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SECOND-ORDER FULLY DISCRETE CENTRAL-UPWIND SCHEME
FOR TWO-DIMENSIONAL HYPERBOLIC SYSTEMS

OF CONSERVATION LAWS∗

ALEXANDER KURGANOV† , MARTINA PRUGGER‡ , AND TONG WU§

Abstract. In this paper, we derive a new second-order fully discrete Godunov-type central-
upwind scheme for two-dimensional hyperbolic systems of conservation laws. The scheme is derived
in three steps: reconstruction, evolution, and projection. The novelty of our approach is in the
evolution step, which is performed using the nonuniform quadrilateral control volumes obtained
based on the one-sided local speeds of propagation, and in the projection step, in which the evolved
solution is projected back onto the uniform grid with the help of a new sharp piecewise polynomial
reconstruction. The scheme is tested on a number of numerical examples for the Euler equations of
gas dynamics. We have demonstrated that the new scheme is nonoscillatory and at the same time
it achieves higher resolution than the second-order semidiscrete central-upwind scheme. The latter
suggests that the fully discrete scheme has a smaller amount of numerical dissipation.
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1. Introduction. We consider hyperbolic systems of conservation laws, which
in the two-dimensional (2-D) case can be written as

(1.1) Ut + F (U)x +G(U)y = 0.

Here, U(x, y, t) = (u1(x, y, t), . . . , uN (x, y, t))T is an N -dimensional vector of con-
served quantities that depends on the time variable t and the two spatial variables x
and y, and F and G are nonlinear fluxes in the x- and y-directions, respectively.

Development of accurate and robust numerical methods for general 2-D systems
(1.1) is a challenging task since their solutions typically develop nonsmooth structures
containing shock waves, rarefaction waves, and contact waves propagating in a variety
of directions and interacting in a complicated way, which is yet to be fully understood
even for the widely studied compressible Euler equations; see, e.g., [3, 23, 37, 38]. Most
of the upwind Godunov-type finite-volume methods are based on the “dimension-
by-dimension” approach so that the numerical fluxes through the boundaries of the
finite-volume cells are computed by (approximately) solving a one-dimensional (1-D)
generalized Riemann problem in the normal direction; see, e.g., [2, 6, 11, 20, 34]. There
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are also genuinely multidimensional upwind schemes, such as, e.g., the finite-volume
evolution Galerkin methods (see [28, 29]), in which the flux integrals are approximated
by using the multidimensional evolution operators. Compared to the standard upwind
schemes, the interaction of complex multidimensional waves is typically captured by
the finite-volume evolution Galerkin methods more accurately.

In this paper, we focus on Riemann-problem-solver-free Godunov-type central
schemes, which were first introduced in [5] and [18] and then extended to higher or-
ders [21, 26, 27, 30] and multiple space dimensions [1, 10, 22]. Central schemes use
staggered grids in space and they are thus generically multidimensional. However,
compared to upwind schemes they have larger numerical dissipation which often over-
smears computed solutions, especially when the final computational time is large or
when steady states are to be reached.

In order to reduce the numerical dissipation present in the staggered central
schemes, a new class of central-upwind schemes was introduced in [13, 16, 17]. In
the central-upwind schemes, the solution is first evolved (without solving any Rie-
mann problems) in the control volumes whose sizes correspond to the local speeds of
propagation and is then projected back onto the original grid (using a more accurate
projection procedure, the numerical dissipation was further reduced in [12]). This
way, one designs fully discrete central-upwind schemes, which are almost as accurate
as upwind ones (they also admit a particularly simple semidiscrete form, which is
obtained by taking the limit as the timestep goes to zero in the fully discrete scheme).
However, only 1-D fully discrete schemes were derived in [12, 13, 16]. The derivation
of the 2-D fully discrete central-upwind scheme is substantially more complicated, but
as demonstrated in [12, 13, 14], one can construct genuinely multidimensional semidis-
crete central-upwind schemes without explicitly writing their fully discrete originals.

In this paper, we rigorously derive a second-order fully discrete central-upwind
scheme for general 2-D hyperbolic systems of conservation laws (1.1). To this end,
we first reconstruct a piecewise linear approximant on the Cartesian grid, evolve it
using the integral form of conservation laws to the next time level on a nonuniform
quadrilateral grid (constructed with the help of one-sided local speeds of propaga-
tion), and then project it back onto the original Cartesian mesh. The new scheme is
described in section 2. We then test the obtained fully discrete central-upwind scheme
on a number of numerical examples and demonstrate its advantage compared with
the semidiscrete central-upwind scheme from [12].

