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Intense sediment transport and rapid bed evolution are frequently observed under highly-
energetic flows, and bed erosion sometimes is of the same magnitude as the flow itself. 
Simultaneous simulation of multiple physical processes requires a fully coupled system to 
achieve an accurate hydraulic and morphodynamical prediction. In this paper, we develop 
a high-order well-balanced finite-volume method for a new fully coupled two-dimensional 
hyperbolic system consisting of the shallow water equations with friction terms coupled 
with the equations modeling the sediment transport and bed evolution.
The nonequilibrium sediment transport equation is used to predict the sediment concen-
tration variation. Since bed-load, sediment entrainment and deposition have signifi-
cant effects on the bed evolution, an Exner-based equation is adopted together with the 
Grass bed-load formula and sediment entrainment and deposition models to calculate 
the morphological process. The resulting 5 × 5 hyperbolic system of balance laws is 
numerically solved using a Godunov-type central-upwind scheme on a triangular grid. 
A computationally expensive process of finding all of the eigenvalues of the Jacobian 
matrices is avoided: The upper/lower bounds on the largest/smallest local speeds of 
propagation are estimated using the Lagrange theorem. A special discretization of the bed-
slope term is proposed to guarantee the well-balanced property of the designed scheme. 
The proposed fully coupled model is verified on a number of numerical experiments.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Shallow water systems are widely used in predicting hydrodynamics of surface flows such as water flows in rivers, chan-
nels, flood plains and coastal regions. It is well-known that the shallow water systems can accurately predict the hydraulic 
parameters under conditions of slow erosion and low sediment concentration. However, in cases of highly energetic flows 
like dam-break or flood flows, the effects of intense sediment exchange and rapid bed evolution cannot be neglected.

In recent years, a number of dam-break hydraulics models have been developed to predict the fluid flow and sediment 
transport [37,44,46,47,59,60]. However, the majority of the current models are based on the decoupled equations of flow 
and sediment transport and thus they are restricted to erosion rates which are considerably weaker than the flow, see, e.g., 
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[37,56]. However, dam-break flows may induce intense sediment transport and rapid morphological changes which are not 
independent processes but have mutually significant interactions with the fluid flow. In many dam-break cases and in strong 
fluvial processes in rivers, the bed evolution is almost of the same order of magnitude as the free-surface level changes [55]. 
Hence, developing a dam-break model that takes into account coupling hydraulic model with the sediment transport and 
bed evolution equations is required in such cases.

Many dam-break models based on fixed-bed conditions have been developed, see, e.g., [6–8,44,47,59,60]. In order to 
evaluate morphological changes during the high-energy dam-break flows, some earlier numerical models use uncoupled 
strategy to first solve the hydrodynamic model, and then to solve the sediment transport and bed deformation equations 
separately, see, e.g., [19,20,41,46]. More recently, noting that the flow, sediment transport and bed evolution can be strongly 
coupled to each other while the rate of bed deformation being considerable compared to that of the flow evolution, several 
coupled mathematical modeling strategies for simulating dam-break flows over mobile beds have been developed. Fagher-
azzi and Sun [17] presented a 1-D coupled system consisting of a simplified shallow water system, sediment concentration 
and bed level calculation. Cao et al. [11] proposed a 1-D coupled model and the sediment entrainment and deposition 
are considered to update the bed-levels. Wu and Wang presented a similar 1-D coupled model for dam-break flows over 
erodible beds in [51] including the bed-load transport. Capart and Young [12] developed a one-dimensional (1-D) coupled 
dam-break model based on an explicit finite-difference algorithm.

Several two-dimensional (2-D) coupled models for dam-break flows over mobile beds have been recently introduced. 
Simpson and Castelltort [43] presented a 2-D model for the free surface flow, sediment transport and bed level change 
based on the 1-D model from [11]. Yue et al. [54] extended the 1-D model from [11] to 2-D for modeling alluvial processes 
with intense sediment transport and rapid bed evolution. Similar 2-D coupled mathematical models have been also studied 
in [24,52]. Li and Duffy [36] proposed a fully coupled 2-D system including the modified shallow water system, sediment 
transport and bed evolution. In their study, the bed evolution formula is rewritten to couple the sediment entrainment 
and deposition effects by substituting the sediment transport equation into it. Meanwhile, the sediment exchange terms are 
treated as source terms which will not affect the solution of the hyperbolic system. In [5], Benkhaldoun et al. presented 
a coupled 2-D model, which consists of both bed-load and sediment exchange in the morphological equation, and the 
bed-load terms are treated as a flux term coupled in the hyperbolic system. Hudson and Sweby [25] investigated the ac-
curacy and determined the validity of both the steady approach and unsteady approach of five different types of governing 
formulations coupling the morphology continuity equation on rectangular meshes. They concluded that one conservative 
reformulation form based on the unsteady approach was overall the best. However, the drawback of this form is its depen-
dence of the Jacobian matrix on z, which was shown and discussed in [42]. Castro Díaz et al. [13] studied the numerical 
approximation of bed-load sediment transport due to shallow layer flows on unstructured meshes with a second-order 
MUSCL-type reconstruction. Murillo and Garcia-Navarro [39] studied an Exner-based coupled model for 2-D transient flows 
over erodible beds on triangular unstructured meshes and developed a general “Grass formula” format expressing several 
commonly used empirical bed-load formulas. A similar scheme is adopted in the current study using the Meyer–Peter and 
Müller formula. Soares-Frazão and Zech [45] built a coupled system using the HLLC method and proposed an approximate 
analytical expression for the wave celerities, which was valid for any Froude number.

