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Shallow-water equations are widely used to model water flow in rivers, lakes,
reservoirs, coastal areas, and other situations in which the water depth is much
smaller than the horizontal length scale of motion. The classical shallow-
water equations, the Saint-Venant system, were originally proposed about
150 years ago and still are used in a variety of applications. For many prac-
tical purposes, it is extremely important to have an accurate, efficient and
robust numerical solver for the Saint-Venant system and related models. As
their solutions are typically non-smooth and even discontinuous, finite-volume
schemes are among the most popular tools. In this paper, we review such
schemes and focus on one of the simplest (yet highly accurate and robust)
methods: central-upwind schemes. These schemes belong to the family of
Godunov-type Riemann-problem-solver-free central schemes, but incorporate
some upwinding information about the local speeds of propagation, which
helps to reduce an excessive amount of numerical diffusion typically present
in classical (staggered) non-oscillatory central schemes. Besides the classical
one- and two-dimensional Saint-Venant systems, we will consider the shallow-
water equations with friction terms, models with moving bottom topography,
the two-layer shallow-water system as well as general non-conservative hyper-
bolic systems.
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1. Introduction

Shallow-water equations arise in modelling of water flows in rivers, lakes,
reservoirs, coastal areas, and other situations in which the water depth is
much smaller than the horizontal length scale of motion. Therefore, shallow-
water and closely related equations are widely used in oceanography and
atmospheric sciences to model among others such hazardous phenomena as
hurricanes/typhoons and tsunamis. Besides scientific applications, shallow-
water models are used for flood mitigation as well as in coastal, hydraulic
and civil engineering to design harbour areas, develop urban coastal areas,
construct coastal protection systems, etc.

The classical shallow-water equations (the Saint-Venant system) were ori-
ginally proposed by de Saint-Venant (1871), but are still widely used in a
variety of applications. In the two-dimensional (2-D) case, the simplest
version of the Saint-Venant system (with the viscosity and bottom friction
terms being neglected) reads as

ht + (hu)x + (hv)y = 0,

(hu)t +

(
hu2 +

1

2
gh2

)
x

+ (huv)y = −ghBx,

(hv)t + (huv)x +

(
hv2 +

1

2
gh2

)
y

= −ghBy, (1.1)

where x and y are the horizontal spatial coordinates, t is time, h(x, y, t) is the
water depth, u(x, y, t) and v(x, y, t) are the x- and y-velocity components,
respectively, g is the constant gravitational acceleration, and B(x, y) is the
bottom topography, which is prescribed and time-independent.

The system (1.1) is a nonlinear hyperbolic system of partial differential
equations (PDEs), which admits very complicated, generically non-smooth
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Finite-volume schemes for shallow-water equations 291

solutions that may contain shock and rarefaction waves, and – in the case of
discontinuous bottom topography – also contact discontinuities. Except for
very simple initial data, no analytical solution of (1.1) is available and thus
one has to solve the Saint-Venant system numerically. It is well known (see
e.g. LeVeque 2002 and references therein) that solutions of (1.1) may break
down even when the initial data are smooth and the bottom topography is
flat (B ≡ const. ⇔ Bx ≡ By ≡ 0), and thus designing stable and accurate
numerical methods for (1.1) is a highly non-trivial task.

Another difficulty in the development of numerical methods for (1.1) is
related to the fact that the system (1.1) is a system of balance laws, and a
good numerical method must respect a delicate balance between the flux and
source terms. This means that the scheme should be able to exactly preserve
initial data that correspond to (at least some physically relevant) steady-
state solutions. Such schemes are called well-balanced and their advantage
over non-well-balanced schemes can be clearly observed when a (relatively)
coarse computational grid is used to capture steady-state or quasi-steady-
state solutions (note that in applications, many important solutions are, in
fact, small perturbations of steady-state solutions), as a magnitude of the
truncation error of the non-well-balanced scheme in such situations may
be larger than the magnitude of the waves to be captured. Provided the
non-well-balanced method is converging, one can obviously achieve a high
resolution of the low magnitude waves by refining the mesh, but this ap-
proach may be computationally expensive or even unaffordable, especially in
large-scale simulations. We refer the reader to LeVeque (1998), Jin (2001),
Kurganov and Levy (2002), Gallouët, Hérard and Seguin (2003), Russo
(2005), Li and Chen (2006), Noelle, Pankratz, Puppo and Natvig (2006),
Castro, Pardo Milanés and Parés (2007), Lukáčová-Medvid’ová, Noelle and
Kraft (2007), Noelle, Xing and Shu (2007), Russo and Khe (2010), Fjord-
holm, Mishra and Tadmor (2011), Bernstein, Chertock and Kurganov (2016)
and Cheng and Kurganov (2016) for several well-balanced schemes, some of
which will be reviewed in detail in Section 5.

Besides the requirement to be well-balanced, there is another important
property a good numerical method should possess: it should be positivity-
preserving, that is, the method should guarantee that the computed water
depth remains non-negative at all times. This is extremely practically im-
portant in situations when some parts of the computational domain are
dry (h = 0) or almost dry (0 < h � 1). Even though the validity of
the Saint-Venant system in the presence of dry areas is questionable, deal-
ing with shore areas and islands and thus tracking wet/dry fronts is un-
avoidable in both scientific and engineering applications. For several well-
balanced positivity-preserving schemes, we refer the reader to Perthame
and Simeoni (2001), Audusse et al. (2004), Tang, Tang and Xu (2004),
Gallardo, Parés and Castro (2007), Kurganov and Petrova (2007), Berthon
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292 A. Kurganov

and Marche (2008), Ricchiuto and Bollermann (2009), Bollermann, Noelle
and Lukáčová-Medvid’ová (2011), Bryson, Epshteyn, Kurganov and Pet-
rova (2011), Song et al. (2011), Bollermann, Chen, Kurganov and Noelle
(2013), Ricchiuto (2015), Beljadid, Mohammadian and Kurganov (2016),
Shirkhani, Mohammadian, Seidou and Kurganov (2016) and Liu, Albright,
Epshteyn and Kurganov (2018). We will describe some of these schemes in
Section 5.

In this paper, we review finite-volume schemes for the Saint-Venant sys-
tem (1.1) and related models. In general, finite-volume schemes (see e.g.
the monographs by Godlewski and Raviart 1996, Kröner 1997 and LeVeque
2002) are a popular tool for numerically solving hyperbolic systems of bal-
ance laws, which in the 2-D case read as

Ut + F (U)x + G(U)y = S(U). (1.2)

Here, U(x, y, t) ∈ RN is a vector of unknown functions, F and G are flux
functions, and S is a source term. Since solutions of (1.2) are generically
discontinuous, the system (1.2) is understood in a weak or integral sense.
Namely, we take a certain spatial domain C and integrate (1.2) over the
space–time control volume C × [t, t + ∆t] to obtain the following integral
equation:∫

C
U(x, y, t+ ∆t) dx dy =

∫
C
U(x, y, t) dx dy

−
∫ t+∆t

t

∫
∂C

(nxF (U(x, y, τ)) + nyG(U(x, y, τ))) ds dτ

+

∫ t+∆t

t

∫
C
S(U(x, y, τ)) dx dy dτ, (1.3)

where ∂C is a boundary of C and n = (nx, ny)
> is its outer unit normal.

Note that for smooth solutions (1.3) is equivalent to (1.2) assuming that
the former is satisfied for all spatial domains C and all t ≥ 0 and ∆t > 0.
The advantage of the integral formulation (1.3), however, is that it is valid
for piecewise smooth solutions as well. Unlike classical finite-difference
methods (Richtmyer and Morton 1994), which are designed based on the
classical PDE formulation (1.2), finite-volume schemes are constructed us-
ing the integral formulation (1.3) and thus finite-volume schemes are an
appropriate tool for capturing weak, non-smooth solutions of nonlinear hy-
perbolic PDEs. Instead of computing the point values of U , which may be
undefined at the discontinuities, the computed quantities in finite-volume
schemes are the averages over the spatial domains,

UC(t) =
1

|C|

∫
C
U(x, y, t) dx dy,
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which are well-defined quantities. In order to evolve them from time t to
t + ∆t according to (1.3), one would need to evaluate the flux and source
integrals on the right-hand side of (1.3). This may be highly non-trivial due
to the complicated structure of the solutions of (1.2).

One of the major features of hyperbolic systems of balance laws is propaga-
tion (with a finite speed) of the information along the characteristic surfaces.
This brings the idea of upwinding, which may stabilize the computation of
the flux integrals in (1.3). The Godunov scheme (Godunov 1959) is the first
finite-volume upwind scheme designed for one-dimensional (1-D) hyperbolic
systems of conservation laws (system (1.2) with S ≡ 0). The main idea be-
hind the construction of the Godunov scheme is a global approximation of
the solution using a piecewise constant function (the computational domain
is split into the cells and the solution is approximated by a constant piece
in each of the cells) followed by the upwind evaluation of the flux integrals.
As we explain in Section 3.1, the latter requires solving the Riemann prob-
lem, which may be quite complicated and computationally expensive. The
Lax–Friedrichs scheme (Friedrichs 1954, Lax 1954) is a prototype of non-
oscillatory central schemes which offer a Riemann-problem-solver-free al-
ternative to the upwind schemes. In central schemes, the solution is evolved
in time still using the same integral equation (1.3), but the control volume
is selected in such a way that the location of discontinuities in the piecewise
constant approximant of the solution at time level t does not coincide with
∂C, which helps to avoid the necessity to solve any Riemann problem (see
Sections 3.2 for details). The drawback of the central schemes, however, is
their relatively high numerical dissipation, which can be decreased by tak-
ing into account the local speeds of propagation and thus introducing some
upwinding information into the central schemes. This leads to a class of
central-upwind schemes, which were introduced in Kurganov and Tadmor
(2000) and Kurganov, Noelle and Petrova (2001); see also Rusanov (1961)
and Harten, Lax and van Leer (1983) and the discussion in Sections 3.3 and
4, where 1-D and 2-D central-upwind schemes are described, respectively.

Unfortunately, both the Godunov and Lax–Friedrichs schemes are only
first-order accurate and thus they typically require the use of very fine (often
impractically fine) meshes to achieve a high resolution of discontinuous solu-
tions. It is well known (see e.g. Godlewski and Raviart 1996 Kröner 1997,
LeVeque 2002) that sharp approximated solutions can be obtained using
higher, at least second-order finite-volume schemes. In order to construct
such schemes, one needs to replace the piecewise constant approximation
of the computed solution with a piecewise polynomial one, which is more
accurate, but makes the upwinding substantially more complicated. For pi-
oneering work on second-order upwind and central schemes, which employ
piecewise linear approximations, we refer the reader to van Leer (1979) and
Nessyahu and Tadmor (1990), respectively.
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In Section 5, we turn to a description of the extension of central-upwind
schemes to shallow-water equations, which was first presented in Kurganov
and Levy (2002) and then further developed in Kurganov and Petrova
(2007), Bryson et al. (2011), Bollermann et al. (2013), Beljadid et al. (2016),
Bernstein et al. (2016), Shirkhani et al. (2016), Cheng and Kurganov (2016)
and Liu et al. (2018). The well-balanced property of the central-upwind
schemes is enforced by reconstructing equilibrium variables (those that re-
main constant at the relevant steady states) and designing special well-
balanced discretizations of the geometric source terms as described in Sec-
tions 5.1.1, 5.1.2 and 5.2.1. The designed well-balanced central-upwind
schemes are made positivity-preserving with the help of several techniques
described in detail in Sections 5.1.1, 5.1.3–5.1.5, 5.2.2 and 5.2.3. We then
continue in Section 5.3 with a description of the well-balanced positivity-
preserving central-upwind scheme for the Saint-Venant system with friction
terms. This scheme, which was developed in Chertock, Cui, Kurganov and
Wu (2015b), is a non-trivial extension of the central-upwind scheme from
Kurganov and Petrova (2007).

When the bottom topography is discontinuous, the Saint-Venant system
would contain the non-conservative product terms hBx and hBy. In order
to design robust and accurate central-upwind schemes for non-conservative
hyperbolic system, we first rewrite the central-upwind scheme from Kur-
ganov et al. (2001) in a different form and then take into account the jump
of the non-conservative product terms across the cell interfaces. This res-
ults in path-conservative central-upwind schemes, which have recently been
developed in Castro Dı́az, Kurganov and Morales de Luna (2018) and are
described here in Section 6. The path-conservative central-upwind schemes
can be made well-balanced by modifying the numerical viscosity of the ori-
ginal central-upwind schemes as described in Section 6.1.

Finally, in Section 7, we present an extension of the central-upwind and
path-conservative central-upwind schemes to two related shallow-water mod-
els: the Saint-Venant system with time-dependent bottom topography (Sec-
tion 7.1), and the two-layer shallow-water system (Section 7.2).

2. Hyperbolic systems of conservation and balance laws

A general 1-D system of balance laws reads as

Ut + F (U)x = S(U), (2.1)

where U(x, t) ∈ RN is a vector of unknown functions, F is a flux function,
and S is a source term. If S ≡ 0, (2.1) reduces to a system of conservation
laws:

Ut + F (U)x = 0. (2.2)
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The systems (2.1) and (2.2) are hyperbolic if the Jacobian ∂F /∂U has real
eigenvalues

λ1

(
∂F

∂U

)
≤ · · · ≤ λN

(
∂F

∂U

)
.

For example, for the 1-D Saint-Venant system of shallow-water equations,

ht + (hu)x = 0, (hu)t +

(
hu2 +

1

2
gh2

)
x

= −ghBx, (2.3)

U = (h, q)> with q := hu denoting the discharge,

F (h, q) =

(
q,
q2

h
+
gh2

2

)>
, S(h;B) = (0,−ghBx)>,

the Jacobian is

∂F

∂U
(h, q) =

(
0 1

−u2 + gh 2u

)
,

and its eigenvalues are λ1 = u−
√
gh and λ2 = u+

√
gh.

One of the main features of the hyperbolic systems is a finite speed of
propagation: any change in the solution propagates at a speed bounded by
the lower and upper bounds on λ1 and λN , respectively. This property is the
key point used in the construction of finite-volume methods for hyperbolic
PDEs as explained below.

Another important feature of hyperbolic systems is that they admit non-
smooth (discontinuous) solutions. Moreover, the solutions of nonlinear hy-
perbolic systems may break down even when the initial data are infinitely
smooth. This fact should be taken into account when such numerical tech-
niques as solution approximation and its global (in space) reconstruction
are designed to be used by a finite-volume scheme.