2. Two-dimensional fully discrete central-upwind scheme. We consider a
uniform Cartesian mesh with the cells Cj,k = [xj− 1

2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
] centered at

xj := (xj− 1
2
+xj+ 1

2
)/2, yk := (yk− 1

2
+yk+ 1

2
)/2 with xj+ 1

2
−xj− 1

2
≡ ∆x, yk+ 1

2
−yk− 1

2
≡

∆y for all j, k.
We assume that at a certain time level t = tn the computed cell averages of the

solution,

U
n

j,k ≈
1

∆x∆y

∫∫
Cj,k

U(x, y, tn) dy dx,

are available. These cell averages are then evolved to the next time level t = tn+1 :=
tn + ∆tn in three consecutive steps: reconstruction, evolution, and projection, which
will be described below in sections 2.1, 2.2, and 2.3, respectively.

2.1. Reconstruction. To construct a second-order scheme, we use a piecewise
linear interpolant
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(2.1) Ũ(x, y, tn) =
∑
j,k

[
U
n

j,k + (Ux)nj,k(x− xj) + (Uy)nj,k(y − yk)
]
χj,k(x, y),

where χj,k(x, y) is the characteristic function of the interval Cj,k and (Ux)nj,k and
(Uy)nj,k stand for an (at least first-order) approximation of the x- and y-derivatives
of U at (xj , yk, t

n). To avoid oscillations that may appear at the cell interfaces, a
nonlinear limiter should be used in the evaluation of the slopes. We will use the
generalized minmod limiter (see, e.g., [24, 30, 33, 35]):

(2.2)
(Ux)nj,k = minmod

(
θ∆+

x U
n

j,k, ∆0
xU

n

j,k, θ∆
−
x U

n

j,k

)
,

(Uy)nj,k = minmod
(
θ∆+

y U
n

j,k, ∆0
yU

n

j,k, θ∆
−
y U

n

j,k

)
,

θ ∈ [1, 2],

where ∆±x , ∆0
x, ∆±y , and ∆0

y are the standard divided difference operators:

∆+
x (·)j,k:=

(·)j+1,k − (·)j,k
∆x

, ∆−x (·)j,k:=
(·)j,k − (·)j−1,k

∆x
, ∆0

x(·)j,k :=
(·)j+1,k − (·)j−1,k

2∆x
,

∆+
y (·)j,k:=

(·)j,k+1 − (·)j,k
∆y

, ∆−y (·)j,k:=
(·)j,k − (·)j,k−1

∆y
, ∆0

y(·)j,k:=
(·)j,k+1 − (·)j,k−1

2∆y
,

and the minmod function is defined as follows:

minmod(c1, c2, . . . , cm) :=


min(c1, c2, . . . , cm) if ci > 0 ∀i = 1, . . . ,m,

max(c1, c2, . . . , cm) if ci < 0 ∀i = 1, . . . ,m,

0 otherwise.

Note that larger values of θ correspond to sharper, more compressive, but also more
oscillatory reconstructions (see, e.g., [24, 30]).

For the description of alternative nonlinear limiters that can be used instead of
the minmod one in the reconstruction (2.1), we refer the reader to [20, 24, 30, 33, 35]
and references therein.

Remark 2.1. We would like to emphasize that the minmod reconstruction (2.1),
(2.2) as well as the reconstructions that will be described in the evolution (section 2.2)
and projection (section 2.3) steps, is performed in a componentwise manner, that is,
the minmod function in (2.2) is applied to each component of the vector U directly
without any characteristic decompositions.

2.2. Evolution. We first note that since we consider a hyperbolic problem, the
discontinuities located across the cell interfaces upon completion of the reconstruction
step will propagate at finite speeds. In the case of convex fluxes (see [15] and references
therein for the discussion of the nonconvex cases), the one-sided local speeds at the
midpoint of the cell edges can be estimated by

(2.3)

a+
j+ 1

2 ,k
:= max

{
λN

(∂F
∂U

(
U+
j+ 1

2 ,k

))
, λN

(∂F
∂U

(
U−
j+ 1

2 ,k

))
, 0

}
,

a−
j+ 1

2 ,k
:= min

{
λ1

(∂F
∂U

(
U+
j+ 1

2 ,k

))
, λ1

(∂F
∂U

(
U−
j+ 1

2 ,k

))
, 0

}
,

b+
j,k+ 1

2

:= max

{
λN

(∂G
∂U

(
U+
j,k+ 1

2

))
, λN

(∂G
∂U

(
U−
j,k+ 1

2

))
, 0

}
,

b−
j,k+ 1

2

:= min

{
λ1

(∂G
∂U

(
U+
j,k+ 1

2

))
, λ1

(∂G
∂U

(
U−
j,k+ 1

2

))
, 0

}
.
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Fig. 1. Nonuniform control volumes in the 2-D set-up.