In this paper, we propose a new fully coupled hyperbolic system consisting of hydrodynamic model, sediment transport 
and morphological evolution. The obtained hyperbolic system of balance laws consists of five coupled equations, for which 
no analytical expressions for the eigenstructure are available. This makes it difficult to develop a robust and efficient up-
wind scheme for the proposed model. We develop a Riemann-problem-solver-free finite volume method for the studied fully 
coupled system. Our method is based on the efficient, robust and highly accurate semi-discrete central-upwind scheme, orig-
inally introduced in [28–30,33] for general multidimensional hyperbolic systems of conservation laws. The central-upwind 
scheme was first extended to the Saint-Venant system of shallow water equations in [27]. A more robust, well-balanced 
and positivity preserving central-upwind scheme for the shallow water equations was developed on both Cartesian [31]
and triangular [8] grids. These schemes are capable of exactly preserving “lake at rest” steady-state solutions and pre-
serving positivity of the computed water depth. In this paper, we extend the second-order semi-discrete central-upwind 
scheme to the fully coupled shallow water system modeling flows over erodible bed. Since, according to the central-upwind 
methodology, no (generalized) Riemann problems are to be (approximately) solved, the numerical fluxes are obtained in a 
straightforward manner. The one-sided local speeds needed to evaluate numerical fluxes are estimated using the Lagrange 
theorem [34,38], which significantly reduces the numerical cost (the same approach was used in [14,32] in the context of 
the two- and three-layer shallow water equations). We complete the development of the well-balanced (in the sense that it 
is capable of exactly preserving “lake at rest” states) central-upwind scheme by designing a positivity preserving piecewise 
linear reconstruction and a well-balanced quadrature for the bed-slope terms.

This paper is organized as follows. In Section 2, we present the governing equations, for which in Section 3 we de-
velop the central-upwind scheme. Several numerical experiments are then presented in Section 4. Some concluding remarks 
complete the paper in Section 5.

2. Governing equations

In this section, we will present the model equations (Section 2.1) and write down the studied model in the vector form 
(Section 2.2).
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2.1. Fully coupled shallow water system modeling flows over erodible bed

We follow the approach in [11] and modify the continuity equation to account for the sediment effect. As in the 1-D 
model from [51], we consider both bed-load and suspended load effects in the momentum equations. The resulting 2-D 
modified shallow water equations read:

ht + (hu)x + (hv)y = −Zt, (1)

(hu)t +
(

hu2 + g

2
h2

)
x
+ (huv)y = − gh(Zx + Sx

f ), (2)

(hv)t + (huv)x +
(

hv2 + g

2
h2

)
y
= − gh(Z y + S y

f ). (3)

The sediment transportation and morphological evolution are modeled based on the mass and momentum conversation 
of sediment and water–sediment mixture. We model the bed evolution using an Exner-based equation proposed in [23], 
which we modify to comprise both bed-load and suspended-load. The 2-D sediment transport equation for total load and 
the morphological evolution equation is given by

(hc)t + (huc)x + (hvc)y = E − D (4)

and

Zt + μ

1 − p

[
u

(
u2 + v2

)]
x
+ μ

1 − p

[
v

(
u2 + v2

)]
y
= − E − D

1 − p
, (5)

respectively.
In equations (1)–(5), t is time, x and y are horizontal coordinates. The unknown functions are the water depth 

h = h(x, y, t), the x- and y-components of the depth-averaged velocity, u = u(x, y, t) and v = v(x, y, t), respectively, the vol-
umetric sediment concentration c = c(x, y, t), and the bed elevation Z = Z(x, y, t). The following quantities are parameters 
of the model: g is the gravitational acceleration; p is the bed porosity; μ is a coefficient usually obtained experimentally by 
taking into account the grain diameter and the kinematic viscosity of the sediment mixture; E and D are sediment entrain-
ment and deposition fluxes across the bottom boundary of flow, which represent the sediment exchange between the bed 
and water column; Sx

f and S y
f are friction slope terms in the x- and y-directions, respectively, which are computed using 

Manning’s roughness coefficient nb as follows: Sx
f = n2

bu
√

u2 + v2/h4/3, S y
f = n2

b v
√

u2 + v2/h4/3. In all of our numerical 
experiments, we set nb = 0.02.

Bed sediment entrainment due to turbulence, E , and sediment deposition due to gravity, D , are two distinct mechanisms 
involved in the sediment exchange and bed evolution processes. And they are considered for source of suspended sediment 
in the current study. Several empirical formulations derived on various premises were reviewed in [10,11]. We adopted the 
formulas used in [11], where the coefficients in E and D were determined based on non-cohesive sediment assumptions. 
First,

D := ω0 (1 − Ca)
m Ca, (6)

where ω0 is the settling velocity of a single particle in tranquil water, which can be calculated as:

ω0 =
√

(13.95ν/d)2 + 1.09sgd − 13.95ν/d. (7)

In formulas (6), (7), ν is the kinematic viscosity of water (ν = 1.2 × 10−6), d is the average diameter of sediment particles, 
s is the submerged specific gravity of sediment given by s = ρs

ρ f
− 1, where ρs is the density of sediment particles and ρ f is 

the density of clear water; m is an exponent indicating the effects of hindered settling due to high sediment concentration, 
Ca is the local near-bed sediment concentration in volume, which can be determined by Ca = αc, where the coefficient α is 
usually larger than 1 and must not exceed (1 − p). α is empirically specified by α = min[2, (1 − p)/c]. And E is calculated 
as:

E :=
⎧⎨⎩ ϕ (θ − θc)

√
u2 + v2

h d1/5
, if θ ≥ θc,

0, otherwise.