A general 2-D system of balance laws is given by (1.2) and if S ≡ 0, it
reduces to a system of conservation laws:

Ut + F (U)x + G(U)y = 0. (2.4)

The systems (1.2) and (2.4) are hyperbolic if both the x- and y-directional
Jacobians ∂F /∂U and ∂G/∂U have real eigenvalues

λ1

(
∂F

∂U

)
≤ · · · ≤ λN

(
∂F

∂U

)
and λ1

(
∂G

∂U

)
≤ · · · ≤ λN

(
∂G

∂U

)
,

respectively.
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296 A. Kurganov

For example, for the 2-D Saint-Venant system of shallow-water equations
(1.1), U = (h, qx, qy)> with qx := hu and qy := hv denoting the x- and
y-discharges, respectively,

F (h, qx, qy) =

(
qx,

(qx)2

h
+
gh2

2
,
qxqy

h

)>
,

G(h, qx, qy) =

(
qy,

qxqy

h
,
(qy)2

h
+
gh2

2

)>
,

S(h;B) = (0,−ghBx,−ghBy)>,

the corresponding Jacobians are

∂F

∂U
(h, qx, qy) =

 0 1 0

−u2 + gh 2u 0

−uv v u


and

∂G

∂U
(h, qx, qy) =

 0 0 1

−uv v u

−v2 + gh 0 2v

,
and their eigenvalues are

λ1

(
∂F

∂U

)
= u−

√
gh, λ2

(
∂F

∂U

)
= u, λ3

(
∂F

∂U

)
= u+

√
gh

and

λ1

(
∂G

∂U

)
= v −

√
gh, λ2

(
∂G

∂U

)
= v, λ3

(
∂G

∂U

)
= v +

√
gh.

The structure of 2-D solutions may be much more complicated than the
structure of their 1-D counterparts. However, the main features related to
the solution breakdown and finite speed of propagation are still the same
and they can be used in the construction of 2-D finite-volume methods.

3. One-dimensional finite-volume schemes

In this section we will review finite-volume schemes for the 1-D hyperbolic
systems of conservation laws (2.2).

For the sake of simplicity, we consider a uniform finite-volume mesh con-
sisting of the cells Cj := [xj−1/2, xj+1/2] of size |Cj | ≡ ∆x, centred at
xj = (xj−1/2 +xj+1/2)/2, and assume that at a certain time level tn the cell
averages of the solution,

U n
j ≈

1

∆x

∫
Cj

U(x, tn) dx,
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are available. We then approximate U(x, tn) using a piecewise polynomial
interpolant

Ũn(x) =
∑
j

Pn
j (x)χj(x), (3.1)

where Pn
j (x) are polynomial pieces satisfying the conservation,

1

∆x

∫
Cj

Pn
j (x) dx =U n

j ,

accuracy (for smooth U),

Pn
j (x) = U(x, tn) +O((∆x)p) for x ∈ Cj ,

where p is the desired order of spatial approximation, and non-oscillatory
requirements. The latter property of the reconstruction can be defined in
many alternative ways. For example, one may bound the total variation of
each component of U ,

TV
[
(Ũn(x))(i)

]
≤ TV

[
(U n

j )(i)
]

+O(∆x), i = 1, . . . , N,

where

TV
[
(U n

j )(i)
]

:=
∑
j

[
(U n

j+1)(i) − (U n
j )(i)

]
,

or require the number-of-extrema non-increasing property to be satisfied
in a component-wise manner. Milder non-oscillatory and essentially non-
oscillatory criteria can be also imposed, especially on higher-order inter-
polants.

It is well known that in order to make the piecewise polynomial recon-
structions (3.1) non-oscillatory, one has to use nonlinear limiters. A library
of such limiters can be found, for example, in Cockburn, Johnson, Shu and
Tadmor (1998), Godlewski and Raviart (1996), Harten and Osher (1987),
Kröner (1997), Kurganov, Prugger and Wu (2017), LeVeque (2002), Lie and
Noelle (2003b), Nessyahu and Tadmor (1990), Sweby (1984) and van Leer
(1979) for the second-order piecewise linear reconstructions. Development
of nonlinear limiters for higher-order reconstructions is a much more chal-
lenging task; we refer the reader to Abgrall (1994), Cockburn et al. (1998),
Harten (1989), Harten (1993), Harten, Engquist, Osher and Chakravarthy
(1987), Jiang and Shu (1996), Kurganov and Petrova (2001), Levy, Puppo
and Russo (1999, 2000), Liu and Osher (1996), Liu, Osher and Chan (1994),
Liu and Tadmor (1998), Shu (2003, 2009), Shi, Hu and Shu (2002) and ref-
erences therein.

After the interpolant (3.1) is constructed, we integrate (2.2) over a certain
space–time control volume C × [tn, tn+1] (where tn+1 := tn + ∆tn and the
time step ∆tn is selected using an appropriate Courant–Friedrichs–Lewy
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298 A. Kurganov

(CFL) condition), to obtain the cell averages U n+1
C at the new time level

t = tn+1. Depending on a particular choice of C, one may design either
upwind (Section 3.1) or central (Section 3.2) finite-volume schemes.

3.1. Upwind schemes

In the classical approach dating back to the original Godunov scheme (1959),
the space–time control volume is selected to be Cj × [tn, tn+1]. This results
in

U n+1
j =U n

j −
∆tn

∆x

[
F n+1/2
j+1/2 −F n+1/2

j−1/2

]
, (3.2)

where

F n+1/2
j+1/2 ≈

1

∆tn

∫ tn+1

tn
F (U(xj+1/2, t)) dt (3.3)

is a numerical flux, which needs to be computed based on the data (3.1)
available at time level t = tn. In order to evaluate the time integral in (3.3),
one has to (approximately) solve the following initial value problem (IVP)
with the initial data prescribed at time t = tn:

Ut + F (U)x = 0, t ∈ (tn, tn+1],

U(x, tn) =

{
Pn
j (x), x < xj+1/2,

Pn
j+1(x), x > xj+1/2.

(3.4)

In the case of the first-order piecewise constant reconstruction, that is,
when Pn

j (x) = U n
j for all j, the IVP (3.4) is a Riemann problem, whose

solution, as is well known, is self-similar:

U(x, t) = Un+
j+1/2(ξ), ξ :=

x− xj+1/2

t− tn
.

Therefore it is constant at x = xj+1/2 for all t ∈ (tn, tn+1] and the numerical
flux (3.3) becomes

F n+1/2
j+1/2 = F (Un+

j+1/2(0)).

In order to complete the construction of the first-order Godunov scheme
one then needs to analytically solve the Riemann problem (3.4) to find
Un+
j+1/2(0). For some hyperbolic systems of conservation laws this can be

done; see, for example, Godlewski and Raviart (1996), Kröner (1997) and
LeVeque (2002). Alternatively, the Riemann problem (3.4) can be solved
approximately; a variety of approximate Riemann problem solvers can be
found in Godlewski and Raviart (1996), Kröner (1997), LeVeque (2002) and
Toro (2009), for example.

If (3.1) is a piecewise linear function used in the construction of second-
order upwind schemes, the IVP (3.4) is a generalized Riemann problem
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(GRP), whose solution is no longer self-similar. GRPs are much harder to
solve analytically. Although this was done for some hyperbolic systems of
conservation laws in Ben-Artzi (1989), Ben-Artzi and Falcovitz (1984, 1986,
2003) and Ben-Artzi, Li and Warnecke (2006), approximate GRP solvers
are more popular as they are much easier to construct and implement; see,
for example, Godlewski and Raviart (1996), LeVeque (2002) and Lukáčová-
Medvid’ová, Morton and Warnecke (2004).

A simpler and thus more popular approach for constructing high-order
upwind schemes is by using the semi-discrete formulation of (2.2), which is
obtained by integrating (2.2) over the cell Cj , that is,

d

dt
U j(t) = − 1

∆x

[
F j+1/2(t)−F j−1/2(t)

]
, (3.5)

where

U j(t) ≈
1

∆x

∫
Cj

U(x, t) dx

are cell averages assumed to be available at a certain time level t and the
numerical fluxes F j+1/2(t) are obtained by (approximately) solving the fol-
lowing Riemann problem:

Ut + F (U)x = 0, t ∈ (t, t+ τ ],

U(x, t) =

{
U−j+1/2(t), x < xj+1/2,

U+
j+1/2(t), x > xj+1/2.

Here, τ is a small positive number and U+
j+1/2(t) and U−j+1/2(t) are the right-

and left-sided values of the piecewise polynomial interpolant (reconstructed

at time t from the cell averages U j(t))

Ũ(x; t) =
∑
j

Pj(x; t)χj(x), (3.6)

namely,

U+
j+1/2(t) = Pj+1(xj+1/2; t) and U−j+1/2(t) = Pj(xj+1/2; t). (3.7)

The semi-discrete scheme is implemented by numerically solving the ODE
system (3.5) using an appropriate ODE solver. A popular choice of such
solvers is that of strong stability preserving (SSP) Runge–Kutta and multi-
stage methods; see, for example, Gottlieb, Ketcheson and Shu (2011) and
Gottlieb, Shu and Tadmor (2001). These methods were originally designed
to ensure that the total variation of the computed solution does not increase
at the time evolution stage and thus they were originally referred to as total-
variation-diminishing (TVD) methods in Shu (1988) and Shu and Osher
(1988).
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Remark 3.1. The order of the resulting scheme is determined by the
orders of the piecewise polynomial reconstruction (3.6), (3.7) and the ODE
solver.

Remark 3.2. We would like to emphasize that the fully discrete upwind
schemes designed based on solving the GRPs typically achieve higher res-
olution than the semi-discrete upwind schemes. The latter schemes are,
however, substantially simpler and computationally less expensive.

3.2. Central schemes

Central schemes offer a simpler, Riemann-problem-solver-free alternative to
upwind schemes. They are obtained by selecting shifted space–time control
volumes that contain the corresponding Riemann fans. The simplest choice
of such control volumes, [xj , xj+1] × [tn, tn+1], was suggested in Nessyahu
and Tadmor (1990), where a second-order staggered central scheme (the
Nessyahu–Tadmor scheme) was derived. The cell averages at time level
t = tn+1 are then obtained over the staggered grid (compare with (3.2)):

U n+1
j+1/2 =

1

∆x

∫ xj+1

xj

Ũn(x) dx− ∆tn

∆x

[
F n+1/2
j+1 −F n+1/2

j

]
, (3.8)

where the numerical fluxes are

F n+1/2
j ≈ 1

∆tn

∫ tn+1

tn
F (U(xj , t)) dt. (3.9)

We note that the spatial integral on the right-hand side of (3.8) can be

explicitly computed for any piecewise polynomial reconstruction Ũn. Fur-
ther, the time integrals in (3.9) can be easily computed using an appropriate
quadrature because the solution of the IVP

Ut + F (U)x = 0, t ∈ (tn, tn+1],

U(x, tn) = Ũn(x)

remains smooth at the cell centres x = xj , provided the CFL number is taken
to be less than or equal to 1/2, in order to prevent the nonlinear (possibly
discontinuous) waves generated at cell interfaces at time level t = tn from
reaching the cell centres before t = tn+1.

The second-order Nessyahu–Tadmor scheme is designed by taking the
second-order piecewise linear reconstruction, for which

Pn
j (x) = U n

j + (Ux)nj (x− xj),

where (Ux)nj are the slopes that approximate Ux(xj , t
n) in a non-oscillatory

manner using a nonlinear slope limiter, and the midpoint quadrature for
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the temporal integrals in (3.9). This results in

U n+1
j+1/2 =

1

2
(U n

j + U n
j+1) +

∆x

8

[
(Ux)nj − (Ux)nj+1

]
− ∆tn

∆x

[
F (U

n+1/2
j+1 )− F (U

n+1/2
j )

]
, (3.10)

where the midpoint values U
n+1/2
j are predicted using the Taylor expansion

as follows:

U
n+1/2
j = U n

j +
∆t

2
(Ut)

n
j = U n

j −
∆t

2
(F (U)x)nj . (3.11)

Here, the derivatives (F (U)x)nj can be computed with the help of the same
limiter, which was used in the computation of (Ux)nj .

Remark 3.3. Note that if all of the slopes (Ux)nj and (F (U)x)nj are set
to zero, the Nessyahu–Tadmor scheme (3.10), (3.11) will reduce to the first-
order staggered Lax–Friedrichs scheme

U n+1
j+1/2 =

1

2
(U n

j + U n
j+1)− ∆tn

∆x

[
F (U n

j+1)− F (U n
j )
]
, (3.12)

which is a Godunov-type version of the classical Lax–Friedrichs scheme from
Friedrichs (1954) and Lax (1954).

Remark 3.4. Higher-order staggered schemes were developed in Bianco,
Puppo and Russo (1999), Levy, Puppo and Russo (1999, 2000, 2002) and Liu
and Tadmor (1998), and their multidimensional extensions were proposed
in Arminjon and Viallon (1995), Arminjon, Viallon and Madrane (1997),
Jiang and Tadmor (1998), Levy, Puppo and Russo (2000, 2002) and Lie
and Noelle (2003a).

Remark 3.5. The staggered central schemes provide a ‘black-box’ tool for
solving general (multidimensional) hyperbolic systems of conservation laws.
However, the amount of numerical diffusion present in staggered central
schemes is quite large and it significantly increases when the time step is
taken to be small or, alternatively, when a long-term (steady-state) com-
putation is performed. In order to clarify this point, let us consider the
first-order staggered Lax–Friedrichs scheme (3.12) and rewrite it in the fol-
lowing equivalent form:

U n+1
j+1/2 −U n

j+1/2

∆tn
+

F (U n
j+1)− F (U n

j )

∆x
=

(∆x)2

8∆tn
·
U n
j+1 − 2U n

j+1/2 +U n
j

(∆x/2)2
.

(3.13)

As one can see, the terms on the left-hand side of (3.13) approximate Ut

and F (U)x, respectively, while the term on the right-hand side of (3.13)
represents the numerical viscosity/diffusion present in the scheme. Notice
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that the numerical viscosity coefficient is proportional to (∆x)2/∆tn and
its size depends on the ratio of ∆tn and ∆x. In the hyperbolic regime, one
typically takes ∆tn ∼ ∆x, and then the viscosity coefficient is proportional
to ∆x as it is supposed to be for first-order schemes. If, however, ∆tn is
for some reason taken to be small then the numerical dissipation increases
so significantly that the scheme may become inconsistent (e.g. if ∆tn ∼
(∆x)2). In addition, the excessive numerical dissipation present in staggered
central schemes may badly affect the quality of solutions computed at large
times (this makes the schemes inappropriate for capturing time-independent
steady-state solutions, as pointed out in Kurganov and Tadmor 2000).

In order to overcome this drawback, we have developed a new class of
Riemann-problem-solver-free methods: central-upwind schemes, which are
briefly described in Section 3.3. We refer the reader to Kurganov (2016),
Kurganov and Lin (2007) and Kurganov et al. (2017) for details of their
derivation.