Here, λ1 < λ2 < · · · < λN are the N eigenvalues of the corresponding Jacobians
∂F /∂U and ∂G/∂U , and U±

j+ 1
2 ,k

and U±
j,k+ 1

2

are the corresponding point values of

the piecewise linear reconstruction (2.1):

U−
j+ 1

2 ,k
:=U

n

j,k +
∆x

2
(Ux)nj,k, U+

j+ 1
2 ,k

:=U
n

j+1,k −
∆x

2
(Ux)nj+1,k,

U−
j,k+ 1

2

:=U
n

j,k +
∆y

2
(Uy)nj,k, U+

j,k+ 1
2

:=U
n

j,k+1 −
∆y

2
(Uy)nj,k+1.

We refer the reader to [12, 17] for details.
Using the one-sided speed bounds (2.3), we split the computational domain⋃

j,k
Cj,k into the nonsymmetric subdomains Dj,k (central subdomains), Dj+ 1

2 ,k
and

Dj,k+ 1
2

(sides), and Dj+ 1
2 ,k+

1
2

(corners) outlined in Figure 1. These subdomains are

quadrilaterals with the vertices denoted by zj± 1
4 ,k±

1
4

:= (xj± 1
4 ,k±

1
4
, yj± 1

4 ,k±
1
4
) with

the following coordinates:

zj+ 1
4 ,k+

1
4
:=
(
xj+ 1

2
+∆tn min

{
a−
j+ 1

2 ,k
, a−
j+ 1

2 ,k+1

}
, yk+ 1

2
+∆tn min

{
b−
j,k+ 1

2

, b−
j+1,k+ 1

2

})
,

zj− 1
4 ,k+

1
4
:=
(
xj− 1

2
+∆tn max

{
a+
j− 1

2 ,k
, a+
j− 1

2 ,k+1

}
, yk+ 1

2
+∆tn min

{
b−
j,k+ 1

2

, b−
j−1,k+ 1

2

})
,

zj− 1
4 ,k−

1
4
:=
(
xj− 1

2
+∆tn max

{
a+
j− 1

2 ,k
, a+
j− 1

2 ,k−1

}
, yk− 1

2
+∆tn max

{
b+
j,k− 1

2

, b+
j−1,k− 1

2

})
,

zj+ 1
4 ,k−

1
4
:=
(
xj+ 1

2
+∆tn min

{
a−
j+ 1

2 ,k
, a−
j+ 1

2 ,k−1

}
, yk− 1

2
+∆tn max

{
b+
j,k− 1

2

, b+
j+1,k− 1

2

})
;

(2.4)

see Figure 1. Notice that due to the finite speed of propagation, the evolved solution
will remain smooth in the central subdomains Dj,k and will be generically nonsmooth
in the sides Dj+ 1

2 ,k
and Dj,k+ 1

2
and corners Dj+ 1

2 ,k+
1
2

for all t ∈ [tn, tn+1). As
one can see, the corners are rectangular, the sides are trapezoidal, while the central
subdomains are general quadrilaterals.

Remark 2.2. Such a partition is possible only if our timestep is restricted by the
following CFL-type condition:

(2.5) ∆tn <
1

2
·min

{
∆x

max
j,k

(
a+
j+ 1

2 ,k
,−a−

j+ 1
2 ,k

) , ∆y

max
j,k

(
b+
j,k+ 1

2

,−b−
j,k+ 1

2

)}.



FULLY DISCRETE CENTRAL-UPWIND SCHEME A951

Fig. 2. General quadrilateral.

In order to avoid solving Riemann problems, the solution will be evolved in each
of the aforementioned subdomains using the same technique as in [12, 13]. However,
the 2-D set-up is now different from the ones in [12, 13], where the sides and corners
were rectangular at the expense of the central subdomains, which had a complicated
polygonal shape. This did not allow the authors in [12, 13] to express their 2-D fully
discrete central-upwind scheme in closed form.