Here, ϕ is a coefficient to control the erosion force (in our numerical examples, we take ϕ = 0.015), θ is the dimensionless 
shear stress which can be calculated as θ = hS f /(sd), and θc is the critical Shields parameter for initiation of sediment 
movement (the commonly used value is experimentally determined as θc = 0.047).

2.2. Vector form of the fully coupled shallow water system

In order to make it easier to design a well-balanced scheme for the studied fully coupled shallow water system, we 
introduce the water surface variable η := h + Z and rewrite the system (1)–(5) in terms of the equilibrium variables U :=
(η, hu, hv, hc, Z)T in the following vector form:

U t + F x + G y = S + K . (8)
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Here, F and G are:

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hu
(hu)2

η − Z
+ g

2
η2 − gηZ

(hu)(hv)

η − Z
(hu)(hc)

η − Z

μ

1 − p

(hu)
[
(hu)2 + (hv)2

]
(η − Z)3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hv
(hu)(hv)

η − Z
(hv)2

η − Z
+ g

2
η2 − gηZ

(hv)(hc)

η − Z

μ

1 − p

(hv)
[
(hu)2 + (hv)2

]
(η − Z)3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9)

and S and K are:

S =

⎛⎜⎜⎜⎝
0

−gηZx

−gηZ y

0
0

⎞⎟⎟⎟⎠ , K =

⎛⎜⎜⎜⎜⎜⎜⎝

0
−g(η − Z)Sx

f

−g(η − Z)S y
f

E − D

− E − D

1 − p

⎞⎟⎟⎟⎟⎟⎟⎠ . (10)

In order to define a quasi-linear hyperbolic system, the geometric source term S = P (U )U x + Q (U )U y is incorporated 
into the Jacobian matrix following the approach in [39,42]. Notice that, for smooth solutions, the system (8)–(10) can be 
rewritten in the following form:

U + [
A(U ) − P (U )

]
U x + [

B(U ) − Q (U )
]
U y = K ,

where

A(U ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

− (hu)2

(η−Z)2 + g(η − Z) 2hu
η−Z 0 0 (hu)2

(η−Z)2

− (hu)(hv)

(η−Z)2
hv

η−Z
hu

η−Z 0 (hu)(hv)

(η−Z)2

− (hu)(hc)
(η−Z)2

hc
η−Z 0 hu

η−Z
(hu)(hc)
(η−Z)2

−3 μ
1−p

(hu)[(hu)2+(hv)2]
(η−Z)4

μ
1−p

3(hu)2+(hv)2

(η−Z)3
μ

1−p
2(hu)(hu)

(η−Z)3 0 3 μ
1−p

(hu)[(hu)2+(hv)2]
(η−Z)4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (11)

B(U ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0

− (hu)(hv)

(η−Z)2
hv

η−Z
hu

η−Z 0 (hu)(hv)

(η−Z)2

− (hv)2

(η−Z)2 + g(η − Z) 0 2hv
η−Z 0 (hv)2

(η−Z)2

− (hv)(hc)
(η−Z)2 0 hc

η−Z
hv

η−Z
(hv)(hc)
(η−Z)2

−3 μ
1−p

(hv)[(hu)2+(hv)2]
(η−Z)4

μ
1−p

2(hu)(hv)

(η−Z)3
μ

1−p
3(hv)2+(hu)2

(η−Z)3 0 3 μ
1−p

(hv)[(hu)2+(hv)2]
(η−Z)4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (12)

and

P (U ) =

⎛⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 −gη
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎠ , Q (U ) =

⎛⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −gη
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎠ . (13)

3. Semi-discrete central-upwind scheme

We now turn to the derivation of the semi-discrete central-upwind scheme for the system (8)–(10).
We assume that an unstructured triangulation T :=

⋃
i

T i of the computational domain, consisting of triangular cells Ti

of size |Ti |, is given. We denote by nik := (cos(θik), sin(θ ik))T the outer unit normals to the corresponding sides of Ti of 
length 	ik, k = 1, 2, 3, see Fig. 1. Let (xi, yi) be the coordinates of the centroid of Ti and Mik = (xik, yik) be the midpoint of 
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Fig. 1. A typical triangular cell with three neighbors.

the k-th side of the triangle Ti, k = 1, 2, 3. We denote by Ti1, Ti2 and Ti3 the neighboring triangles that share a common 
side with Ti .

A semi-discrete scheme for (8)–(10) is a system of ODEs for the approximations of the cell averages of the solution:

U i(t) ≈ 1

|Ti|
∫
Ti

U (x, y, t)dxdy.