3.3. Central-upwind schemes

Central-upwind schemes are derived using the Godunov-type central ap-
proach described in Section 3.2, but using a different set of non-uniform
space–time control volumes whose size is determined based on the one-
sided local speeds of propagation a±j+1/2, which are determined as follows.

We first note that the piecewise polynomial reconstruction (3.6) is generic-
ally discontinuous at the cell interfaces x = xj+1/2 and the (non-smooth)
waves generated there propagate with local speeds whose upper and lower
bounds can be estimated using the largest and smallest eigenvalues of the
Jacobian ∂F /∂U . In most cases, reliable estimates are given by

a+
j+1/2(t) = max

{
λN

(
∂F

∂U
(U−j+1/2(t))

)
, λN

(
∂F

∂U
(U+

j+1/2(t))

)
, 0

}
,

(3.14a)

a−j+1/2(t) = min

{
λ1

(
∂F

∂U
(U−j+1/2(t))

)
, λ1

(
∂F

∂U
(U+

j+1/2(t))

)
, 0

}
. (3.14b)

However, as was recently pointed out in Guermond and Popov (2016), this
estimate may be inaccurate even in the case of convex flux F . For the
estimates on one-sided local speeds in the case of non-convex fluxes, we
refer the reader to Kurganov, Petrova and Popov (2007), for example.

Equipped with the set of non-uniform space–time control volumes, the
solution is evolved to the new time level at which it is given as a set of
cell averages of U over a new (strictly) non-uniform mesh containing twice
as many cells as the original (uniform) mesh. The obtained solution is
then projected onto the original grid, which makes the resulting fully dis-
crete central-upwind scheme practically feasible; see Kurganov (2016) and
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Kurganov and Lin (2007) for details of their derivation. The fully discrete
central-upwind scheme is, however, quite complicated (especially its 2-D
version recently developed in Kurganov et al. 2017).

The central-upwind schemes may be significantly simplified if one passes
to a semi-discrete limit by taking maxn(∆tn) → 0. This leads to a class
of semi-discrete central-upwind schemes developed in Kurganov and Lin
(2007), Kurganov et al. (2001) and Kurganov and Tadmor (2000), which in
the 1-D case can be put into the flux form (3.5) with the central-upwind
numerical flux

F j+1/2 =
a+
j+1/2F (U−j+1/2)− a−j+1/2F (U+

j+1/2)

a+
j+1/2 − a

−
j+1/2

+
a+
j+1/2a

−
j+1/2

a+
j+1/2 − a

−
j+1/2

[
U+
j+1/2 −U−j+1/2 − δUj+1/2

]
. (3.15)

Here,

δUj+1/2 := minmod
(
U+
j+1/2 −U∗j+1/2, U

∗
j+1/2 −U−j+1/2

)
(3.16)

is the built-in anti-diffusion term (see Kurganov 2016, Kurganov and Lin
2007 for details of its derivation) and

U∗j+1/2 =
a+
j+1/2U

+
j+1/2 − a

−
j+1/2U

−
j+1/2 − {F (U+

j+1/2)− F (U−j+1/2)}
a+
j+1/2 − a

−
j+1/2

(3.17)

are the intermediate values. Finally, the minmod function in (3.16) is defined
as follows:

minmod(z1, z2, . . .) =


min(z1, z2, . . .), if zi > 0, for all i,

max(z1, z2, . . .), if zi < 0, for all i,

0, otherwise.

Note that all of the indexed quantities in (3.15)–(3.17) are time-dependent,
but we omit this dependence for the sake of brevity.

Remark 3.6. The semi-discrete central-upwind scheme (3.5), (3.15)–(3.17)
should be implemented using an appropriate ODE solver. In the purely
hyperbolic regime, we usually use the three-stage third-order SSP Runge–
Kutta method; see, for example, Gottlieb, Ketcheson and Shu (2011) and
Gottlieb, Shu and Tadmor (2001).

Remark 3.7. We note that both the fully discrete schemes presented in
Kurganov and Lin (2007) and Kurganov et al. (2001) and the semi-discrete
scheme (3.5), (3.15)–(3.17) belong to the class of Godunov-type central
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schemes, as the solution is evolved in time using the integral form of conser-
vation laws without (approximately) solving (generalized) Riemann prob-
lems. On the other hand, when all of the Jacobian eigenvalues are of the
same sign, the schemes reduce to the corresponding upwind schemes. This
is the reason why starting from Kurganov et al. (2001) we identify these
central schemes as central-upwind schemes.

Remark 3.8. In earlier works on central-upwind schemes, the projection
step was not performed in the sharpest manner, so the numerical diffusion
was not completely minimized and the anti-diffusion term δUj+1/2 in (3.15)
was, in fact, set to zero for all j; see Kurganov et al. (2001) and Kurganov
and Tadmor (2000).

Remark 3.9. In the first work on central-upwind schemes, by Kurganov
and Tadmor (2000), the space–time control volumes were taken to be sym-
metric with respect to x = xj+1/2. This leads to a+

j+1/2 ≡ −a
−
j+1/2 for all j,

and the resulting central-upwind schemes, often called non-staggered central
schemes, are more diffusive.

Remark 3.10. The order of the semi-discrete central-upwind schemes is
determined formally only by the order of the piecewise polynomial recon-
struction (3.6), used to compute the values U±j+1/2, and the order of the

ODE solver.

Remark 3.11. We would like to point out that the first-order versions of
the central-upwind schemes from Kurganov and Tadmor (2000) and Kur-
ganov et al. (2001) coincide with the Rusanov scheme from Rusanov (1961)
and the Harten–Lax–van Leer scheme from Harten et al. (1983), respect-
ively.

4. Two-dimensional central-upwind schemes

A fully discrete 2-D central-upwind scheme for (2.4) has recently been rigor-
ously derived in Kurganov et al. (2017) using the 2-D Godunov-type central
approach developed in Arminjon and Viallon (1995), Arminjon et al. (1997)
and Jiang and Tadmor (1998). The fully discrete central-upwind scheme is
capable of achieving very sharp resolution, but it is quite complicated. Much
simpler (though a little more diffusive) semi-discrete central-upwind schemes
can be derived using either the dimension-by-dimension Kurganov and Levy
(2000) and Kurganov and Tadmor (2000) or genuinely multidimensional ap-
proach. The latter one was implemented on Cartesian (Chertock et al. 2018,
Kurganov and Lin 2007, Kurganov et al. 2001, Kurganov and Petrova 2001,
Kurganov and Tadmor 2002), triangular (Kurganov and Petrova 2005),
quadrilateral (Shirkhani et al. 2016) and general polygonal (Beljadid et al.
2016) grids.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492918000028
Downloaded from https://www.cambridge.org/core. IP address: 207.244.78.183, on 07 May 2018 at 08:43:03, subject to the Cambridge Core terms of use,



Finite-volume schemes for shallow-water equations 305

We now briefly describe the second-order semi-discrete central-upwind
scheme on Cartesian grids. To this end, we split the computational do-
main into the Cartesian cells Cj,k := [xj−1/2, xj+1/2] × [yk−1/2, yk+1/2] of
size |Cj,k| = ∆x∆y centred at (xj , yk) = ((xj−1/2 + xj+1/2)/2, (yk−1/2 +
yk+1/2)/2) and assume that at a certain time level t the cell averages of the
solution,

U j,k(t) ≈
∫
Cj,k

U(x, y, t) dx dy,

are available. We then perform a piecewise linear reconstruction

Ũ(x, y; t) =
∑
j

Pj,k(x, y; t)χj,k(x, y), (4.1)

where χj,k is a characteristic function of the cell Cj,k and Pj,k is a linear
piece

Pj,k(x, y; t) = U j,k(t) + (Ux)j,k(x− xj) + (Uy)j,k(y − yk). (4.2)

As in the 1-D case, the slopes in (4.2) are to be computed using a nonlinear
limiter to prevent oscillations. The reconstruction (4.1), (4.2) is used to
evaluate the following four point values in each cell, that is,

UW
j,k(t) = U j,k(t)−

∆x

2
(Ux)j,k, UE

j,k(t) = U j,k(t) +
∆x

2
(Ux)j,k,

US
j,k(t) = U j,k(t)−

∆y

2
(Uy)j,k, UN

j,k(t) = U j,k(t) +
∆y

2
(Uy)j,k,

and then the directional one-sided local speeds of propagation can be es-
timated as follows:

a+
j+1/2,k(t) = max

{
λN

(
∂F

∂U
(UE

j,k(t))

)
, λN

(
∂F

∂U
(UW

j+1,k(t))

)
, 0

}
, (4.3a)

a−j+1/2,k(t) = min

{
λ1

(
∂F

∂U
(UE

j,k(t))

)
, λ1

(
∂F

∂U
(UW

j+1,k(t))

)
, 0

}
, (4.3b)

b+j,k+1/2(t) = max

{
λN

(
∂G

∂U
(UN

j,k(t))

)
, λN

(
∂G

∂U
(US

j,k+1(t))

)
, 0

}
, (4.3c)

b−j,k+1/2(t) = min

{
λ1

(
∂G

∂U
(UN

j,k(t))

)
, λ1

(
∂G

∂U
(US

j,k+1(t))

)
, 0

}
. (4.3d)

Equipped with the reconstructed point values (4.2) and one-sided local
speeds (4.3), the cell averages are evolved in time by solving the following
system of ODEs:

d

dt
U j,k = −

F j+1/2,k −F j−1/2,k

∆x
−

Gj,k+1/2 − Gj,k−1/2

∆y
, (4.4)
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where F and G are central-upwind numerical fluxes. There are several
versions of the central-upwind fluxes. For example, the x- and y-fluxes used
in Chertock et al. (2018) are

F j+1/2,k =
a+
j+1/2,kF (UE

j,k)− a
−
j+1/2,kF (UW

j+1,k)

a+
j+1/2,k − a

−
j+1/2,k

+
a+
j+1/2,ka

−
j+1/2,k

a+
j+1/2,k − a

−
j+1/2,k

[
UW
j+1,k −UE

j,k − δUj+1/2,k

]
(4.5)

and

Gj,k+1/2 =
b+j,k+1/2G(UN

j,k)− b
−
j,k+1/2G(US

j,k+1)

b+j,k+1/2 − b
−
j,k+1/2

+
b+j,k+1/2b

−
j,k+1/2

b+j,k+1/2 − b
−
j,k+1/2

[
US
j,k+1 −UN

j,k − δUj,k+1/2

]
, (4.6)

respectively. Here,

δUj+1/2,k := minmod(UW
j+1,k −U∗j+1/2,k, U

∗
j+1/2,k −UE

j,k) (4.7)

and

δUj,k+1/2 := minmod(US
j,k+1 −U∗j,k+1/2, U

∗
j,k+1/2 −UN

j,k) (4.8)

are the built-in anti-diffusion terms, and

U∗j+1/2,k =
a+
j+1/2,kU

W
j+1,k − a

−
j+1/2,kU

E
j,k − {F (UW

j+1,k)− F (UE
j,k)}

a+
j+1/2,k − a

−
j+1/2,k

(4.9)

and

U∗j,k+1/2 =
b+j,k+1/2U

S
j,k+1 − b

−
j,k+1/2U

N
j,k − {G(US

j,k+1)−G(UN
j,k)}

b+j,k+1/2 − b
−
j,k+1/2

(4.10)

are the corresponding intermediate values. Note that as in the 1-D case,
all of the indexed quantities in (4.4)–(4.10) are time-dependent, but for the
sake of brevity we omit this dependence here and in the rest of this paper.

Remark 4.1. We would like to stress that the numerical fluxes (4.5) and
(4.6) are only second-order accurate (even if the piecewise polynomial re-
construction (4.1) is of a higher order). Fourth-order central-upwind fluxes
were developed in Kurganov et al. (2001) and Kurganov and Petrova (2001)
and higher-order fluxes can be derived in a similar way.
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5. Well-balanced positivity-preserving semi-discrete
central-upwind schemes for the Saint-Venant system

In this section, we describe semi-discrete central-upwind schemes for the
1-D and 2-D Saint-Venant systems (2.3) and (1.1) and their modifications
obtained by taking into account the bottom friction.

5.1. Central-upwind schemes for the one-dimensional Saint-Venant system

We first consider the 1-D Saint-Venant system (2.3), which is the 1-D system
of balance laws (2.1) with

U = (h, q)>, F (h, q) =

(
q,
q2

h
+
gh2

2

)>
and S(h;B) = (0,−ghBx)>.

A semi-discrete scheme for the system of balance laws (2.2) reads as

d

dt
U j = − 1

∆x
[F j+1/2 −F j−1/2] + Sj , (5.1)

where

Sj ≈
1

∆x

∫
Cj

S(U) dx (5.2)

is an approximation of the source term cell average.
When the semi-discrete central-upwind scheme for the system of conser-

vation laws (2.2) is extended to the system of balance laws (2.1), the fluxes
are still given by (3.15)–(3.17) and one only needs to select an appropriate
quadrature for the integral on the right-hand side of (5.2). This seems to be
quite easy, but the problem here is that the use of a standard quadrature,
for example the midpoint rule that results in

S
(2)
j = −ghBx(xj), (5.3)

leads to a non-well-balanced scheme, which does not respect the balance
between the flux and source terms in (2.3). As demonstrated in Kurganov
and Levy (2002, Example 1), the resulting scheme (5.1)–(5.3), (3.15)–(3.17)
is incapable of exactly preserving steady-state solutions of (2.3) and, as
a result, it fails to accurately capture small perturbations of steady-state
(quasi-steady-state) solutions, as the truncation error of the scheme may be
larger than the magnitude of the waves to be captured.

In general, a good well-balanced numerical scheme for the 1-D Saint-
Venant system should be able to exactly preserve smooth steady-state solu-
tions of (2.3), which are given by

q ≡ q̂ = const., E :=
u2

2
+ g(h+B) ≡ Ê = const. (5.4)
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Figure 5.1. Bottom topography function B and its piecewise linear approxima-
tion B̃.

In fact, the most important (from the practical point of view) steady state
out of those in (5.4) is a so-called ‘lake at rest’ state,

q ≡ 0, w = h+B ≡ ŵ = const., (5.5)

which corresponds to still water with a flat water surface. We note that in
many applications the water waves that must be captured are, in fact, small
perturbations of the ‘lake at rest’ steady state.

5.1.1. Still-water equilibria-preserving central-upwind scheme

In order to design a still-water equilibria-preserving central-upwind scheme,
we follow the main ideas presented in Kurganov and Levy (2002) and Kur-
ganov and Petrova (2007) and proceed in the following way.

