwood, Computer Simulation Using Particles, Taylor & Francis, 1989.

[18] W. Hundsdorfer, J. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Ser. Comput. Math., vol. 33,
Springer-Verlag, Berlin, 2003.

[19] S. Janson, J. Tysk, Feynman-Kac formulas for Black-Scholes-type operators, Bull. Lond. Math. Soc. 38 (2) (2006) 269-282.

[20] H. Jia, K. Li, A third accurate operator splitting method, Math. Comput. Model. 53 (1-2) (2011) 387-396.

[21] PE. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, 2011.

[22] A. Leonard, Vortex methods for flow simulation, J. Comput. Phys. 37 (3) (1980) 289-335.

[23] A. Lipton, Mathematical Methods for Foreign Exchange: A Financial Engineer’s Approach, World Scientific Publishing Company, Incorporated, 2001.

[24] R. Mamon, Three ways to solve for bond prices in the Vasicek model,]. Appl. Math. Decis. Sci. 8 (1) (2004) 1-14.

[25] S. Mas-Gallic, P. Raviart, Particle approximation of convection-diffusion equations, International Report 86013, Université Pierre et Marie Curie, 1986.

[26] S. Mas-Gallic, P. Raviart, Particle approximation of convection-diffusion equations, J. Comput. Phys. 97 (1991) 366-397.

[27] P-A. Raviart, An analysis of particle methods, in: Numerical Methods in Fluid Dynamics, Como, 1983, in: Lect. Notes Math., vol. 1127, Springer, Berlin,
1985, pp. 243-324.

[28] PJ. Schonbucher, Credit Derivatives Pricing Models: Model, Pricing and Implementation, Wiley, 2003.

[29] G. Strang, On the construction and comparison of difference schemes, SIAM]. Numer. Anal. 5 (1968) 506-517.

[30] H. Trotter, On the product of semi-groups of operators, Proc. Am. Math. Soc. 10 (1959) 545-551.

[31] O. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ. 5 (2) (1977) 177-188.

http://refhub.elsevier.com/S0168-9274(14)00065-8/bib5061676C696172616E693133s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib47617264696E657232303032s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib476C61733033s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4772696562656C3030s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4772696562656C3030s1
http://dx.doi.org/10.2139/ssrn.2374004
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4861723634s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4861723634s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4861723536s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4845s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib48756E566572s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib48756E566572s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4A5432303036s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib484B3131s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4B6C6F6564656E32303131s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4C656Fs1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4C6970746F6E3031s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4D413034s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4D47523836s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib4D47523931s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib526176s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib526176s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib5363683033s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib537472s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib54726F3539s1
http://refhub.elsevier.com/S0168-9274(14)00065-8/bib563737s1

	Particle methods for PDEs arising in ﬁnancial modeling
	1 Introduction
	2 Background
	2.1 Particle method for transport equations
	2.2 Operator splitting methods

	3 Particle methods for (1.1), (1.2)
	3.1 Hyperbolic solution operator SH(Δt)
	3.2 Parabolic solution operator SP(Δt)
	3.2.1 Random walk solution operator SRP(Δt)
	3.2.2 Deterministic solution operator SDP(Δt)
	3.2.3 Merger procedure M

	4 Numerical results
	4.1 Comparison of different splitting algorithms
	4.2 Dependence of the errors on NP
	4.3 Experimental study of merger errors
	4.4 Comparison of deterministic and stochastic approaches
	4.5 Recovery of the point values out of the particle solutions

	Acknowledgement
	Appendix A Derivation of (1.1), (1.2)
	Appendix B Random walk as a Monte-Carlo method
	References