We refer the reader to [30], where a general form of a “triangular” central-upwind scheme for systems of hyperbolic con-
servation laws is derived. We follow [8,30] and obtain the semi-discrete second-order central-upwind scheme, which reads:

d U i

dt
= − 1

|Ti|
3∑

k=1

	ik cos(θik)

ain
ik + aout

ik

[
ain

ik F (U ik(Mik)) + aout
ik F (U i(Mik))

]

− 1

|Ti|
3∑

k=1

	ik sin(θik)

ain
ik + aout

ik

[
ain

ik G(U ik(Mik)) + aout
ik G(U i(Mik))

]

+ 1

|Ti|
3∑

k=1

	ik
ain

ikaout
ik

ain
ik + aout

ik

[
U ik(Mik) − U i(M jk)

]
+ S i + K i . (14)

Here, U i(Mik) and U ik(Mik) are the corresponding values at Mik of the piecewise linear reconstruction

Ů (x, y) := U i + (Û x)i(x − xi) + (Û y)i(y − yi), (x, y) ∈ Ti (15)

of U at time t , that is:

U i(Mik) := lim
(x,y)→Mik;(x,y)∈Ti

Ů (x, y), U ik(Mik) := lim
(x,y)→Mik;(x,y)∈Tik

Ů (x, y), (16)

where the numerical derivatives (Û x)i and (Û y)i are (at least) first-order, componentwise approximations of U x(xi, yi, t)
and U y(xi, yi, t), respectively, computed via a nonlinear limiter used to minimize the oscillations of the reconstruction (15), 
see Section 3.1.

The directional local speeds ain
ik and aout

ik in (14) are defined by

ain
ik(Mik) = −min{λ1[V ik(U i(Mik))], λ1[V ik(U ik(Mik)], 0},

aout
ik (Mik) = max{λ5[V ik(U i(Mik))], λ5[V ik(U ik(Mik)], 0}, (17)

where λ1 [V ik] ≤ . . . ≤ λ5 [V ik] are the eigenvalues of the matrices

V ik(U i(Mik)) := cos(θik)
[

A(U i(Mik)) + P (U i(Mik))
]

+ sin(θik)
[

B(U i(Mik)) + Q (U i(Mik))
]
, (18)

and

V ik(U ik(Mik)) := cos(θik)
[

A(U ik(Mik)) + P (U ik(Mik))
]

+ sin(θik)
[

B(U ik(Mik)) + Q (U ik(Mik))
]
, (19)
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Fig. 2. Stencil for calculating nonlimited derivatives.

where A, B , P and Q are given by (11)–(13). Unfortunately, no analytical expressions for λ1 [V ik] and λ5 [V ik] are available. 
We therefore follow the approach in [14,32] and establish a lower bound for λ1 [V ik] and an upper bound for λ5 [V ik] using 
the Lagrange theorem [34,38], see Section 3.2.

Finally, S i and K i in (14) are the cell averages of the bed-slope term S and the source term K , respectively, over the 
cell Ti .

3.1. Non-oscillatory piecewise linear reconstruction

In this section, we describe a nonlinear limiter used to evaluate the numerical derivatives (Û x)i and (Û y)i in (15) in a 
non-oscillatory manner. A variety of limiters on triangular grids can be found in, for example, [1,8,15,16,26,30,40,50]. In the 
present study, the limiting approach proposed by Jawahar and Kamath in [26] is adopted.

First, we compute the nonlimited gradients (∇U ) j in every cell T j by taking the x- and y-derivatives of the planes 
passing through the points (x j1, y j1, U j1), (x j2, y j2, U j2) and (x j3, y j3, U j3) outlined in Fig. 2:

(U x) j = (y j3 − y j1)(U j2 − U j1) − (y j2 − y j1)(U j3 − U j1)

(y j3 − y j1)(x j2 − x j1) − (y j2 − y j1)(x j3 − x j1)
,

(U y) j = (x j2 − x j1)(U j3 − U j1) − (x j3 − y j1)(U j2 − U j1)

(x j2 − x j1)(y j3 − y j1) − (x j3 − x j1)(y j2 − y j1)
. (20)

We then follow the approach in [40] and obtain the limited numerical gradient (∇Û )i by taking the weighted average 
of three nonlimited gradients:

(∇Û )i = �i1(∇U )i1 + �i2(∇U )i2 + �i3(∇U )i3, (21)

where �i1, �i2 and �i3 are weights and (∇U )i1, (∇U )i2 and (∇U )i3 are the three nonlimited gradients computed using 
(20) for j = i1, i2 and i3, respectively.

The weights are calculated as follows:

�i1 = ‖(∇U )i2‖2
2‖(∇U )i3‖2

2 + ε

‖(∇U )i1‖4
2 + ‖(∇U )i2‖4

2 + ‖(∇U )i3‖4
2 + 3ε

,

�i2 = ‖(∇U )i1‖2
2‖(∇U )i3‖2

2 + ε

‖(∇U )i1‖4
2 + ‖(∇U )i2‖4

2 + ‖(∇U )i3‖4
2 + 3ε

,

�i3 = ‖(∇U )i1‖2
2‖(∇U )i2‖2

2 + ε

‖(∇U )i1‖4
2 + ‖(∇U )i2‖4

2 + ‖(∇U )i3‖4
2 + 3ε

,

where the parameter ε is a small positive number introduced to prevent division by zero. In all of the numerical examples 
presented in Section 4, we have taken ε = 10−14.