Step 1: piecewise linear reconstruction of the bottom topography. We first
replace the original bottom topography function with its continuous piece-
wise linear interpolant consisting of the linear pieces that connect the points
(xj+1/2, Bj+1/2):

B̃(x) = Bj−1/2 + (Bj+1/2 −Bj−1/2) ·
x− xj−1/2

∆x
, x ∈ Cj , (5.6)

schematically shown in Figure 5.1. Here,

Bj+1/2 :=
B(xj+1/2 + 0) +B(xj+1/2 − 0)

2
,

which reduces to Bj+1/2 = B(xj+1/2) if B is continuous at x = xj+1/2.

We note that since B̃ is a piecewise linear function, its point value at
x = xj coincides with its cell average over the cell Cj and is also equal to
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the average of the values of B̃ at the endpoints of Cj , namely,

Bj := B̃(xj) = B̃j =
1

∆x

∫
Cj

B̃(x) dx =
Bj+1/2 +Bj−1/2

2
. (5.7)

Step 2: reconstruction of equilibrium variables. One of the key compon-
ents of well-balanced schemes is performing a piecewise polynomial recon-
struction of the equilibrium variables, w and q, rather than the conservat-
ive ones, h and q. To explain this, we notice that if at some time level
wj := hj +Bj ≡ ŵ and qj ≡ 0 for all j, then all of the point values w±j+1/2

will assuredly have exactly the same value ŵ only if w (which is constant
at ‘lake at rest’ steady states) is reconstructed. If, instead of w, the water
depth h is reconstructed, then it may happen that h+

j+1/2 6= h−j+1/2 and

hence w+
j+1/2 = h+

j+1/2 + Bj+1/2 6= w−j+1/2 = h−j+1/2 + Bj+1/2, which will

make the resulting reconstruction non-well-balanced.

Step 3: well-balanced discretization of the source term. After w and q are
reconstructed, the point values of q at the ‘lake at rest’ steady state (5.5) are
q±j+1/2 ≡ 0 and the point values of h are obtained from h±j+1/2 = w±j+1/2 −
Bj+1/2 = ŵ −Bj+1/2. The fluxes at x = xj+1/2 are then

F (h±j+1/2, q
±
j+1/2) =

(
0,
g

2
(ŵ −Bj+1/2)2

)>
.

Thus, the numerical fluxes (3.15)–(3.17) at the ‘lake at rest’ steady state
are

F (1)
j+1/2 = 0 and F (2)

j+1/2 =
g

2
(ŵ −Bj+1/2)2, (5.8)

and the scheme (5.1) reduces to

d

dt
hj = 0,

d

dt
qj = g(ŵ −Bj) ·

Bj+1/2 −Bj−1/2

∆x
+ S

(2)
j , (5.9)

where

S
(2)
j ≈ −

1

∆x

∫
Cj

ghBx dx.

It is now clear that the right-hand side of (5.9) will vanish (and hence the
designed central-upwind scheme will be well-balanced) if the following well-

balanced quadrature is used to evaluate S
(2)
j :

S
(2)
j = −ghj ·

Bj+1/2 −Bj−1/2

∆x
. (5.10)

Note that this well-balanced quadrature can be, in fact, obtained by re-
placing Bx(xj) in the midpoint quadrature (5.3) with its finite-difference
approximation (Bj+1/2 −Bj−1/2)/∆x.
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Remark 5.1. We would like to point out that the quadrature (5.10) is
well-balanced not only for the central-upwind scheme, but for any semi-
discrete scheme with the numerical flux satisfying (5.8) at ‘lake at rest’
steady states. This was first noticed in Audusse et al. (2004).

5.1.2. Moving-water equilibria-preserving central-upwind scheme

Designing moving-water equilibria-preserving central-upwind schemes is a
more complicated task, which has recently been accomplished in Cheng and
Kurganov (2016) and Cheng et al. (2018) in two different ways. We now
briefly describe the moving-water equilibria-preserving scheme from Cheng
and Kurganov (2016), which was designed following the key steps from Xing,
Shu and Noelle (2011).

Step 1: computation of Ej. Given the cell averages hj and qj at a certain
time level, we first compute

uj =
qj

hj
and Ej =

u2
j

2
+ g(hj +Bj).

Note that at the moving-water steady state (5.4), Ej ≡ Ê, so that in this
case, the equilibrium variables are q and E.

Step 2: reconstruction of equilibrium variables. We now reconstruct q and
E instead of q and h (or w). This guarantees that if Ej ≡ Ê and qj ≡ 0

for all j, then all of the reconstructed point values satisfy E±j+1/2 ≡ Ê and

q±j+1/2 ≡ 0.

Step 3: evaluation of point values of h. After computing q±j+1/2 and E±j+1/2,

we recover the corresponding point values of h by solving the following cubic
equation:

E±j+1/2 =
(q±j+1/2)2

2(h±j+1/2)2
+ g(h±j+1/2 +Bj+1/2) (5.11)

for h±j+1/2. Details on how to find the unique physically relevant solution of

(5.11) can be found in Cheng and Kurganov (2016).

Step 4: well-balanced discretization of the source term. We now assume that
the reconstructed point values satisfy q±j+1/2 ≡ q̂ and E±j+1/2 ≡ Ê for all j

(note that this implies h+
j+1/2 = h−j+1/2 =: hj+1/2 for all j), and evaluate

the corresponding central-upwind numerical fluxes (3.15)–(3.17):

F (1)
j+1/2 = q̂ and F (2)

j+1/2 =
q̂ 2

hj+1/2
+
g

2
h2
j+1/2. (5.12)
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We then take into account that Ej+1/2 = Ej−1/2, that is,

g(hj+1/2 − hj−1/2) = − q̂
2

2

(
1

h2
j+1/2

− 1

h2
j−1/2

)
− g(Bj+1/2 −Bj−1/2),

and substitute this together with (5.12) into the semi-discrete scheme (5.1)
to obtain

d

dt
hj = 0, (5.13a)

d

dt
qj = g

hj+1/2 + hj−1/2

2
·
Bj+1/2 −Bj−1/2

∆x

−
hj+1/2 − hj−1/2

4∆x

(
q̂

hj+1/2
− q̂

hj−1/2

)2

+ S
(2)
j . (5.13b)

Once again, we complete the construction of a well-balanced, moving-water
equilibria-preserving central-upwind scheme by designing the well-balanced

quadrature for S
(2)
j , which will guarantee that the right-hand side of (5.13)

vanishes:

S
(2)
j = g

h−j+1/2 + h+
j−1/2

2
·
Bj+1/2 −Bj−1/2

∆x

+
h−j+1/2 − h

+
j−1/2

4∆x
(u−j+1/2 − u

+
j−1/2)2. (5.14)

Note that the obtained quadrature (5.14) is second-order accurate since the
term (u−j+1/2 − u

+
j−1/2)2 = O((∆x)2) for smooth solutions.

5.1.3. Positivity-preserving central-upwind scheme

When the water surface w is reconstructed (as in the still-water equilibria-
preserving scheme described in Section 5.1.1), it may happen that at some
cell Cj either w−j+1/2 < Bj+1/2 or w+

j−1/2 < Bj−1/2 even when wj ≥ Bj . Such

a possibility is shown schematically in Figure 5.2, in which the first-order
reconstruction w̃(x) is clearly below B̃(x) for some values of x including
several cell interfaces. Obviously, the use of conventional nonlinear limiters
designed to minimize oscillations will not help to prevent the appearance of
negative point values of h in (almost) dry areas.

In order to ensure that the reconstructed values of h are non-negative, we
take the following steps.

Step 1: positivity correction of the water surface reconstruction w̃. When
a part of the linear piece of w̃ in cell Cj is below the corresponding linear

piece of B̃, we need to modify the slope (wx)j to prevent the appearance of
any negative values of h. This can be done in several ways. In Kurganov
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Figure 5.2. Piecewise linear bottom topography approximant B̃ and piecewise
constant water surface reconstruction w̃. Notice that there are areas where w̃(x) <

B̃(x) and hence the water depth is negative.

and Petrova (2007), we proposed the following simple correction algorithm
(an alternative correction procedure will be described in Section 5.3 below):

If w−j+1/2 < Bj+1/2, then take (wx)j =
Bj+1/2 − wj

∆x/2

=⇒ w−j+1/2 = Bj+1/2, w+
j−1/2 = 2wj −Bj+1/2; (5.15a)

If w+
j−1/2 < Bj−1/2, then take (wx)j =

wj −Bj−1/2

∆x/2

=⇒ w−j+1/2 = 2wj −Bj−1/2, w+
j−1/2 = Bj−1/2. (5.15b)

It is obvious that this correction procedure guarantees that the resulting
reconstruction w̃ will remain conservative and stay above the piecewise lin-
ear approximant of the bottom topography function B̃; see Figure 5.3(b).
Therefore, all of the corrected values of h±j+1/2 will be non-negative.

Step 2: velocity desingularization. After the water surface correction per-
formed in Step 1, all of the values of h will be non-negative. However, they
may be very small or even zero. This will not allow one to (accurately) com-
pute the velocities u±j+1/2, required in the computation of numerical flux and

local speeds of propagation. In order to avoid the division by very small
numbers, one should desingularize the velocity computation. This can be
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Figure 5.3. Piece of the linear bottom topography approximant B̃ together with
either the originally reconstructed water surface (a) or positivity-preserving linear
piece of w̃ corrected using either (5.15) (b) or (5.34) (c).

done in one of the following ways (for simplicity we omit the ± and j ± 1/2
indexes):

u =

{
q/h if h ≥ ε,
0 otherwise,

(5.16)

u =
2hq

h2 + max(h2, ε2)
, (5.17)

u =

√
2hq√

h4 + max(h4, ε4)
, (5.18)

where ε is a small a priori chosen positive number (it should be selected
based on some practical considerations that would suggest what values of
h may be considered negligibly small for each problem at hand). Each of
the desingularization formulae (5.16)–(5.18) has its advantages and disad-
vantages; we refer the reader to Chertock et al. (2015b) and Kurganov and
Petrova (2007) for discussions on this matter.

As one can easily see, (5.16)–(5.18) reduce to u = q/h for large values of
h, but when h is small, the entire scheme will remain consistent only if we
recompute the discharge using

q := h · u,

where u is computed by one of (5.16), (5.17) or (5.18).

Remark 5.2. Instead of desingularizing the computation of the velocity
point values u±j+1/2, one can implement an alternative approach: desingular-

ize the computation of uj = qj/hj and then reconstruct a piecewise linear
interpolant ũ. In this case, the point values of u are obtained by

u+
j+1/2 = uj+1 −

∆x

2
(ux)j+1, u−j+1/2 = uj +

∆x

2
(ux)j ,
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where the slopes (ux)j are computed using a nonlinear limiter. The dis-
charge point values are then computed using the reconstructed values of h
and u, namely, by q±j+1/2 = h±j+1/2 · u

±
j+1/2.

We note that the resulting method will still be capable of exactly pre-
serving ‘lake at rest’ steady states at which both q ≡ 0 and u ≡ 0. For
moving-water equilibria, however, q ≡ const., but u 6≡ const., and thus one
cannot reconstruct u instead of q while designing a moving-water equilibria-
preserving schemes.

Step 3: adaptive time-step control. As was proved in Kurganov and Petrova
(2007, Theorem 2.1), if the resulting system of ODEs (5.1) is numerically
solved using the forward Euler method, then all of the evolved cell averages
of h will be non-negative provided the CFL number is taken to be smaller
than 1/2:

∆t ≤ ∆t∗ :=
∆x

2a
, a = max

j

{
a+
j+1/2,−a

−
j−1/2

}
, (5.19)

where a±j+1/2 are the local propagation speeds defined in (3.14). A sim-

ilar result will be true for higher-order explicit SSP methods. However, as
pointed out in Chertock et al. (2015b), the time steps should be selected ad-
aptively in the following way (described here for the three-stage third-order
SSP Runge–Kutta method).

While the solutions of (5.1) is evolved from time t to t+ ∆t by the three-
stage third-order SSP Runge–Kutta method, there will be two intermediate

solutions, which we will denote by U I and U II, respectively. We would like
to emphasize that Theorem 2.1 from Kurganov and Petrova (2007) directly
applies to the first stage of the three-stage third-order SSP Runge–Kutta
method and hence the time-step restriction (5.19) guarantees the positivity

of hIj for all j provided hj(t) ≥ 0 for all j. The positivity of hII
j and

hj(t + ∆t) will then be ensured by the same theorem provided ∆t ≤ ∆tI∗
and ∆t ≤ ∆tII∗ , where ∆tI∗ and ∆tII∗ are computed using (5.19) applied to

the intermediate solutions U I and U II, respectively. In order to satisfy all
of the aforementioned time-step restrictions, the following adaptive strategy
should be implemented.

(i) Given the solution U(t), set ∆t := κ∆t∗, where κ ∈ (0, 1) and ∆t∗ is
given by (5.19).

(ii) Use ∆t to compute U I at the first stage of the three-stage third-order
SSP Runge–Kutta method.

(iii) Given the intermediate solution U I , compute ∆tI∗ by (5.19).

(iv) If ∆tI∗ < ∆t, set ∆t := κ∆tI∗ and go back to step (ii).
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(v) Use ∆t to compute U II at the second stage of the three-stage third-
order SSP Runge–Kutta method.

(vi) Given the intermediate solution U II, compute ∆tII∗ by (5.19).

(vii) If ∆tII∗ < ∆t, set ∆t := κ∆tII∗ and go back to step (ii).

(viii) Use ∆t to compute U(t + ∆t) at the third stage of the three-stage
third-order SSP Runge–Kutta method.

Note that in Chertock et al. (2015b), we have used κ = 0.9.

5.1.4. Capturing wet/dry fronts

We would like to point out that when h = 0, the ‘lake at rest’ steady state
(5.5) reduces to

q ≡ 0, h ≡ 0, (5.20)

which can be viewed as a ‘dry lake’. A good numerical scheme may be
considered ‘truly’ well-balanced when it is capable of exactly preserving
both ‘lake at rest’ and ‘dry lake’ steady states, as well as their combinations
corresponding to the situations, in which the spatial domain X is split into
two non-overlapping parts X1 (wet area) and X2 (dry area) and the solution
satisfies (5.5) in X1 and (5.20) in X2.

Unfortunately, the central-upwind schemes presented above are not ‘truly’
well-balanced. The problem occurs at wet/dry fronts, where the water depth
is very small and the reconstruction of w is corrected. One way to design a
‘truly’ well-balanced central-upwind scheme is to modify the reconstruction
of w in partially flooded cells, as in Bollermann et al. (2013). We now briefly
describe this special well-balanced wet/dry reconstruction of the water sur-
face.

Assuming at a certain time level t, wj ≥ Bj for all j, we define the
following three types of computational cells.

• Fully flooded cell. If wj ≥ max(B̂j−1/2, B̂j+1/2) and hj := wj − Bj > 0,
the cell is fully flooded.

• Partially flooded cell. If Bj < wj < max(B̂j−1/2, B̂j+1/2), the cell is
partially flooded.