We now evolve the solution by integrating (1.1) over the central subdomains, sides,
and corners in time from tn to tn+1. To this end, we consider a general quadrilateral
D shown in Figure 2, for which we obtain the new cell averages over D (these cell
averages are denoted as intermediate since they are yet to be projected onto the
original grid as explained in section 2.3):

(2.6) U
int

D =
1

|D|

∫∫
D

Ũ(x, y, tn) dx dy − 1

|D|

∫ tn+1

tn

∮
∂D

[ηxF (U) + ηyG(U)] ds dt,

where η = (ηx, ηy)T is the outer unit normal vector to ∂D and the second term on
the right-hand side (RHS) of (2.6) represents the fluxes across the four edges of the
quadrilateral.

Next, we need to evaluate the integrals on the RHS of (2.6). The first term is
obtained by integrating a piecewise linear polynomial over D. Depending on whether
D is a central subdomain, side, or corner, one may need to split D into two or four
parts according to the intersections of D with the boundaries of the original Cartesian
cells, but in any case the evaluation of the first term on the RHS of (2.6) reduces to
computing 2-D integrals of given linear functions over given quadrilaterals. We will
denote the obtained cell averages of Ũ over D at time t = tn byU

n

D.
In order to present formulae for these cell averages, we first introduce the following

notation. We split the original computational cell Cj,k into the nine subdomains
outlined in Figure 3: Dj,k and

CE
j,k := Cj,k ∩Dj+ 1

2 ,k
, CW

j,k := Cj,k ∩Dj− 1
2 ,k
, CNE

j,k := Cj,k ∩Dj+ 1
2 ,k+

1
2
,

CNW
j,k := Cj,k ∩Dj− 1

2 ,k+
1
2
, CN

j,k := Cj,k ∩Dj,k+ 1
2
, CS

j,k := Cj,k ∩Dj,k− 1
2
,

CSE
j,k := Cj,k ∩Dj+ 1

2 ,k−
1
2
, CSW

j,k := Cj,k ∩Dj− 1
2 ,k−

1
2
,

and denote their centers of mass by zCj,k, zEj,k, zWj,k, zNE
j,k , zNW

j,k , zNj,k, zSj,k, zSEj,k, and zSWj,k ,

respectively, where zIj,k := (xIj,k, y
I
j,k), I ∈ {E,W,N,S,NE,NW,SE,SW}. The coordi-

nates of the centers of mass can be easily computed and are provided in Appendix A.
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Fig. 3. Splitting of the original cell Cj,k into nine subdomains and the centers of mass of each
of the subdomains.

We then use the fact that in each of the subdomains C I
j,k the average value of Ũ is

simply equal to Ũ(zIj,k, t
n) and hence

U
n

Dj,k
= Ũ(zCj,k, t

n),

U
n

D
j+1

2
,k

=
1∣∣Dj+ 1

2 ,k

∣∣[|CE
j,k| Ũ(zEj,k, t

n) + |CW
j+1,k| Ũ(zWj+1,k, t

n)
]
,

U
n

D
j,k+1

2

=
1∣∣Dj,k+ 1

2

∣∣[|CN
j,k| Ũ(zNj,k, t

n) + |CSj,k+1| Ũ(zSj,k+1, t
n)
]
,

U
n

D
j+1

2
,k+1

2

=
1∣∣Dj+ 1
2 ,k+

1
2

∣∣[|CNE
j,k | Ũ(zNE

j,k , t
n) + |CNW

j+1,k| Ũ(zNW
j+1,k, t

n)

+ |CSE
j,k+1| Ũ(zSEj,k+1, t

n) + |CSW
j+1,k+1| Ũ(zSWj+1,k+1, t

n)
]
.

(2.7)

Here, the areas |C E
j,k|, |C E

j,k|, |C E
j,k|, |C E

j,k|, |C E
j,k|, |C E

j,k|, |C E
j,k|, and |C E

j,k| are given
by (A.1), (A.2), and the areas of Dj+ 1

2 ,k
, Dj,k+ 1

2
, and Dj+ 1

2 ,k+
1
2

are

∣∣Dj+ 1
2 ,k

∣∣ = |C E
j,k|+ |CW

j+1,k|,
∣∣Dj,k+ 1

2

∣∣ = |C N
j,k|+ |CS

j,k+1|,∣∣Dj+ 1
2 ,k+

1
2

∣∣ = |C NE
j,k |+ |CNW

j+1,k|+ |CSE
j,k+1|+ |CSW

j+1,k+1|.
(2.8)

In order to evaluate the flux integrals on the RHS of (2.6), we need to split them
into the sum of four integrals over the four edges of D. These integrals are then
evaluated using the second-order trapezoidal (in space) and midpoint (in time) rules.
We consider the following two possible cases.