Equipped with the numerical gradient (21), we obtain the piecewise linear approximations (15) for each of the conser-
vative variables. These approximants Ů (x, y) are to be used to evaluate the point values of U at the midpoints of the cell 
edges, Mik . To prevent appearance of any negative water depth values at these points, we replace the corresponding point 
values of the bottom elevation with

Ů (5)(Mik) := min(Ů (5)(Mik), Ů (1)(Mik)).
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3.2. Estimating one-sided local speeds of propagation

We now turn to establishing an upper bound on the largest eigenvalue and a lower bound on the smallest eigenvalue of 
the matrices V ik(U i(Mik)) and V ik(U ik(Mik)) given by (18) and (19), respectively.

To this end, we employ the following theorem originally introduced by Lagrange in [34], see also [38] for the proof of 
the theorem and precise description on the way to obtain an upper bound on the largest positive root of a polynomial. The 
Lagrange theorem can be formulated as follows:

Let Pn(λ) = λn + b1λ
n−1 + . . . + bn−1λ + bn be a nonconstant polynomial of degree n. Then, the largest nonnegative root of Pn is 

smaller than the sum of the largest and the second largest numbers in the set {|b j|1/ j : b j ∈ Jmax}, where Jmax is the set of the negative 
coefficients of Pn.

For the matrices V ik(U i(Mik)) and V ik(U ik(Mik)), the characteristic polynomials read[
λ4 + b1λ

3 + b2λ
2 + b3λ + b4

](
hu

η − Z
cos(θik) + hv

η − Z
sin(θik) − λ

)
, (22)

where the coefficients b1, b2, b3 and b4 can be written explicitly using the definitions of the matrices A and B given by 
(11) and (12), respectively (we do not provide the expressions of these coefficients for the sake of brevity).

Then, aout
ik (Mik) is obtained using the upper bound of the largest nonnegative root of the fourth-order polynomial in 

the square brackets in equation (22), which is obtained using the Lagrange theorem. Similarly, ain
ik (Mik) is obtained using 

a lower bound on the smallest nonpositive root of the fourth-order polynomial in the square bracket in equation (22)
(according to the Lagrange theorem, this root is larger than the sum of the smallest and second smallest numbers in the set 
{−|d j |1/ j : b j ∈ Jmin}, where Jmin is the set of the negative coefficients of the polynomial λ4 + d1λ

3 + d2λ
2 + d3λ + b4 with 

d j = (−1) jb j, ∀ j).

3.3. Well-balanced discretization of the bed-slope terms

In this section, we describe a well-balanced discretization of the bed-slope terms, which guarantees that “lake at rest” 
solutions that satisfy

η ≡ ηc = Const, u ≡ v ≡ 0, (23)

are exactly preserved by the resulting central-upwind scheme. Notice that unlike the case of the classical Saint-Venant 
system, the “lake at rest” state in the current study is not a steady-state solution since both hc and Z variables may change 
in time while the identities (23) are satisfied. However, the “lake at rest” state is still physically significant and the approach 
of designing a special well-balanced quadrature for the geometric source term proposed in [8] can be extended to the 
studied system (8)–(10) so that the identities (23) are satisfied by the computed solution provided they are satisfied by the 
initial data.

First, we note that the second and third components of the source term K vanish at “lake at rest” states and therefore, 
the well-balanced property of the scheme will be guaranteed if the discretized cell average of the geometric term S i , exactly 
balances the rest of numerical fluxes so that the second and third components on the right-hand side (RHS) of (14) vanish
for the data satisfying (23).

After a substitution of a “lake at rest” state into (14), we conclude that a well-balanced quadrature of S should satisfy 
the following two conditions:

− g

|Ti|
3∑

k=1

	ik cos(θik)

[
η2

c

2
− ηc

ain
ik Zik(Mik) + aout

ik Zi(Mik)

ain
ik + aout

ik

]
+ S(2)

i = 0 (24)

and

− g

|Ti|
3∑

k=1

	ik sin(θik)

[
η2

c

2
− ηc

ain
ik Zik(Mik) + aout

ik Zi(Mik)

ain
ik + aout

ik

]
+ S(3)

i = 0, (25)

where

S(2)
i ≈ − g

|Ti |
∫
Ti

ηZx dxdy, S(3)
i ≈ − g

|Ti |
∫
Ti

ηZ y dxdy.

To derive the desired well-balanced quadrature, we first apply Green’s formula,∫
divG dxdy =

∫
G · n ds,
Ti ∂Ti
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to the vector field G = ( 1
2 η2 − ηZ , 0) and obtain:

−
∫
Ti

ηZx dxdy =
3∑

k=1

∫
(∂Ti)k

(η2

2
− ηZ

)
cos(θik)ds −

∫
Ti

(η − Z)ηx dxdy, (26)

where (∂Ti)k is the k-th side of the triangle Ti , k = 1, 2, 3. We then apply the midpoint rule to the integrals on the RHS of 
(26) and obtain

S(2)
i = −g(ηi − Z i)ηx(xi, yi)

+ g

|Ti |
3∑

k=1

	ik cos(θik)

ain
ik

(
η2

ik(Mik)

2 − ηik(Mik)Zik(Mik)

)
+ aout

ik

(
η2

i (Mik)

2 − ηi(Mik)Zi(Mik)

)
ain

ik + aout
ik

. (27)

Finally, we apply the divergence theorem to the first term on the RHS of (27) and arrive at the following quadrature for the 
cell average S(2)

i :