• Dry cell. If wj = Bj , the cell is dry.

The main idea of the well-balanced reconstruction in partially flooded cells
is to allow sub-cell resolution there, that is, to allow the interpolant in these
cells to consist of two linear pieces instead of just one as in fully flooded
cells. For example, the first-order flat water surface reconstructions wj(x)
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Figure 5.4. Well-balanced first-order water surface reconstruction in fully (a) and
partially (b) flooded cells. x∗w is the reconstructed location of the wet/dry interface.

in fully and partially flooded cells, schematically presented in Figure 5.4,
can be written as

wj(x) =

{
wj in the ‘wet’ part of the cell,

B̃(x) in the ‘dry’ part of the cell.
(5.21)

Here, wj = wj in fully flooded cells, and in partially flooded cells the value
of wj is determined from the water conservation requirement stating that

the area of the shaded triangle in Figure 5.4(b) is equal to ∆x ·hj , which
uniquely determines both wj and the location of the wet/dry interface x∗w;
see Bollermann et al. (2013) for details.

Before proceeding with the description of the second-order well-balanced
wet/dry reconstruction of the water surface, we note that the positivity
correction presented in Section 5.1.3 does not preserve ‘lake at rest’ steady
states near wet/dry interfaces. In order to illustrate this, we show a typical
situation in Figure 5.5. Let us assume that the actual water surface is flat
so that in the fully flooded cell Cj+1, w+

j+1/2 = wj = ŵ, but one can clearly

see that the corrected value of w−j+1/2 is different from ŵ and hence some

artificial waves will be generated at x = xj+1/2.
In order to make sure that the water surface interpolant in partially

flooded cells respects the ‘lake at rest’ steady state, we proceed as follows.
Let us assume that cell Cj is partially flooded, cell Cj+1 is fully flooded, and

that Bj−1/2 > wj > B̂j+1/2 (the case Bj+1/2 > wj > Bj−1/2 can be treated
similarly; in the case when cell Cj+1 is partially flooded, we simply use the
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Figure 5.5. Conservative and positivity-preserving, but not well-balanced piecewise
linear reconstruction described in Section 5.1.3.

first-order flat water surface reconstruction (5.21)), as shown in Figure 5.6.
We then set the value of w at x = xj+1/2 to be w−j+1/2 := w+

j+1/2, and then

use the water conservation requirement to uniquely determine one of the
following.

(i) The water surface value w+
j−1/2 in the case when the total amount of

water is quite large (as in Figure 5.6(a)), which leads to the reconstruc-
tion in cell Cj consisting of just one linear piece:

w̃(x) = w+
j−1/2 + (w+

j+1/2 − w
+
j−1/2) ·

x− xj−1/2

∆x
, x ∈ Cj .

(ii) The point x∗R ∈ Cj such that the total amount of water is quite small
and can be placed in the interval [x∗R, xj+1/2] (as in Figure 5.6(b)),
which leads to the reconstruction in cell Cj consisting of the following
two linear pieces:

w̃(x) =

{
B̃(x∗R) + (w+

j+1/2 − B̃(x∗R)) · x−x∗R
xj+1/2−x∗R

if x ∈ [x∗R, xj+1/2],

B̃(x) if x ∈ [xj−1/2, x
∗
R].

We refer the reader to Bollermann et al. (2013) for details.

5.1.5. Positivity-preserving via ‘draining’ time-step technique

While the original still-water equilibria-preserving central-upwind scheme
from Kurganov and Petrova (2007) described in Sections 5.1.1 and 5.1.3
is proved to be positivity-preserving, neither the moving-water equilibria-
preserving central-upwind schemes from Cheng et al. (2018) and Cheng and
Kurganov (2016) (one of which is described in Section 5.1.2 above) nor the
‘truly’ well-balanced central-upwind scheme from Bollermann et al. (2013)
described in Section 5.1.4 are positivity-preserving. However, the positivity
of the computed water depth can be enforced using the ‘draining’ time-
step technique introduced in Bollermann et al. (2011) and briefly described
below.
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Figure 5.6. Well-balanced second-order water surface reconstruction in cases (i)
(a) and (ii) (b). x∗R is the reconstructed location of the wet/dry interface. In both
cases, the dashed line represents the corresponding well-balanced first-order water
surface reconstructions.

The key idea of the ‘draining’ time-step technique is to limit the outgo-
ing fluxes in draining cells according to the following algorithm, which we
present in the case of forward Euler time discretization, which for the first
equation in (5.1) results in

hn+1
j = hnj −

∆tn

∆x

(
F (1)
j+1/2 −F

(1)
j−1/2

)
. (5.22)

Here, the numerical fluxes are evaluated at the time level t = tn and ∆tn is
the time step restricted by (5.19).

In order to guarantee the positivity of hn+1
j (assuming that hnj ≥ 0 for

all j, we first introduce the so-called ‘draining’ time step

∆tdrainj :=
hnj ∆x

max
(
0,F (1)

j+1/2

)
+ max

(
0,−F (1)

j−1/2

) ,
which describes the time when the water contained in cell Cj at the begin-
ning of the time step would have left via the outflow fluxes. We then replace
the evolution step (5.22) by

hn+1
j = hnj −

∆tnj+1/2F
(1)
j+1/2 −∆tnj−1/2F

(1)
j−1/2

∆x
,

where we set the effective time steps at the cell interfaces to be

∆tnj+1/2 = min(∆tn,∆tdraini ), i = j +
1

2
−

sgn
(
F (1)
j+1/2

)
2

.

This guarantees that hn+1
j ≥ 0 for all j.
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Remark 5.3. We note that the ‘draining’ time-step technique can be ap-
plied to any Godunov-type finite-volume methods, not necessarily central-
upwind schemes.

Remark 5.4. An extension of the ‘draining’ time-step technique to the
2-D case is quite straightforward.

5.2. Central-upwind schemes for the two-dimensional Saint-Venant system

In this section, we consider the 2-D Saint-Venant system (1.1), which is the
2-D system of balance laws (1.2) with

U =

 h

qx

qy

, F (U) =

 qx

(qx)2

h + gh2

2
qxqy

h

, G(U) =

 qy

qxqy

h
(qy)2

h + gh2

2

,
and S(h;B) = (0,−ghBx,−ghBy)>.

For the sake of simplicity, we will only consider central-upwind schemes
on Cartesian grids as we have done in Section 4 above. We refer the reader
to Bryson et al. (2011) and Liu et al. (2018), Shirkhani et al. (2016) and Bel-
jadid et al. (2016) for the central-upwind schemes for the 2-D Saint-Venant
system on triangular, quadrilateral and general polygonal grids, respect-
ively.

A semi-discrete scheme for the system of balance laws (1.2) reads as

d

dt
U j,k = − 1

∆x

[
F j+1/2,k −F j−1/2,k

]
− 1

∆y

[
Gj,k+1/2 − Gj,k−1/2

]
+ Sj,k,

(5.23)
where

Sj,k ≈
1

∆x∆y

∫∫
Cj,k

S(U) dx dy (5.24)

is an approximation of the source term cell average.
When the semi-discrete central-upwind scheme for the system of conser-

vation laws (2.4) is extended to the system of balance laws (1.2), the fluxes
are still given by (4.5)–(4.10), and one only needs to select an appropriate
quadrature for the integral on the right-hand side of (5.24).

As in the 1-D case, a good well-balanced numerical scheme for the 2-D
Saint-Venant system should be able to exactly preserve smooth steady-state
solutions of (1.1), which generally have a much more complicated structure
than their 1-D counterparts. However, the ‘lake at rest’ steady state can
still be easily found explicitly and it is given by

qx ≡ qy ≡ 0, w = h+B ≡ ŵ = const. (5.25)

In the rest of Section 5.2, we will refer to a central-upwind scheme as well-
balanced if it is capable of exactly preserving (5.25).
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5.2.1. Well-balanced central-upwind scheme

In order to design a well-balanced central-upwind scheme, we follow the
main ideas presented in Kurganov and Levy (2002) and Kurganov and Pet-
rova (2007), and proceed as follows.

Step 1: piecewise bilinear reconstruction of the bottom topography. We start
by replacing the original bottom topography function B with its continuous
piecewise bilinear approximation B̃, which at each cell Cj,k is given by the
bilinear form:

B̃(x, y) = Bj−1/2,k−1/2 + (Bj+1/2,k−1/2 −Bj−1/2,k−1/2) ·
x− xj−1/2

∆x

+ (Bj−1/2,k+1/2 −Bj−1/2,k−1/2) ·
y − yk−1/2

∆y

+ (Bj+1/2,k+1/2 −Bj+1/2,k−1/2 −Bj−1/2,k+1/2 +Bj−1/2,k−1/2)

×
(x− xj−1/2)(y − yk−1/2)

∆x∆y
, (x, y) ∈ Cj,k.

Here, Bj±1/2,k±1/2 are the values of B̃ at the corners of the cell Cj,k, com-
puted according to the following formula:

Bj±1/2,k±1/2 :=
1

2

(
max

ξ2+η2=1
lim
h,`→0

B(xj±1/2 + hξ, yk±1/2 + `η)

+ min
ξ2+η2=1

lim
h,`→0

B(xj±1/2 + hξ, yk±1/2 + `η)
)
,

which reduces to

Bj±1/2,k±1/2 = B(xj±1/2, yk±1/2)

if the function B is continuous at (xj±1/2, yk±1/2).

Note that the restriction of the interpolant B̃ along each of the lines
x = xj or y = yk is a continuous piecewise linear function, and, as in the

1-D case (see (5.7)), the cell average of B̃ over the cell Cj,k is equal to its
value at the centre of the cell and is also equal to the average of the values
of B̃ at the midpoints of the edges of Cj,k. That is, we have

Bj,k := B̃(xj , yk) = B̃j,k =
1

∆x∆y

∫∫
Cj,k

B̃(x, y) dx dy

=
1

4
(Bj+1/2,k +Bj−1/2,k +Bj,k+1/2 +Bj,k−1/2),

where

Bj+1/2,k := B̃(xj+1/2, yk) =
1

2
(Bj+1/2,k+1/2 +Bj+1/2,k−1/2)
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and

Bj,k+1/2 := B̃(xj , yk+1/2) =
1

2
(Bj+1/2,k+1/2 +Bj−1/2,k+1/2).

Remark 5.5. We would like to point out that when a triangular grid is
used (as in Bryson et al. 2011, Liu et al. 2018), the bottom topography
function should be approximated using the continuous piecewise linear in-
terpolant uniquely determined by the point values of B at the triangular
cell vertices. In the case of general quadrilateral (Shirkhani et al. 2016) or
polygonal (Beljadid et al. 2016) grids, the finite-volume cell may be split
into several triangular sub-cells and then the bottom topography function
can be approximated using a continuous piecewise linear interpolant as well.

Step 2: reconstruction of equilibrium variables. As in the 1-D case, we recon-
struct the equilibrium variables, w, qx and qy, rather than the conservative
ones, h, qx and qy.

Step 3: well-balanced discretization of the source term. After w, qx and qy

are reconstructed, the point values of qx and qy at the ‘lake at rest’ steady
state (5.25) are

(qxj,k)
E ≡ (qxj,k)

E ≡ (qxj,k)
N ≡ (qxj,k)

S ≡ 0,

(qyj,k)
E ≡ (qyj,k)

E ≡ (qyj,k)
N ≡ (qyj,k)

S ≡ 0,

and the point values of h are given by

hE
j,k = wE

j,k −Bj+1/2,k = ŵ −Bj+1/2,k,

hW
j,k = wW

j,k −Bj−1/2,k = ŵ −Bj−1/2,k,

hN
j,k = wN

j,k −Bj,k+1/2 = ŵ −Bj,k+1/2,

hS
j,k = wS

j,k −Bj,k−1/2 = ŵ −Bj,k−1/2.

The fluxes at (xj+1/2, yk) and (xj , yk+1/2) are then

F (UE
j,k) = F (UW

j+1,k) =

(
0,
g

2
(ŵ −Bj+1/2,k)

2, 0

)>
,

G(UN
j,k) = G(US

j,k+1) =

(
0, 0,

g

2
(ŵ −Bj,k+1/2)2

)>
.

Thus the numerical fluxes (4.5)–(4.10) at the ‘lake at rest’ steady state are

F (1)
j+1/2,k = F (3)

j+1/2,k = 0, F (2)
j+1/2,k =

g

2
(ŵ −Bj+1/2,k)

2,

G (1)
j+1/2,k = G (2)

j+1/2,k = 0, G (3)
j+1/2,k =

g

2
(ŵ −Bj,k+1/2)2,
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and the scheme (5.23) reduces to

d

dt
hj,k = 0, (5.26a)

d

dt
q xj,k = g(ŵ −Bj,k) ·

Bj+1/2,k −Bj−1/2,k

∆x
+ S

(2)
j,k , (5.26b)

d

dt
q yj,k = g(ŵ −Bj,k) ·

Bj,k+1/2 −Bj,k−1/2

∆y
+ S

(3)
j,k , (5.26c)

where

S
(2)
j,k ≈ −

1

∆x∆y

∫
Cj,k

ghBx dx dy, S
(3)
j,k ≈ −

1

∆x∆y

∫
Cj,k

ghBy dx dy.

As in the 1-D case, the right-hand side of (5.26) must vanish to ensure
that the designed central-upwind scheme is well-balanced, and therefore the

following well-balanced quadratures are used to evaluate S
(2)
j,k and S

(3)
j,k :

S
(2)
j,k = −ghj,k ·

Bj+1/2,k −Bj−1/2,k

∆x
, S

(3)
j,k = −ghj,k ·

Bj,k+1/2 −Bj,k−1/2

∆y
.

Remark 5.6. We stress that development of a well-balanced quadrature
for the source term discretization on triangular grids is a more delicate task.
One first needs to apply Green’s formula to the vector field (1

2(w−B)2, 0)>,
and only then does it become clear how to identify the desired quadrature;
see Bryson et al. (2011) and Liu et al. (2018) for details.

5.2.2. Positivity-preserving central-upwind scheme

As in the 1-D case, the original water surface reconstruction may produce
negative values of h = w − B. In order to ensure that the reconstructed
values of h are non-negative, we take the same three steps as in Section 5.1.3.

First, we correct the reconstruction of w by modifying the slopes (wx)j,k
and (wy)j,k as follows:

If wE
j,k < Bj+1/2,k, then take (wx)j,k =

Bj+1/2,k − wj,k

∆x/2

=⇒ wE
j,k = Bj+1/2,k, wW

j,k = 2wj,k −Bj+1/2,k;

If wW
j,k < Bj−1/2,k, then take (wx)j,k =

wj,k −Bj−1/2,k

∆x/2

=⇒ wE
j,k = 2wj,k −Bj−1/2,k, wW

j,k = Bj−1/2,k;

If wN
j,k < Bj,k+1/2, then take (wy)j,k =

Bj,k+1/2 − wj,k

∆y/2

=⇒ wN
j,k = Bj,k+1/2, wS

j,k = 2wj,k −Bj,k+1/2;
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If wS
j,k < Bj,k−1/2, then take (wy)j,k =

wj,k −Bj,k−1/2

∆y/2

=⇒ wN
j,k = 2wj,k −Bj,k−1/2, wS

j,k = Bj,k−1/2.