Case 1. The nodes are zα,β− 1
4

and zα,β+ 1
4
, where α = j + 1

4 or j − 1
4 and β = k

or k + 1
2 for some j and k. Then, we define the numerical flux across the edge that

connects these two nodes by
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Hα,β :=
1

∆tn

∫ tn+1

tn

∫ z
α,β+1

4

z
α,β− 1

4

[
ηxα,βF (U) + ηyα,βG(U)

]
ds dt(2.9)

≈
|zα,β+ 1

4
− zα,β− 1

4
|

2

{
ηxα,β

[
F
(
U
n+ 1

2

α,β− 1
4

)
+ F

(
U
n+ 1

2

α,β+ 1
4

)]
+ ηyα,β

[
G
(
U
n+ 1

2

α,β− 1
4

)
+G

(
U
n+ 1

2

α,β+ 1
4

)]}
,

where the unit normal vectors ηα,β for β = k and β = k + 1
2 are

ηα,k =
(yα,k+ 1

4
− yα,k− 1

4
, xα,k− 1

4
− xα,k+ 1

4
)

|zα,β+ 1
4
− zα,β− 1

4
|

and ηα,k+ 1
2

= (1, 0),

respectively.

Case 2. The nodes are zα− 1
4 ,β

and zα+ 1
4 ,β

, where α = j or j + 1
2 and β = k + 1

4

or k − 1
4 for some j and k, and the numerical flux across the edge that connects these

two nodes is

Hα,β :=
1

∆tn

∫ tn+1

tn

∫ z
α+1

4
,β

z
α− 1

4
,β

[
ηxα,βF (U) + ηyα,βG(U)

]
ds dt(2.10)

≈
|zα+ 1

4 ,β
− zα− 1

4 ,β
|

2

{
ηxα,β

[
F
(
U
n+ 1

2

α− 1
4 ,β

)
+ F

(
U
n+ 1

2

α+ 1
4 ,β

)]
+ ηyα,β

[
G
(
U
n+ 1

2

α− 1
4 ,β

)
+G

(
U
n+ 1

2

α+ 1
4 ,β

)]}
,

where the unit normal vectors ηα,β for α = j and α = j + 1
2 are

ηj,β =
(yj− 1

4 ,β
− yj+ 1

4 ,β
, xj+ 1

4 ,β
− xj− 1

4 ,β
)

|zα+ 1
4 ,β
− zα− 1

4 ,β
|

and ηj+ 1
2 ,β

= (0, 1),

respectively.

Since the solution at the points zj± 1
4 ,k±

1
4

is smooth for t ∈ [tn, tn+1), we obtain the

midpoint values in (2.9) and (2.10) using the first two terms of the Taylor expansion
in time, which results in the following second-order approximation:

U
n+ 1

2

j± 1
4 ,k±

1
4

≈ U(zj± 1
4 ,k±

1
4
, tn)− ∆t

2

[
F (U(zj± 1

4 ,k±
1
4
, tn))x +G(U(zj± 1

4 ,k±
1
4
, tn))y

]
≈ Ũ(zj± 1

4 ,k±
1
4
, tn)− ∆t

2

[
(F (U)x)nj,k + (G(U)y)nj,k

]
,

(2.11)

where the slopes (F (U)x)nj,k and (G(U)y)nj,k are obtained using the minmod limiter
as follows:

(2.12)
(F (U)x)nj,k = minmod

(
θ∆+

x

(
F (U

n

j,k)
)
, ∆0

x

(
F (U

n

j,k)
)
, θ∆−x

(
F (U

n

j,k)
))
,

(G(U)y)nj,k = minmod
(
θ∆+

y

(
G(U

n

j,k)
)
, ∆0

y

(
G(U

n

j,k)
)
, θ∆−y

(
G(U

n

j,k)
))
.

Finally, equipped with the numerical fluxes (2.9)–(2.11), we obtain the following
approximation of (2.6):
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U
int

Dα,β
=U

n

Dα,β
− ∆tn

|Dα,β |

[
Hα+ 1

4 ,β
−Hα− 1

4 ,β
+Hα,β+ 1

4
−Hα,β− 1

4

]
.