S(2)
i = g

|Ti |
3∑

k=1

	ik cos(θik)

[ain
ik

(
η2

ik(Mik)

2 − ηik(Mik)Zik(Mik)

)
+ aout

ik

(
η2

i (Mik)

2 − ηi(Mik)Zi(Mik)

)
ain

ik + aout
ik

− (ηi − Z i)
ηi(Mik) + ηik(Mik)

2

]
. (28)

Likewise, we obtain the quadrature for the cell average S(3)
i :

S(3)
i = g

|Ti |
3∑

k=1

	ik sin(θik)

[ain
ik

(
η2

ik(Mik)

2 − ηik(Mik)Zik(Mik)

)
+ aout

ik

(
η2

i (Mik)

2 − ηi(Mik)Zi(Mik)

)
ain

ik + aout
ik

− (ηi − Z i)
ηi(Mik) + ηik(Mik)

2

]
. (29)

Notice that since at “lake at rest” states ηx ≡ ηy ≡ 0, the quadratures (28), (29) satisfy (24), (25) as long as η ≡ ηc, u ≡ v ≡ 0.
Since the source term K in equation (8), does not affect the well-balanced property of the developed central-upwind 

scheme, we discretize its cell averages, {K i} in a straightforward manner by using the midpoint rule:

K i = K (xi, yi).

3.4. Time integration

The semi-discretization (14) is a system of time-dependent ODEs, which should be integrated using a stable and suffi-
ciently accurate ODE solver. In our numerical experiments, we have used the third-order strong stability preserving (SSP) 
Runge–Kutta solver, see, e.g., [21,22].

The time step restriction is determined by the CFL condition (for details, see [30]) and can be expressed as

�t = Cr min
i,k

[
Ri

max(ain
ik ,aout

ik )

]
,

where Cr is the Courant number typically taken in the range 0 < Cr ≤ 1 and Ri is the minimum distance from the centroid 
of the cell Ti to its edges.

4. Numerical experiments

In this section, we demonstrate the performance of the proposed central-upwind scheme on five test problems.

Example 1—small perturbation of a “lake at rest” state
This numerical example is a modification of the benchmark proposed in [35]. It is designed to test the ability of the 

designed scheme to accurately capture small perturbations of “lake at rest” states.
In this test, the computational domain is [0, 2] ×[0, 1] and it is divided into 20 658 triangular cells. The initial conditions 

are
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η(x, y,0) =
{

1.01, if 0.05 < x < 0.15,

1, otherwise,
u(x, y,0) ≡ v(x, y,0) ≡ 0,

c(x, y,0) ≡ 0.05, Z(x, y,0) = 0.8 exp
[
−5(x − 0.9)2 − 50(y − 0.5)2

]
.

We have used zero-order extrapolation at the right and left boundaries, while the solid wall boundary conditions have been 
implemented in the y-direction.

The gravity acceleration is set to g = 1, the bed porosity is taken to be p = 0.3, and the coefficient μ in equation (5) set 
to μ = 0.001. In this example, we do not use equation (7) to determine the settling velocity of particles, but instead we set 
it to ω0 = 1.

Fig. 3 (left) shows the contour lines of water surface for the right-going disturbance as it propagates past the hump 
at times t = 0.6, 0.9, 1.2, 1.5 and 1.8, respectively. As one can see, complex small features of the flow are resolved in an 
oscillation-free manner and the results are in good agreement with the ones reported in [35]. To demonstrate the necessity 
and importance of the well-balanced property, we also apply a non-well-balanced central-upwind scheme to the same 
problem. The non-well-balanced scheme is obtained by replacing the bed-slope terms S(2)

i and S(3)
i in (28) and (29) by a 

straightforward midpoint rule discretization:

S(2)
i = −η(xi, yi)

g

|Ti |
3∑

k=1

	ik cos(θik)
Zi(Mik) + Zik(Mik)

2
,

S(3)
i = −η(xi, yi)

g

|Ti |
3∑

k=1

	ik sin(θik)
Zi(Mik) + Zik(Mik)

2
.

The non-well-balanced solution computed on the same grid is presented in Fig. 3 (right). It can be clearly observed that 
spurious waves are generated by the non-well-balanced scheme at the plateau of the hump. Moreover, the spurious waves 
are of approximately the same magnitude as the physical waves, which suggests that the non-well-balanced scheme should 
be used on much finer grid only, which would make it impractical.

Fig. 4 shows the 1-D slice along the line y = 0.5 of both the water surface and bed evolutions (the latter occurs due to 
the sediment deposition) at the same times t = 0.6, 0.9, 1.2, 1.5 and 1.8. It should be observed that even in the presence of 
sediment concentration, the well-balanced property of the proposed scheme has prevented numerical oscillations that are 
typically observed when the computation is conducted using a non-well-balanced scheme.

Example 2—sand deposition in quiescent water
This test is designed to verify that the added source terms will not affect the well-balanced property in quiescent water 

with uniform sediment deposition.
We take the computational domain [0, 2] × [0, 1], which is divided into 3628 triangular cells, set the following initial 

conditions:

η(x, y,0) ≡ 1, u(x, y,0) ≡ v(x, y,0) ≡ Z(x, y,0) ≡ 0,

c(x, y,0) = 0.7 exp
[
−5(x − 0.9)2 − 50(y − 0.5)2

]
,

and use zero-order extrapolation at all of the boundaries.
We also use the following values of the parameters: the gravity acceleration is g = 9.8, the bed porosity is p = 0.28, the 

sediment diameter is d = 0.01, the density of sediment particles is ρs = 2400, the density of water is ρ f = 1000, and the 
coefficient μ in equation (5) is μ = 0.