This correction procedure guarantees that the resulting reconstruction w̃
will remain conservative and its restrictions on the lines y = yk and x = xj
will be above B̃(x, yk) and B̃(xj , y), respectively. Hence, all of the corrected
values hE

j,k = wE
j,k − Bj+1/2,k, h

W
j,k = wW

j,k − Bj−1/2,k, h
N
j,k = wN

j,k − Bj,k+1/2

and hS
j,k = wS

j,k −Bj,k−1/2 will be non-negative. Notice that unlike the 1-D

case, this does not guarantee the non-negativity of w̃ − B̃ in the entire cell
Cj,k. However, this is not a problem since our goal is to preserve positivity
of the cell averages of h and its point values used in the scheme (hE

j,k, h
W
j,k,

hS
j,k and hN

j,k).

Remark 5.7. In the case of a triangular grid, the positivity correction is
performed in a different way: one should make sure that the point values of
w at the cell vertices are above the values of B̃ there, and this guarantees
that the entire corrected linear piece of w will stay above the corresponding
linear piece of B̃. We refer the reader to Bryson et al. (2011) and Liu et al.
(2018) for details.

Second, we desingularize the velocity computation using u = qx/h and
v = qy/h (this is done exactly as in the 1-D case described in Section 5.1.3).
Third, we implement the same adaptive time-step control described in Sec-
tion 5.1.3. However, the basic time-step bound that guarantees non-negativ-
ity of h is more restrictive (one has to use the CFL number to be less than
or equal to 1/4 instead of 1/2 used in the 1-D case), and one has to choose

∆t ≤ ∆t∗ := min

{
∆x

4a
,
∆y

4b

}
,

where

a = max
j,k
{a+

j+1/2,k,−a
−
j+1/2,k}, b = max

j,k
{b+j,k+1/2,−b

−
j,k+1/2},

and a±j+1/2,k and b±j,k+1/2 are the local propagation speeds defined in (4.3).

5.2.3. Capturing wet/dry fronts

Extension of the 1-D ‘truly’ well-balanced central-upwind scheme described
in Section 5.1.4 to the 2-D case is highly non-trivial. In fact, it is unclear
whether this can be done using a Cartesian grid and piecewise bilinear ap-
proximation of the bottom topography. Liu et al. (2018) have constructed a
2-D ‘truly’ well-balanced central-upwind scheme on triangular grids. Com-
pared to the 1-D case, additional degrees of freedom need to be taken into
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account and more types of partially flooded cells, in which sub-cell resolu-
tion is required, are to be considered to design a special wet/dry reconstruc-
tion of the water surface. Moreover, when this reconstruction is used, an
alternative discretization for the source term has to be derived in order to
maintain the well-balanced property of the resulting central-upwind scheme.
We refer the reader to Liu et al. (2018) for details.

5.3. Central-upwind schemes for the Saint-Venant systems with friction
terms

In this section, we consider a more general shallow-water system, which is
obtained by taking into account the bottom friction terms. In the 2-D case,
the studied system reads as

ht + (hu)x + (hv)y = 0, (5.27a)

(hu)t +

(
hu2 +

g

2
h2

)
x

+ (huv)y = −ghBx − ghIx, (5.27b)

(hv)t + (huv)x +

(
hv2 +

g

2
h2

)
y

= −ghBy − ghIy, (5.27c)

where the Ix and Iy are the components of the bottom friction slope. There
are many ways to model friction terms; see, for example, Gerbeau and
Perthame (2001) and Kellerhals (1967). One of the most popular choices
is the classical Manning formulation (see e.g. Flamant 1891, Darcy 1857,
Gauckler 1867, Manning 1891):

Ix =
n2

h4/3
u
√
u2 + v2, Iy =

n2

h4/3
v
√
u2 + v2, (5.28)

where n is the Manning coefficient. Notice that if h ≈ 0, the friction terms
(5.28) become stiff damping terms, and this increases the level of complexity
in the development of efficient numerical methods for the system (5.27),
(5.28). Another difficulty is related to the fact that this system admits
not only ‘lake at rest’ steady states (5.25), but other steady-state solutions,
which may become more relevant in many practical situations, for example,
when drainage of rain water in urban areas is simulated; see, for example,
Cea, Garrido and Puertas (2010) and Cea and Vázquez-Cendón (2012) and
references therein.

Let us first consider the simplest 1-D case, in which the system (5.27),
(5.28) reduces to

ht + (hu)x = 0, (5.29a)

(hu)t +

(
hu2 +

g

2
h2

)
x

= −ghBx − g
n2

h1/3
|u|u. (5.29b)
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As one can easily see, the system (5.29) admits non-trivial (u 6= 0) steady
states in the form

hu ≡ const., h ≡ const., Bx ≡ const. (5.30)

This solution corresponds to the situation when the water flows over a
slanted infinitely long surface with a constant slope. The structure of 2-D
steady states is substantially more complicated. However, the quasi-1-D
steady-state solutions

h ≡ const., hu ≡ const., hv ≡ 0, Bx ≡ const., By ≡ 0 (5.31)

and

h ≡ const., hu ≡ 0, hv ≡ const., Bx ≡ 0, By ≡ const. (5.32)

are still physically relevant.
A well-balanced Roe-type numerical scheme which is capable of exactly

preserving the steady states (5.30), (5.31) and (5.32) was proposed in Cea
and Vázquez-Cendón (2012). However, to maintain the positivity of the
water depth h, the scheme in Cea and Vázquez-Cendón (2012) may require
one to use very small time steps and thus may not be robust in certain
settings. Another Godunov-type scheme for the 1-D system (5.29) was
proposed in Berthon, Marche and Turpault (2011). Although this method
does not suffer from restrictive time-stepping, it is capable of preserving
‘lake at rest’ steady states only.

In Chertock et al. (2015b), we have developed well-balanced positivity-
preserving central-upwind schemes for both 1-D (5.29) and 2-D (5.27) sys-
tems. For the sake of brevity, we will now describe the 1-D scheme only.

The 1-D semi-discrete central-upwind scheme for (5.29) is still given by
(5.1), but the discrete source term now consists of approximations of the
following two integrals:

S
(2)
j ≈ −

1

∆x

∫
Cj

ghBx dx− 1

∆x

∫
Cj

gn2

h1/3
|u|udx. (5.33)

One can easily show that the well-balanced quadrature for the first integral
on the right-hand side of (5.33) is still given by (5.10) and the well-balanced
quadrature for the second integral on the right-hand side of (5.33) is ob-
tained using the midpoint rule and one of the desingularization formulae
(5.16), (5.17) or (5.18). In Chertock et al. (2015b), the desingularization
formula (5.17) has been used and the resulting quadrature is

1

∆x

∫
Cj

gn2

h1/3
|u|udx ≈ g n2

(
2hj

h2
j + max(h2

j , ε
2)

)7/3

|qj |qj .
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In order to complete the construction of the semi-discrete central-upwind
scheme, we proceed along the lines of Sections 3.3 and 5.1. The resulting
scheme, however, will have two major drawbacks. First, it will be capable of
preserving ‘lake at rest’ steady states only. Second, it will be very inefficient
in the case when some (almost) dry areas are present, as the friction term
may become very stiff there and explicit SSP Runge–Kutta methods will
have very severe time-step stability restriction. We improve the central-
upwind scheme by taking the following two steps.

Step 1: modified positivity correction of the water surface reconstruction
w̃. As one can easily see, the water surface positivity correction proced-
ure described in Section 5.1.3 does not preserve the water surface profile
that correspond to the steady state (5.30); see Figure 5.3(b). Therefore, in
Chertock et al. (2015b) we have proposed an alternative positivity correction
procedure presented in Figure 5.3(c) and described here.

In the cells, where the original limited water surface reconstruction pro-
duces negative values of h, we make the slopes of w equal to the corres-
ponding slopes of B. Namely, we proceed as follows:

If w−j+1/2 < Bj+1/2 or w+
j−1/2 < Bj−1/2, then take (wx)j = (Bx)j

=⇒ w−j+1/2 = hj +Bj+1/2, w+
j−1/2 = hj +Bj−1/2. (5.34)

This correction (unlike the correction procedure described in Sections 5.1.3
and its more sophisticated modification described in Sections 5.1.4) will
not only guarantee the positivity of h±j+1/2 but will also be able to exactly

reconstruct the steady-state solution (5.30).

Step 2: steady state and sign preserving semi-implicit Runge–Kutta meth-
ods. As mentioned earlier, in the presence of dry and/or almost dry areas,
the explicit treatment of the friction terms imposes a severe time-step re-
striction, which may be several orders of magnitude smaller than a typical
time step used for the corresponding friction-free Saint-Venant system.

An attractive alternative to explicit methods is that of implicit–explicit
(IMEX) SSP Runge–Kutta solvers, which treat the stiff part of the under-
lying ODE system implicitly and thus typically have the stability domains
based on the non-stiff term only; see, for example, Ascher, Ruuth and Spi-
teri (1997), Higueras and Roldán (2006), Hundsdorfer and Ruuth (2007),
Higueras, Happenhofer, Koch and Kupka (2014) and Pareschi and Russo
(2001, 2005). However, a straightforward implementation of these methods
may break the discrete balance between the fluxes, geometric source and
the friction terms maintained by the derived semi-discrete central-upwind
scheme, and the resulting fully discrete method will not be able to preserve
the relevant steady states and the positivity of the computed water depth.
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In order to overcome this difficulty, we have recently developed a family
of second-order semi-implicit time integration methods for systems of ODEs
with stiff damping term; see Chertock, Cui, Kurganov and Tong (2015a).
In these methods, only a portion of the stiff term is implicitly treated, and
therefore the evolution equation is very easy to solve and implement com-
pared to fully implicit or IMEX methods. The important feature of the
ODE solvers introduced in Chertock et al. (2015a) resides in the fact that
they are capable of exactly preserving the steady states as well as main-
taining the sign of the computed solution under the time step restriction
determined by the non-stiff part of the system only. These semi-implicit
methods are based on the modification of explicit SSP Runge–Kutta meth-
ods and are proven to have a formal second order of accuracy, A(α)-stability
and stiff decay. We now briefly describe the application of the second-order
semi-implicit ODE solver SI-RK3 from Chertock et al. (2015a) to the ODE
system (5.1), (3.15)–(3.17), (5.33).

We first introduce the grid function of the numerical solution U := {U j}.
We then denote the discretization of the sum of fluxes and geometric source
term on the right-hand side of (5.1) by

L(1)[U ]j := −
F (1)
j+1/2 −F

(1)
j−1/2

∆x
,

L(2)[U ]j := −
F (2)
j+1/2 −F

(2)
j−1/2

∆x
− ghj

Bj+1/2 −Bj−1/2

∆x
,

and introduce the discrete friction coefficient

M(U j) := −gn2

(
2hj

h2
j + max(h2

j , ε
2)

)7/3

|qj |,

so that the ODE system (5.1) can be rewritten as

d

dt
hj = L(1)[U ]j ,

d

dt
qj = L(2)[U ]j +M(U j)qj . (5.35)

We now implement the SI-RK3 method to the system (5.35). (The SI-
RK3 method is a second-order semi-implicit Runge–Kutta method based
on the three-stage third-order SSP Runge–Kutta method; for details, see
Chertock et al. (2015a, Section 3).) The resulting fully discrete scheme can
be written as

hIj = hj(t) + ∆tL(1)[U(t)]j , (5.36a)

qIj =
qj(t) + ∆tL(2)[U(t)]j

1−∆tM(U j(t))
, (5.36b)
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hII
j =

3

4
hj(t) +

1

4
(hIj + ∆tL(1)[U I ]j), (5.36c)

q IIj =
3

4
qj(t) +

1

4
·
q Ij + ∆tL(2)[U I ]j

1−∆tM(U I
j )

, (5.36d)

hIII
j =

1

3
hj(t) +

2

3
(hII

j + ∆tL(1)[U II]j), (5.36e)

q IIIj =
1

3
qj(t) +

2

3
·
q IIj + ∆tL(2)[U II]j

1−∆tM(U II
j )

, (5.36f)

hj(t+ ∆t) = hIII
j , (5.36g)

qj(t+ ∆t) =
q IIIj − (∆t)2L(2)[U III]jM(U III

j )

1 + (∆tM(U III
j ))2

, (5.36h)

where

U I = (hI, q I)>, U II = (hII, q II)> and U III = (hIII, q III)>.

As has been proved in Chertock et al. (2015a), the fully discrete scheme
(5.36) is well-balanced (in the sense that it is capable of preserving both ‘lake
at rest’ (5.25) and ‘slanted surface’ (5.30) steady states) and positivity-
preserving. The latter is, in fact, enforced by implementing an adaptive
time-step control similar to the one described in Section 5.1.3.

6. Non-conservative hyperbolic systems

There are many shallow-water related models that contain non-conservative
product terms. For instance, the original Saint-Venant system will contain
such term(s) if the bottom topography B is discontinuous. Non-conservative
product terms also arise in many multilayer/multiphase models as mo-
mentum/energy exchange terms and in many other situations.

For the simplicity of presentation, we consider a general non-conservative
1-D hyperbolic system

Ut + F (U)x = N (U)Ux, (6.1)

where N ∈ RN×N . The presence of non-conservative terms on the right-
hand side of (6.1) makes both analysis and development of numerical meth-
ods for the system (6.1) very difficult tasks. In fact, when the solutions
are discontinuous, which is a common feature of nonlinear hyperbolic sys-
tems, these non-conservative terms are not well defined in the distributional
framework and the usual concept of weak solution cannot be used. Instead
they should be understood as the Borel measures, as in Dal Maso, Lefloch
and Murat (1995); see also LeFloch (2002, 2004). This concept has been
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numerically utilized in Castro Dı́az, Cheng, Chertock and Kurganov (2014),
Castro, LeFloch, Muñoz-Ruiz and Parés (2008), Dumbser (2013), Dumbser,
Hidalgo and Zanotti (2014), Muñoz-Ruiz and Parés (2011), Muñoz-Ruiz and
Parés Madroñal (2012), Parés (2009) and Xiong, Shu and Zhang (2012),
where path-conservative finite-volume schemes were presented and applied
to various non-conservative hyperbolic systems. These schemes rely on the
rigorous definition of the weak solution, which depends on the choice of a
family of paths in the phase space.