Remark 2.3. Note that if some of the one-sided local speeds a±
j+ 1

2 ,k
or b±

j,k+ 1
2

are

zero, then the corresponding quadrilaterals may degenerate to triangles. In order to
avoid such a situation, one can replace (2.3) with

a+
j+ 1

2 ,k
:= max

{
λN

(∂F
∂U

(
U+
j+ 1

2 ,k

))
, λN

(∂F
∂U

(
U−
j+ 1

2 ,k

))
, ε

}
,

a−
j+ 1

2 ,k
:= min

{
λ1

(∂F
∂U

(
U+
j+ 1

2 ,k

))
, λ1

(∂F
∂U

(
U−
j+ 1

2 ,k

))
,−ε

}
,

b+
j,k+ 1

2

:= max

{
λN

(∂G
∂U

(
U+
j,k+ 1

2

))
, λN

(∂G
∂U

(
U−
j,k+ 1

2

))
, ε

}
,

b−
j,k+ 1

2

:= min

{
λ1

(∂G
∂U

(
U+
j,k+ 1

2

))
, λ1

(∂G
∂U

(
U−
j,k+ 1

2

))
,−ε

}
,

where ε is a small positive number. In all of the numerical examples presented in
section 3, we have taken ε = 10−8.

Remark 2.4. We note that one can use the Taylor expansion similar to the one
used in (2.11) to obtain the second-order accurate point values {Un+1

j± 1
4 ,k±

1
4

} at the

time level t = tn+1:

Un+1
j± 1

4 ,k±
1
4

= Ũ(zj± 1
4 ,k±

1
4
, tn)−∆t

[
(F (U)x)nj,k + (G(U)y)nj,k

]
,

where the slopes (F (U)x)nj,k and (G(U)y)nj,k are, as before, given by (2.12). These
point values will be used at the projection step, which will be presented in section 2.3.

2.3. Projection. At the final step, we project the intermediate solution, realized

in terms of the cell averages {U int

D } and the point values {Un+1
j± 1

4 ,k±
1
4

}, onto the original

uniform mesh. To this end, we use the evolved data to construct a conservative
piecewise linear interpolant Ũ int(x, y), and then integrate it over the original cells
Cj,k to obtain the cell averages of U at the new time level t = tn+1:

(2.13) U
n+1

j,k =
1

∆x∆y

∫∫
Cj,k

Ũ int(x, y) dx dy.

We now provide a detailed description of the projection procedure. First, notice
that since Dj,k ⊂ Cj,k for all j, k, it is enough to take the constant pieces in the central
subdomains, that is,

(2.14) Ũ int(x, y) =U
int

Dj,k
for (x, y) ∈ Dj,k.

We then consider the domainDα,β with (α, β) = (j + 1
2 , k + 1

2 ), (j, k + 1
2 ), or (j + 1

2 , k)

outlined in Figure 4 (left). The interpolant Ũ int(x, y) there will consist of four linear
pieces that continuously match along the segments connecting the point (xα, yβ) with
the vertices of Dα,β ; see Figure 4 (right). The values at the vertices are Un+1

α± 1
4 ,β±

1
4

and the value of Ũ int at (xα, yβ), which we define by Un+1
α,β , is determined from the

conservation requirement:
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Fig. 4. Setting for the construction of Ũ int(x, y) (left) and zoom at a sample subdomain Dα,β ,

which is further split into the four smaller subdomains: DN
α,β , DE

α,β , DS
α,β , and DW

α,β (right).

1

|Dα,β |

∫∫
Dα,β

Ũ int(x, y) dx dy =U
int

Dα,β
,

which guarantees the second order of accuracy and results in

Un+1
α,β = 3U

int

Dα,β
−
|DN

α,β |+ |DE
α,β |

|Dα,β |
Un+1
α+ 1

4 ,β+
1
4

−
|DE

α,β |+ |DS
α,β |

|Dα,β |
Un+1
α+ 1

4 ,β−
1
4

−
|DS

α,β |+ |DW
α,β |

|Dα,β |
Un+1
α− 1

4 ,β−
1
4

−
|DW

α,β |+ |DN
α,β |

|Dα,β |
Un+1
α− 1

4 ,β+
1
4

.

Here, the area |Dα,β | is given by (2.8) and the area of triangles DN
α,β , DE

α,β , DS
α,β , and

DW
α,β can be easily computed using the coordinates of their vertices.

We note that the constructed interpolant Ũ int(x, y) may be oscillatory. In order
to avoid appearance on new local extrema at (xα, yβ), we check whether

(2.15) (U (i))n+1
α,β > max

{
U

int

Dα,β
, U

int

D
α+1

2
,β
, U

int

D
α− 1

2
,β
, U

int

D
α,β+1

2

, U
int

D
α,β− 1

2

}
or

(2.16) (U (i))n+1
α,β < min

{
U

int

Dα,β
, U

int

D
α+1

2
,β
, U

int

D
α− 1

2
,β
, U

int

D
α,β+1

2

, U
int

D
α,β− 1

2

}
for some component i of U , and then replace the corresponding piecewise linear
approximations with

(2.17) (Ũ (i)) int(x, y) = (U
(i)

) int
Dα,β

for (x, y) ∈ Dα,β .