In Fig. 5, we show the quiescent water surface and bed profile at a large time t = 100. As one can see, no oscillations 
are developed at the quiescent water surface, so that the sediment deposition does not affect the numerical “lake at rest” 
steady state. The 1-D slice along the line y = 0.5 of the obtained results is shown in Fig. 6.

Example 3—dam-break flow in a long channel over erodible bed
This test is performed to investigate the advantage of the proposed central-upwind scheme applied to the fully coupled 

system (1)–(5) over a simpler partially coupled approach, in which the central-upwind scheme is applied to the first four 
equations (1)–(4) only, while the equation for the bed evolution (5) is solved using an upwind method as it is described 
below.

For simplicity, the sediment entrainment effects are deactivated so that we take E ≡ D ≡ 0.
In the partially coupled method, the first four conservative quantities, η, hu, hv and hc, are evolved in time by solving 

the same ODE system (14), but with different one-sided speeds of propagation, which are now obtained using the largest 
and smallest eigenvalues of the matrix

Ṽ ik := cos(θik) Ã(U (Mik)) + sin(θik)B̃(U (Mik)),
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Fig. 3. Example 1: water surface η computed by well-balanced (left) and non-well-balanced (right) schemes.
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Fig. 4. Example 1: 1-D slices of the water surface η and bed Z along the line y = 0.5.

Fig. 5. Example 2: bed Z and quiescent water surface η at t = 100.

Fig. 6. Example 2: 1-D slice along the line y = 0.5 of the results reported in Fig. 5.
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where

Ã(U ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

− (hu)2

(η − Z)2
+ g(η − Z)

2hu

η − Z
0 0

− (hu)(hv)

(η − Z)2

hv

η − Z

hu

η − Z
0

− (hu)(hc)

(η − Z)2

hc

η − Z
0

hu

η − Z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

B̃(U ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

− (hu)(hv)

(η − Z)2

hv

η − Z

hu

η − Z
0

− (hv)2

(η − Z)2
+ g(η − Z) 0

2hv

η − Z
0

− (hv)(hc)

(η − Z)2
0

hc

η − Z

hv

η − Z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Unlike the case of a fully coupled model, the eigenvalues of Ṽ ik(U i(Mik)) can be computed analytically and they are

λ1,4 = hu

η − Z
cos(θik) + hv

η − Z
sin(θik) ± √

g(η − Z),

λ2 = λ3 = hu

η − Z
cos(θik) + hv

η − Z
sin(θik).

The bottom topography function is evolved in time by applying the semi-discrete upwind discretization to equation (5):

d Z i

dt
= − μ

|Ti|(1 − p)

3∑
k=1

	ik cos(θik)
[
βik uik(Mik)

(
u2

ik(Mik) + v2
ik(Mik)

)
(1 − βik)ui(Mik)

(
u2

i (Mik) + v2
i (Mik)

)]
− μ

|Ti|(1 − p)

3∑
k=1

	ik cos(θik)
[
βik vik(Mik)

(
u2

ik(Mik) + v2
ik(Mik)

)
(1 − βik)vi(Mik)

(
u2

i (Mik) + v2
i (Mik)

)]
,

where

βik =
⎧⎨⎩ 0,

uik(Mik) + ui(Mik)

2
cos(θik) + vik(Mik) + vi(Mik)

2
sin(θik) ≥ 0,

1, otherwise.

In this numerical test, we simulate a dam-break flow over erodible bed. The computational domain [0, 40] × [0, 0.5] is 
divided into 2560 triangular cells. The initial conditions are

η(x, y,0) =
{

3.1, x ≤ 20,

0.2, x > 20,
u(x, y,0) ≡ v(x, y,0) ≡ c(x, y,0) ≡ Z(x, y,0) ≡ 0,

and zero-order extrapolation is used at all of the boundaries. The parameter values are g = 9.8, p = 0.28 and μ = 0.001.
In Fig. 7, we show the bed profile computed at t = 1 using the central-upwind scheme applied to both fully coupled 

and partially coupled models. As one can clearly see, even under a high-energetic flow considered in this example, the fully 
coupled model can predict a stable bed erosion process and leads to a smooth and physically expectable bed profile. On the 
contrary, the use of the partially coupled model results in an unphysical and oscillatory bed profile.

Example 4—1-D anti-dune evolution
In this numerical test, we simulate a case with a configuration which allows the occurrence of the anti-dune phe-

nomenon, see [4]. The computational domain in [0, 24] and it is discretized on the mesh with an average size �x = 0.1. 
The initial topography contains a bump and is given by

Z(x,0) =
{

0.2 − 0.05(x − 10)2, if 8 ≤ x ≤ 12,

0, otherwise.
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Fig. 7. Example 3: bed profile Z(x, y, 1) computed using the central-upwind scheme applied to the fully coupled (top) and partially coupled (bottom) 
models.