In Castro Dı́az et al. (2018) we have recently developed path-conservative
central-upwind schemes, in which the concept of path-conservative schemes
has been incorporated into the framework of simple and robust central-
upwind schemes. We are now going to describe this approach.

Before presenting path-conservative central-upwind schemes, let us con-
sider the conservative hyperbolic system (2.2) and rewrite the semi-discrete
central-upwind scheme from Kurganov et al. (2001), which is given by (3.5)–
(3.7), (3.14) and a simplified central-upwind flux

F j+1/2 =
a+
j+1/2F (U−j+1/2)− a−j+1/2F (U+

j+1/2)

a+
j+1/2 − a

−
j+1/2

+
a+
j+1/2a

−
j+1/2

a+
j+1/2 − a

−
j+1/2

[
U+
j+1/2 −U−j+1/2

]
, (6.2)

in an alternative form. To this end, we first define two new coefficients

α
j+1/2
0 :=

−2 a+
j+1/2a

−
j+1/2

a+
j+1/2 − a

−
j+1/2

and α
j+1/2
1 :=

a+
j+1/2 + a−j+1/2

a+
j+1/2 − a

−
j+1/2

,

and the quantities

D±j+1/2 =
1

2

[
(1± αj+1/2

1 )(F (U+
j+1/2)− F (U−j+1/2))

± αj+1/2
0 (U+

j+1/2 −U−j+1/2)
]
, (6.3)

which represent the differences between the numerical and physical fluxes
at both sides of the cell interface.

Next, let Ψj+1/2(s) := Ψ(s;U−j+1/2,U
+
j+1/2) denote a sufficiently smooth

path that connects U−j+1/2 and U+
j+1/2:

Ψ : [0, 1]× RN × RN → RN such that

Ψ(0;U−j+1/2,U
+
j+1/2) = U−j+1/2, Ψ(1;U−j+1/2,U

+
j+1/2) = U+

j+1/2. (6.4)
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Equipped with (6.3), (6.4) and taking into account that

F (U−j+1/2)− F (U+
j−1/2) =

∫
Cj

A(Ũ(x)) (Ux)j dx, A(U) :=
∂F

∂U
(U),

(6.5)

we rewrite the scheme (3.5)–(3.7), (3.14), (6.2) in the following form:

d

dt
U j = − 1

∆x

(
D+
j−1/2 + D−j+1/2 +

∫
Cj

A(Ũ(x)) (Ux)j dx

)
, (6.6)

with

D±j+1/2 =
1± αj+1/2

1

2

∫ 1

0
A(Ψj+1/2(s))

dΨj+1/2

ds
ds

± α
j+1/2
0

2
(U+

j+1/2 −U−j+1/2). (6.7)

In order to design a path-conservative central-upwind scheme for the non-
conservative system (6.1), we first rewrite (6.1) in the quasi-linear form

Ut +A(U)Ux = 0, A(U) :=
∂F

∂U
(U)−N (U). (6.8)

The semi-discrete scheme (6.6), (6.7) can then be directly generalized to the
non-conservative system (6.8) by replacing A(U) in (6.5)–(6.7) with A(U)
from (6.8). This results in the following path-conservative central-upwind
scheme for (6.1):

d

dt
U j = − 1

∆x

[
F j+1/2 −F j−1/2 −N j (6.9)

−
a+
j−1/2

a+
j−1/2 − a

−
j−1/2

NΨ,j−1/2 +
a−j+1/2

a+
j+1/2 − a

−
j+1/2

NΨ,j+1/2

]
,

where

N j :=

∫
Cj

N (Ũ(x)) (Ux)j dx, (6.10a)

NΨ,j+1/2 :=

∫ 1

0
N (Ψj+1/2(s))

dΨj+1/2

ds
ds, (6.10b)

and the numerical fluxes F j+1/2 are given by (6.2).
In order to complete the construction of the path-conservative central-

upwind scheme, one has to select a path in (6.4). The simplest path –
though in many cases quite a robust one – is a linear path, which has been
used in numerical examples reported in Castro Dı́az et al. (2018). The linear
path, however, is not necessarily an optimal one, and the impact of different
paths depends on the problem at hand.
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Remark 6.1. Notice that a straightforward discretization of the non-
conservative term N (U)Ux used, for example, in Chertock, Kurganov, Qu
and Wu (2013), Kurganov (2006), Kurganov and Miller (2014) and Kur-
ganov and Petrova (2009) leads to a very similar semi-discretization:

d

dt
U j = − 1

∆x

[
F j+1/2 −F j−1/2 −N j

]
. (6.11)

The only difference between (6.9) and (6.11) is in the last two terms on
the right-hand side of (6.9), which account for the contribution of the
jumps of the non-conservative products at the cell interfaces. Our numer-
ical experiments conducted for several shallow-water models and reported
in Castro Dı́az et al. (2014, 2018) demonstrate that in many cases, the
presence of the aforementioned terms in (6.9) helps the path-conservative
central-upwind scheme to clearly outperform the original central-upwind
scheme.

6.1. Well-balanced path-conservative central-upwind schemes

In this section we consider the slightly different non-conservative system

Ut + F (U , B)x = N (U , B)Ux + S(U)Bx, (6.12)

where B = B(x) is a given piecewise smooth function with a finite number
of discontinuities. In such a case, the term S(U)Bx on the right-hand side
of (6.12) may represent a geometric source term appearing, for example, in
the Saint-Venant system (2.3) or the two-layer shallow-water system (7.4),
which will be considered in Section 7.2.

It is possible to apply the above path-conservative central-upwind scheme
to the system (6.12). To this end, we add the (N + 1)st equation Bt = 0 to
(6.12), introduce the extended vector of unknowns V := (UT , B)T ∈ RN+1,
and rewrite the system (6.12) in the following quasilinear form:

Vt +

 ∂F
∂U (V )−N (V ) −Ŝ(V )

0 0

Vx = 0, Ŝ(V ) := S(U)− ∂F

∂B
(V ).

(6.13)

The path-conservative central-upwind scheme (6.9), (6.2), (6.10) can now
be directly applied to the system (6.13). However, the resulting scheme
will have two major drawbacks. First, the numerical diffusion present in
the path-conservative central-upwind scheme will, in general, affect the last
equation so that the computed B will not stay time-independent. Second,
the scheme will (most probably) not be well-balanced, in the sense that it
will not be designed to preserve steady-state solutions of (6.12).

In order to overcome the first of the above difficulties, we apply the path-
conservative central-upwind scheme to the first N equations of the system
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(6.13) only. This results in

d

dt
U j = − 1

∆x

(
D+
j−1/2+D−j+1/2+F (V −j+1/2)−F (V +

j−1/2)−N j−Sj
)
, (6.14)

where

D±j+1/2 =
1± αj+1/2

1

2

(
F (V +

j+1/2)− F (V −j+1/2)−NΨ,j+1/2 − SΨ,j+1/2

)
± α

j+1/2
0

2
(U+

j+1/2 −U−j+1/2) (6.15)

and

N j :=

∫
Cj

N (Pj(x))

(
dP

(1)
j (x)

dx
, . . . ,

dP
(N)
j (x)

dx

)>
dx, (6.16a)

NΨ,j+1/2 :=

∫ 1

0
N (Ψj+1/2(s))

(dΨ
(1)
j+1/2

ds
, . . . ,

dΨ
(N)
j+1/2

ds

)>
ds, (6.16b)

Sj :=

∫
Cj

S(Pj(x))
dP

(N+1)
j (x)

dx
dx, (6.16c)

SΨ,j+1/2 :=

∫ 1

0
S(Ψj+1/2(s))

dΨ
(N+1)
j+1/2

ds
ds. (6.16d)

Here, a piecewise polynomial reconstruction is applied to V , that is, (3.6)
and (3.7) are replaced with

Ṽ (x) =
∑
j

Pj(x)χj(x), Pj =
(
P

(1)
j , . . . , P

(N)
j , P

(N+1)
j

)>
and

V −j+1/2 = Pj(xj+1/2), V +
j+1/2 = Pj+1(xj+1/2),

respectively, a smooth path

Ψj+1/2(s) =
(
Ψ

(1)
j+1/2, . . . ,Ψ

(N)
j+1/2,Ψ

(N+1)
j+1/2

)>
:= Ψ(s;V −j+1/2,V

+
j+1/2)

now connects the states V −j+1/2 and V +
j+1/2, that is,

Ψ : [0, 1]× RN+1 × RN+1 → RN+1 such that

Ψ(0;V −j+1/2,V
+
j+1/2) = V −j+1/2, Ψ(1;V −j+1/2,V

+
j+1/2) = V +

j+1/2,

and the one-sided local speeds are calculated using the largest (λN ) and
smallest (λ1) eigenvalues of

A(V ) =
∂F

∂U
(V )−N (V ).
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Since the obtained scheme (6.14)–(6.16) is not guaranteed to preserve
steady-state solutions of (6.12), it has to be modified further. In order to
construct a well-balanced path-conservative central-upwind scheme, we fol-
low the idea presented in Castro, Pardo, Parés and Toro (2010), Castro Dı́az
and Fernández-Nieto (2012) and Parés and Castro (2004), and add an ad-
ditional term to D±j+1/2 so that (6.15) is replaced with

D±j+1/2 =
1± αj+1/2

1

2

(
F (V +

j+1/2)− F (V −j+1/2)−NΨ,j+1/2 − SΨ,j+1/2

)
± α

j+1/2
0

2

(
U+
j+1/2 −U−j+1/2 − (A?j+1/2)−1ŜΨ,j+1/2

)
. (6.17)

Here, Aj+1/2 is an approximation of the Jacobian matrix A(V ) near x =
xj+1/2 (for example, one may use the Roe matrix (Roe 1981), but simpler
strategies such as those studied in Masella, Faille and Gallouët (1999) may
work as well), A∗j+1/2 is its projection onto the subset of the state space

containing the steady-state solutions to be preserved (for details see Castro
et al. 2010; for a particular example see Section 7.2.1), and

ŜΨ,j+1/2 :=

∫ 1

0
Ŝ(Ψj+1/2(s))

dΨ
(N+1)
j+1/2

ds
ds. (6.18)

Finally, the scheme (6.14), (6.17) can be recast in the following form
(compare with (6.9), (6.2)):

d

dt
U j = − 1

∆x

[
F j+1/2 −F j−1/2 −N j − Sj

−
a+
j−1/2

a+
j−1/2 − a

−
j−1/2

(NΨ,j−1/2 + SΨ,j−1/2)

+
a−j+1/2

a+
j+1/2 − a

−
j+1/2

(NΨ,j+1/2 + SΨ,j+1/2)
]
, (6.19)

where the numerical flux F j+1/2 is given by

F j+1/2 =
a+
j+1/2F (V −j+1/2)− a−j+1/2F (V +

j+1/2)

a+
j+1/2 − a

−
j+1/2

(6.20)

+
a+
j+1/2a

−
j+1/2

a+
j+1/2 − a

−
j+1/2

[
U+
j+1/2 −U−j+1/2 − (A?j+1/2)−1ŜΨ,j+1/2

]
,

Remark 6.2. Notice that if the original central-upwind flux is used in-
stead of the modified flux given by (6.20), then the scheme will be well-
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balanced only in the case when

U+
j+1/2 −U−j+1/2 ≡ 0 for all j

at steady states. However, in a generic case, U+
j+1/2 − U−j+1/2 does not

necessarily vanish, while the corresponding term appearing on the right-
hand side of (6.20),

U+
j+1/2 −U−j+1/2 − (A?j+1/2)−1ŜΨ,j+1/2,

is in fact an approximation of ∆x(Ux − A(V )−1Ŝ(V )Bx) across the cell
interface and it vanishes at steady-state solutions provided a proper path
is selected in the evaluation of ŜΨ,j+1/2 in (6.18); see Castro et al. (2010),
Castro Dı́az and Fernández-Nieto (2012) and Parés and Castro (2004) for
details. This guarantees a perfect balance between the source and flux terms
as long as the reconstruction (3.6), (3.7) preserves the steady-state solution.

Remark 6.3. Also notice that the term we have added to make the scheme
well-balanced appears in the numerical viscosity and thus does not affect
the consistency of the resulting path-conservative central-upwind scheme
(6.19), (6.20), (6.16), (6.18).

7. Some related shallow-water models

In this section we will briefly describe some related shallow-water models
and their numerical approximations.

7.1. Shallow-water models with time-dependent bottom topography

In many practically relevant situations, the bottom topography B is time-
dependent due to erosion, sediment transport, dam breaks, floods and sub-
marine landslides; see, for example, Grass (1981), Heinrich (1992), Hu, Cao,
Pender and Tan (2012), Li and Duffy (2011), Morales de Luna, Castro Dı́az,
Parés Madroñal and Fernández Nieto (2009), Murillo and Garćıa-Navarro
(2010), Pritchard and Hogg (2002), Simpson and Castelltort (2006), Ting-
sanchali and Chinnarasri (2001), Watts (2000), Wu and Wang (2007), Xia,
Lin, Falconer and Wang (2010) and Yue, Cao, Li and Che (2008). Unfortu-
nately, a straightforward application of the finite-volume methods described
in Sections 3 and 4 may lead to very inaccurate results in the case of time-
dependent bottom topography. This is due to the fact that in this case,
the speed of water surface gravity waves is typically much larger than the
speed at which the changes in the bottom topography occur. This imposes
a severe stability restriction on the size of time steps, which, in turn, leads
to excessive numerical diffusion that affects the computed bottom structure.
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The simplest way to model the bottom topography propagation was pro-
posed in Exner (1920). According to this approach, in the 2-D case, the
bottom topography function satisfies the following equation:

Bt + ζqB(h, u, v)x + ζpB(h, u, v)y = 0, (7.1)

where ζ = 1/(1 − γ) is a constant with γ representing the porosity of the
sediment layer. The sediment x- and y-discharges, qB and pB, depend on
various water and sediment properties. The simplest bottom topography
transport fluxes, which were proposed in Grass (1981), are

qB = Au(u2 + v2)(m−1)/2, pB = Av(u2 + v2)(m−1)/2, (7.2)

where A ∈ [0, 1] is a non-dimensional constant which accounts for the ef-
fects of sediment grain size and kinematic viscosity. The values of A and a
constant 1 ≤ m ≤ 4 are often obtained from the experimental data.

Efficient, accurate and robust numerical methods for the shallow-water
system (1.1), (7.1), (7.2) and its 1-D version, the Saint-Venant system (2.3)
coupled with the 1-D Exner equation,

Bt +
A

1− γ
(um)x = 0, (7.3)

have recently been proposed in Bernstein, Chertock, Kurganov and Wu
(2018) and will now be reviewed briefly.