We note that the reconstruction correctrion procedure (2.15)–(2.17) locally reduces

the order of the interpolant Ũ int to the first one, but this is the same clipping effect as
in the case of the minmod limiter used at the reconstruction (see (2.2)) and evolution
(see (2.13)) steps. We therefore expect that for smooth solutions the convergence rate
will be two in the L1-norm and somewhat lower in the L∞-norm, as typically occurs
when the minmod limiter is utilized.
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Fig. 5. Setting for the projection onto the original grid.

Finally, equipped with Ũ int(x, y) we need to evaluate the integral on the RHS

of (2.13), which is equal to the sum of |Dj,k|U
int

Dj,k
and the areas of the triangles

highlighted in Figure 5 multiplied by the values of Ũ int at their centers of mass. This
can be easily done using the coordinates of the vertices of these triangles and the
values of Ũ int there.

3. Numerical examples. In this section, we test the designed 2-D second-order
fully discrete central-upwind scheme on a number of numerical examples. In Example
1, we test the accuracy of the scheme on the 2-D Burgers equation. In Examples 2–6,
we apply the developed scheme to the Euler equations of gas dynamics

ρ

ρu

ρv

E


t

+


ρu

ρu2 + p

ρuv

(E + p)u


x

+


ρv

ρuv

ρv2 + p

(E + p)v


y

= 0.

Here, ρ is the density, u and v are x- and y-velocities, respectively, p is the pressure,
and E is the total energy. The system is completed with the help of the equation of
state, which for an ideal gas reads as

E =
p

γ − 1
+
ρ(u2 + v2)

2
,

where γ is the specific heat ratio taken to be 1.4 in all of the reported numerical
examples.

We use the minmod parameter θ = 1.3 in (2.2) and the CFL number 0.475, which
is slightly below the theoretical bound in (2.5). In Examples 3–6, we compare the
results obtained by the designed second-order fully discrete central-upwind scheme
with its semidiscrete counterpart from [12]. When the semidiscrete scheme is imple-
mented, we use the same minmod parameter θ = 1.3 and solve the time-dependent
ODE systems (obtained after the semidiscretization) using the three-stage third-order
strong stability preserving Runge–Kutta method; see, e.g., [7, 8].
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Table 1
Example 1: Experimental convergence rates.

∆x=∆y L1-error Rate L∞-error Rate

1/40 1.52E-03 – 4.54E-03 –

1/80 4.10E-04 1.89 1.98E-03 1.20

1/160 9.92E-05 2.05 7.81E-04 1.34

1/320 2.36E-05 2.07 2.84E-04 1.46

We have also checked the efficiency of the proposed second-order fully discrete
central-upwind scheme. Our numerical experiments clearly indicate that its computa-
tional cost is comparable with the cost of the second-order semidiscrete central-upwind
scheme.

Example 1 (2-D Burgers equation—accuracy test). In the first example,
we consider the 2-D Burgers equation,

ut +

(
u2

2

)
x

+

(
u2

2

)
y

= 0,

subject to the periodic initial data given by

u(x, y, 0) =
1

4
+

1

2
sin(2π(x+ y)).

We use a square computational domain [0, 1]× [0, 1] with the periodic boundary
condition and compute the solution until the small final time t = 0.1, at which the
solution is still smooth. We use a sequence of uniform grids with ∆x = ∆y = 1/40,
1/80, 1/160, and 1/320. We also compute the reference solution using a much finer
mesh with ∆x = ∆y = 1/1280 and then measure the experimental convergence rates,
reported in Table 1. As one can see, the second order of accuracy is achieved in the
L1-norm, while the convergence rate measured in the L∞-norm is somewhat lower.
The latter can be attributed to the fact that both the minmod limiter (used in the
piecewise linear reconstruction (2.1), (2.2)) and a limited piecewise linear interpolation
(used in the projection step described in section 2.3) lead to the order reduction near
the local extrema of the computed solution.

Example 2 (Euler equations—accuracy test). In the second accuracy test,
we consider the the Euler equations of gas dynamics subject to the periodic initial
data:

ρ(x, y, 0) = 1 +
1

2
sin(π(x+ y)), p(x, y, 0) = 1, u(x, y, 0) = 1, v(x, y, 0) = −0.7.