The inflow discharge is uniform and set to be q0 = 1.7. The water height of the inflow is the stationary supercritical profile 
determined by Bernoulli’s law⎧⎨⎩

q2
0

2gh2
+ h + Z = H0,

q(x, t) = q0,

where H0 = q2
0/(2gh2

0) + h0 + Z(0, 0) is the total hydraulic head at inflow, and the water height at inflow is h0 = 0.5. In this 
test, we set Ag = μ/(1 − p) = 0.001, g = 9.8 and E ≡ D ≡ 0.

In Fig. 8, we show the computed bed evolution and water level at times t = 0, 15 and 30. As one can observe, the 
dune migrates counter to the flow direction because the sediment is deposited on the upstream side and eroded from the 
downstream side. It shows that the proposed model has the ability to accurately simulate the anti-dune phenomenon which 
occurs in supercritical regimes.

Example 5—partial dam-break flow over mobile bed
In the last numerical example, we demonstrate the performance of the proposed central-upwind scheme on a 2-D dam 

break problem with rapidly varying unsteady flow and rapid bed evolution. This test problem is based on the numerical test 
that was first introduced in [18] and then widely used as a benchmark, see, e.g., [2,3,49,53,58]. The original case is mostly 
applied on an initially wet and fixed bed, which has been modified in the current study by adding bed evolution.

We consider the domain [0, 200] ×[0, 200] with the rectangular dam located in [95, 105] ×[0, 200]. The initial conditions 
are

η(x, y,0) =
{

6.8, x ≤ 95,

1, x ≥ 105,
u(x, y,0) ≡ v(x, y,0) ≡ c(x, y,0) ≡ Z(x, y,0) ≡ 0.

At time t = 0, a breach in the dam at [95, 105] × [85, 160] is assumed to form instantaneously and the water starts 
flowing through the breach. The computational domain covered with 10 508 triangular cells is outlined in Fig. 9. Notice that 
at the breach region where the gradients of the water depth are large and intense sediment transport occurs, the mesh is 
refined to obtain high resolution. The outlet boundary condition is set at x = 200, while the solid wall boundary conditions 
are used at all other boundaries. In this example, we use the following parameter values: g = 9.8, p = 0.28, d = 0.01, 
ρs = 2400, ρ f = 1000, μ = 0.001, and compute the solution up to time t = 8. During the modeling process, a shock wave 
forms and propagates downstream and a depression wave spreads upstream.
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Fig. 8. Example 4: water level (η) and bed profile (Z ) computed by the proposed central-upwind scheme at times t = 0, 15 and 30.

Fig. 9. Example 5: computational domain and its unstructured triangulation.

We first solve the shallow water system (1)–(3) assuming that the bed is fixed, that is, Zt ≡ Zx ≡ Z y ≡ 0. The predicted 
water level and velocity distribution are shown in Fig. 10: The obtained results are in good agreement with those reported 
in [9,48,53,57].

We then consider a general case of an erodible bed and solve the system (1)–(5) using both the fully and partially 
coupled models. For both models the computed water surfaces (not shown here for the sake of brevity) contain no spurious 
oscillations and the obtained flow patterns are quite similar.

However, the bed elevations predicted by the fully and partially coupled models are very different, as one can see in 
Fig. 11, where we show the bottom topography snapshots at times t = 4, 6 and 8. It can be clearly observed that at the 
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Fig. 10. Example 5 with fixed bed: water level η(x, y,8); surface plot (left) and contour plot with the velocity field (right).

Fig. 11. Example 5: bed evolution computed using the proposed fully coupled model (left) and partially coupled model (right).

corners of both sides of the breach where intense scouring and sediment entrainment are induced by strong vortices, the 
partially coupled model produces very sharp unphysical scouring holes and slight oscillations (see Fig. 11 (right)), which 
may develop spurious oscillations when a flow with higher energy is applied. In contrast with the results obtained using 
the partially coupled model, the bed elevations predicted using the fully coupled model are more accurate and smoother at 
the corners of the breach and no unphysical scouring and oscillations can be observed in Fig. 11 (left).
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5. Conclusion

In this paper, we have proposed and studied a fully coupled model that contains the shallow water system, sediment 
transport equation and bed evolution equation. We have developed a well-balanced, second-order, semi-discrete central-
upwind scheme on unstructured triangular grids. The scheme has been tested on a number of numerical examples, which 
have demonstrated that the developed central-upwind scheme is an efficient and stable tool for solving the proposed fully 
coupled hyperbolic system that models shallow water flows with intense sediment exchange and bed erosion process.

Some of the major conclusions have been drawn:

1. Applying the Lagrange theorem efficiently reduces the cost of finding the smallest and largest eigenvalues of the com-
plicated 5 × 5 Jacobian. By comparing the results of the fully and partially coupled models, one may claim that the 
upper/lower bounds on the largest/smallest eigenvalues obtained using the Lagrange theorem are quite sharp;

2. The model proposed in this paper couples the bed evolution equation into the hyperbolic system, which leads to more 
stable and accurate results. The bed evolution process is less oscillatory compared with a partially coupled model, 
especially when intense scouring and sediment exchange occur. This implies that the proposed fully coupled model is 
advantageous for highly energetic flows like the dam-break one and fluvial flood;

3. The well-balanced discretization proposed in the current paper is designed for discontinuous Z , approximated using a 
(generically discontinuous) piecewise polynomial, which is evolved in the framework of a finite-volume methods. This 
approach proves to be very robust and accurate.
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