In principle, one can apply a Godunov-type central or central-upwind
scheme to the system (2.3), (7.3) in a straightforward manner. This, how-
ever, will lead to excessive smearing of the computed B, as demonstrated
in numerical examples reported in Bernstein et al. (2018). In order to
understand this phenomenon, we first study the Jacobian of the system
(2.3), (7.3), which has three real eigenvalues λ1 < λ2 < λ3. As shown in
Bernstein et al. (2018), λ1 and λ3 are close to the eigenvalues of the ori-
ginal 1-D Saint-Venant system (2.3), while λ2 is close to zero and typically
|λ2| � max(|λ1|, |λ3|). This corresponds to the bottom topography move-
ment being much slower than the surface wave propagation, and it is well
known that slow waves require a special treatment to be accurately resolved
numerically.

In order to develop efficient and accurate numerical methods for the sys-
tem (2.3), (7.3), we apply the second-order Strang operator splitting method
(see e.g. Jia and Li 2011, Marchuk 1990, Strang 1968, Vabishchevich 2014):
we split the Saint-Venant system (2.3) from the Exner equation (7.3). This
allows one to treat slow and fast waves in a different manner and using dif-
ferent sizes of time steps. The size of splitting time steps is taken to be pro-
portional to 1/|λ2|. We then follow the approach that was developed in the
framework of the fast explicit operator splitting method, which we derived in
Chertock, Doering, Kashdan and Kurganov (2010), Chertock, Kashdan and

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492918000028
Downloaded from https://www.cambridge.org/core. IP address: 207.244.78.183, on 07 May 2018 at 08:43:03, subject to the Cambridge Core terms of use,



336 A. Kurganov

Kurganov (2008), Chertock and Kurganov (2009) and Chertock, Kurganov
and Petrova (2005, 2009): each Saint-Venant splitting sub-step consists of
several smaller central-upwind steps. In this way we ensure the stability
of the Saint-Venant sub-steps, while large Exner splitting sub-steps prevent
excessive numerical dissipation, which may severely affect the resolution of
the bottom topography, especially in the case when B is discontinuous.

We note that at the Saint-Venant splitting sub-steps we ‘freeze’ the bot-
tom topography, while at the Exner splitting sub-steps we ‘freeze’ the rest
of the solution components.

Another difficulty related to the implementation of the central-upwind
scheme is the fact that, as we have explained in Section 5.1.1, the evolution
of the Saint-Venant solution uses the continuous piecewise linear interpolant
of B given in (5.6), which requires the point values of B at the cell interfaces
x = xj+1/2. We therefore solve the Exner equation (7.3) on a staggered
grid, that is, we evolve the point values Bj+1/2 rather than Bj or the cell

averages Bj . To this end, we need to project the velocities uj = qj/hj onto
the staggered grid. This can be done in several different ways. We proceed
as in Jiang et al. (1998): reconstruct a piecewise linear interpolant

ũ(x) = uj + (ux)j(x− xj), x ∈ Cj

using a certain nonlinear limiter to evaluate (ux)j , then integrate it to obtain

uj+1/2 =

∫ xj+1

xj

ũ(x) dx =
1

2
(uj + uj+1) +

∆x

8
((ux)j − (ux)j+1).

Equipped with the staggered grid data, {Bj+1/2} and {uj+1/2}, we apply the
central-upwind scheme to the Exner equation (7.3) using the local speeds
proportional to λ2, which is small and this guarantees that no excessive
numerical diffusion is present at the central-upwind discretization of (7.3);
see Bernstein et al. (2018) for details.

7.2. Two-layer shallow-water systems

A system of two-layer shallow-water equations, which models oceanographic
water flows in straights and channels (see e.g. Castro, Maćıas and Parés
2001, Maćıas, Pares and Castro 1999), is conceptually more complicated
than the single-layer Saint-Venant system since it contains non-conservative
interlayer exchange terms. In the 1-D case the system reads as

(h1)t + (q1)x = 0, (7.4a)

(q1)t +

(
h1u

2
1 +

1

2
gh2

1

)
x

= −gh1(B + h2)x, (7.4b)
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(h2)t + (q2)x = 0, (7.4c)

(q2)t +

(
h2u

2
2 +

1

2
gh2

2

)
x

= −gh2(B + rh1)x, (7.4d)

where h1 and h2 are the depths of the upper and lower layers, respectively,
ui and qi = hiui, i = 1, 2 are their corresponding velocities and discharges,
and r ≤ 1 is the constant density ratio between the two layers. In the 2-D
case, the two-layer shallow-water system reads

(h1)t + (qx1 )x + (qy1)y = 0, (7.5a)

(qx1 )t +

(
h1u

2
1 +

1

2
gh2

1

)
x

+ (h1u1v1)y = −gh1(B + h2)x, (7.5b)

(qy1)t + (h1u1v1)x +

(
h1v

2
1 +

1

2
gh2

1

)
y

= −gh1(B + h2)y, (7.5c)

(h2)t + (qx2 )x + (qy2)y = 0, (7.5d)

(qx2 )t +

(
h2u

2
2 +

1

2
gh2

2

)
x

+ (h2u2v2)y = −gh2(B + rh1)x, (7.5e)

(qy2)t + (h2u2v2)x +

(
h2v

2
2 +

1

2
gh2

2

)
y

= −gh2(B + rh1)y, (7.5f)

where ui, q
x
i = hiui, i = 1, 2 are the x-velocities and discharges and vi,

qyi = hivi, i = 1, 2 are the y-velocities and discharges.
The two-layer shallow-water systems (7.4) and (7.5) have been extensively

studied and a number of numerical methods has been developed; see, for
example, Abgrall and Karni (2009), Bouchut and Morales de Luna (2008),
Bouchut and Zeitlin (2010), Castro, Maćıas and Parés (2001), Castro et al.
(2008), Castro et al. (2004), Castro Dı́az, Chacón Rebollo, Fernández-Nieto
and Pares (2007) and Maćıas, Pares and Castro (1999). Unfortunately, most
of these methods are not sufficiently robust since the computed solution
heavily depends on the way the non-conservative product terms on the right-
hand side of (7.4) and (7.5) are discretized.

In Kurganov and Petrova (2009), we have proposed a special way to treat
these terms and developed a semi-discrete central-upwind scheme for (7.4)
and (7.5). This method is based on the following reformulation of the two-
layer shallow-water system. For simplicity, we will consider the 1-D system
(7.4) and rewrite it in terms of the equilibrium variables h1, q1, w := h2 +B
and q2 (notice that at ‘lake at rest’ steady states h1 ≡ const., w ≡ const.,
q1 ≡ q2 ≡ 0) as

(h1)t + (q1)x = 0, (7.6a)

(q1)t +

(
q2

1

h1
+ gεh1

)
x

= gε(h1)x, (7.6b)
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ε=B+h+
1

h
2

2
hB+w=

0

h (x,t)

B(x)

x

1

h (x,t)
2

z

Figure 7.1. Set-up for the two-layer shallow-water system (7.6).

wt + (q2)x = 0, (7.6c)

(q2)t +

(
q2

2

w −B
+
g

2
w2 − g

2
rh2

1 − gBε̂
)
x

= −gε̂Bx − grε(h1)x, (7.6d)

where ε = h1 + h2 + B = h1 + w is a water surface (see Figure 7.1) and
ε̂ := rh1 + w.

Notice that while the two-layer shallow-water system (7.6) is equivalent
(for smooth solutions) to the original two-layer system (7.4), it is suitable
for a ‘favourable’ treatment of the non-conservative products. Our approach
uses the fact that in the relevant applications, fluctuations of the total wa-
ter level ε are relatively small, that is, after choosing a proper coordinate
system, ε ∼ 0; see Figure 7.1. Thus we reduce as much as possible the ‘influ-
ence’ of the particular choice of the non-conservative product discretization
as the non-conservative product terms on the right-hand side of (7.6) are
proportional to ε.

The rewritten systems are then numerically solved by a two-layer ver-
sion of the second-order well-balanced positivity-preserving central-upwind
scheme presented in Sections 5.1.1 and 5.1.3. To this end, we (i) replace the

bottom with its piecewise linear approximation B̃; (ii) correct the recon-

struction of w to ensure that w̃ ≥ B̃; (iii) regularize the computed velocities
to avoid division by hi ∼ 0; (iv) use the well-balanced quadrature for the
geometric source term. The only difficulty with the implementation of the
central-upwind scheme is related to the fact that one cannot find analytical
expressions for the Jacobian eigenvalues needed to evaluate one-sided local
speeds in (3.14). Indeed, as one can easily see, the eigenvalues are solutions
of the following algebraic equation:

(λ2 − 2u1λ+ u2
1 − gh1)(λ2 − 2u2λ+ u2

2 − gh2) = g2ĥ1h2. (7.7)

Although this equation cannot be explicitly solved, one can easily obtain an
upper bound on the largest eigenvalue and a lower bound on the smallest
eigenvalue using the Lagrange theorem; see, for example, Lagrange (1798)
and Mignotte and Stefanescu (2002).
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Remark 7.1. One can show that equation (7.7) may have either four or
only two real solutions depending on the values of h1, h2, u1, u1 and r. This
means that the two-layer shallow-water system (7.4) is only conditionally
hyperbolic and, as observed in the literature, in the non-hyperbolic regime,
its solution typically develops instabilities.

To study the hyperbolicity regions of (7.4), one can examine the first-
order approximation of its Jacobian eigenvalues (see e.g. Castro et al. 2001,
Schijf and Schonfeld 1953), which is given by

λ1,2(h1, u1, h2, u2) ≈ Um ±
√
g(h1 + h2), (7.8a)

λ3,4(h1, u1, h2, u2)

≈ Uc ±

√
(1− r)g h1h2

h1 + h2

(
1− (u2 − u1)2

(1− r)g(h1 + h2)

)
, (7.8b)

where

Um =
h1u1 + h2u2

h1 + h2
, Uc =

h1u2 + h2u1

h1 + h2
. (7.9)

From (7.8), (7.9) one expects that the two-layer shallow-water system
(7.4) is hyperbolic as long as

(u2 − u1)2 < (1− r)g(h1 + h2),

and thus the hyperbolicity condition for the two-layer shallow-water system
(7.4) depends on the relationship between (u2− u1)2 and (1− r)g(h1 + h2).

A detailed description of the resulting central-upwind scheme together
with an illustration of its performance can be found in Kurganov and Pet-
rova (2009). However, in examples in which the surface waves are not
small, the method from Kurganov and Petrova (2009) may fail. There-
fore, in Castro Dı́az et al. (2018) we have developed a well-balanced path-
conservative central-upwind scheme, which seems to be a robust numerical
method for two-layer shallow-water system (7.4).

7.2.1. Well-balanced path-conservative central-upwind scheme for the
two-layer shallow-water system

In order to design a well-balanced path-conservative central-upwind scheme
for the two-layer shallow-water system (7.6), we proceed exactly as in Sec-
tion 6.1 and add the fifth equation Bt = 0 to (7.6). We then rewrite the
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system (7.6) in the vector form (6.13) with

U =


h1

q1

w

q2

, V =


h1

q1

w

q2

B

, F (V ) =


q1

q21
h1

+ g(h1 + w)h1

q2

q22
w−B + g

2(w2 − rh2
1)− g(rh1 + w)B

,

B(V ) =


0 0 0 0

g(h1 + w) 0 0 0

0 0 0 0

−gr(h1 + w) 0 0 0

 and S(U) =


0

0

0

−g(rh1 + w)

.
Notice that at the ‘lake at rest’ steady states,

q1 ≡ q2 ≡ 0, h1 ≡ const., w = h2 +B ≡ const., (7.10)

that is, U ≡ const., and thus

U+
j+1/2 −U−j+1/2 ≡ 0 for all j,

provided the piecewise polynomial reconstruction (3.6) exactly recovers the
constant states (7.10). Therefore, a well-balanced central-upwind scheme
will be obtained with the help of the simplified central-upwind flux (6.2)
instead of a more complicated flux (6.20) derived in Section 6.1.

The path-conservative central-upwind scheme (6.19), (6.2), (6.16) is now
applied to the two-layer shallow-water system in a straightforward manner.
We use the piecewise linear reconstruction

Pj(x) = V j + (Vx)j(x− xj),

which leads to the following expressions for N j and Sj :

N j =


0

g((h1)j + wj)((h1)−j+1/2 − (h1)+
j−1/2)

0

−gr((h1)j + wj)((h1)−j+1/2 − (h1)+
j−1/2)

,

Sj =


0

0

0

−g(r(h1)j + wj)(B
−
j+1/2 −B

+
j−1/2)

,
and the linear segment path

Ψj+1/2(s) = V −j+1/2 + s(V +
j+1/2 − V −j+1/2),
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which results in

NΨ,j+1/2 =


0

gφj+1/2/2

0

−grφj+1/2/2

,
where

φj+1/2 = ((h1)+
j+1/2 + w+

j+1/2 + (h1)−j+1/2 + w−j+1/2)((h1)+
j+1/2 − (h1)−j+1/2),

and

SΨ,j+1/2 =


0

0

0

−gψj+1/2/2

,
where

ψj+1/2 = (r(h1)+
j+1/2 + w+

j+1/2 + r(h1)−j+1/2 + w−j+1/2)(B+
j+1/2 −B

−
j+1/2).

In order to design the scheme (6.19), (6.2) for the two-layer system (7.6),
we use the matrix

A(V ) =
∂F

∂U
(V )−N (V ) =


0 1 0 0

gh1 − u2
1 2u1 gh1 0

0 0 0 1

grh2 0 gh2 − u2
2 2u2

,
where h2 = w −B. The one-sided local speeds

a−j+1/2 = min
{
λ1(A(V −j+1/2)), λ1(A(V +

j+1/2)), 0
}
,

a+
j+1/2 = max

{
λ4(A(V −j+1/2)), λ4(A(V +

j+1/2)), 0
}

are then obtained using the upper/lower bounds on the largest/smallest
eigenvalues of A(V ) using the Lagrange theorem as discussed above.

Remark 7.2. When the well-balanced path-conservative central-upwind
scheme is designed, we use a generically discontinuous piecewise polynomial
reconstruction of B (which is the fifth component of V ) rather than the
continuous piecewise linear one (5.6).
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leur lits’, CR Acad. Sci. Paris 73, 147–154.

M. Dumbser (2013), ‘A diffuse interface method for complex three-dimensional free
surface flows’, Comput. Methods Appl. Mech. Engrg 257, 47–64.

M. Dumbser, A. Hidalgo and O. Zanotti (2014), ‘High order space–time adaptive
ADER–WENO finite volume schemes for non-conservative hyperbolic sys-
tems’, Comput. Methods Appl. Mech. Engrg 268, 359–387.

F. M. Exner (1920), Zur Physik der Dünen, Hölder.
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M. L. Muñoz-Ruiz and C. Parés (2011), ‘On the convergence and well-balanced
property of path-conservative numerical schemes for systems of balance laws’,
J. Sci. Comput. 48, 274–295.
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