Note that the exact solution of this initial value problem can be easily obtained and
it is given by ρ(x, y, t) = 1 + 1

2 sin(π(x+ y − (u+ v)t)), p(x, y, 0) = 1, u(x, y, t) = 1,
v(x, y, t) = −0.7.

We use a square computational domain [−1, 1]×[−1, 1] with the periodic boundary
condition and compute the solution until the final time t = 0.1 using uniform grids
with ∆x = ∆y = 1/50, 1/100, 1/200, and 1/400. In Table 2, we show the L1-
and L∞-errors, which demonstrate that, as in Example 1, the experimental order of
convergence of the proposed fully discrete scheme is about two in the L1-norm and
between one and two in the L∞-norm.
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Table 2
Example 2: Experimental convergence rates.

∆x=∆y L1-error Rate L∞-error Rate

1/50 1.06E-02 – 1.96E-03 –

1/100 2.45E-03 2.11 8.12E-04 1.27

1/200 5.76E-04 2.09 3.06E-04 1.41

1/400 1.25E-04 2.20 1.12E-04 1.46

Example 3 (steady vortex). In this example taken from [9], we consider the
Euler equations of gas dynamics subject to the initial data corresponding to a steady
vortex:

ρ(x, y, 0) =
(

1− γ − 1

2
m2
ve

1−x2−y2
) 1
γ−1

, u(x, y, 0) = −mvye
1−x2−y2

2 ,

p(x, y, 0) =
1

γ

(
1− γ − 1

2
m2
ve

1−x2−y2
) γ
γ−1

, v(x, y, 0) = mvxe
1−x2−y2

2 .

Here, mv is a strength of the vortex taken mv = 0.25 as in [36].
We use the square computational domain [−4, 4] × [−4, 4], which is sufficiently

large so that the effect of the vortex is negligibly small at the boundaries, and set
zero-order extrapolation boundary conditions. The solution is evolved until the final
time t = 50 using quite coarse uniform meshes with ∆x = ∆y = 0.08 and 0.04. We
note that both in [9] and [36], as well as in several other papers, this initial value
problem was studied for the compressible Navier–Stokes equations rather than for the
Euler ones. The presence of the viscous terms would be necessary for the experimental
convergence study in this example.

Our goal is to compare the results obtained by the proposed fully discrete second-
order central-upwind scheme with the ones computed by its semidiscrete counterpart.
In Figure 6, we plot the cross section of the computed and exact densities along the
line y = x. As one can clearly see, the solution computed by the fully discrete scheme
is substantially more accurate, especially near the top part of the vortex.

Example 4 (2-D Riemann problem). We apply the designed scheme to a
2-D Riemann problem with the initial conditions prescribed with respect to the point

-2 -1 0 1 2

0.92

0.94

0.96

0.98

1

Fully discrete
Semi-discrete
Exact Solution

-2 -1 0 1 2

0.92

0.94

0.96

0.98

1

Fully discrete
Semi-discrete
Exact Solution

Fig. 6. Example 3: Cross section of the density (ρ) computed by the second-order fully discrete
and semidiscrete central-upwind schemes using uniform grids with with ∆x = ∆y = 0.08 (left) and
0.04 (right). The exact solution is plotted using a solid line.
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(x, y) = (0.5, 0.5). The initial data, schematically given by

y = 0.5

ρ = 2.0000
p = 1.0000
u = 0.7500
v = 0.5000

ρ = 1.0000
p = 1.0000
u = 0.7500
v = −0.5000

ρ = 1.0000
p = 1.0000
u = −0.7500
v = 0.5000

ρ = 3.0000
p = 1.0000
u = −0.7500
v = −0.5000

x = 0.5

correspond to Configuration 6 from [17]; see [17, 19, 23, 31, 32, 38] for discussion on
19 different configurations for the 2-D Riemann problem for the Euler equations of
gas dynamics.

We use the square computational domain [0, 1]× [0, 1] and set zero-order extrap-
olation boundary conditions. The solution is evolved until the final times t = 0.3
using a uniform mesh with ∆x = ∆y = 1/400. The results obtained by both the fully
discrete and semidiscrete second-order central-upwind schemes are shown in Figure 7.
As one can see, the resolution achieved by the fully discrete scheme is slightly better,
especially in the contact wave areas.

Example 5 (explosion). In this example, we consider the explosion problem
from [12, 25, 34]. The initial conditions are

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)) =

{
(1.000, 0, 0, 1.0), x2 + y2 < 0.16,

(0.125, 0, 0, 0.1) otherwise.

We use the square computation domain [0, 1.5]×[0, 1.5] and set the reflecting boundary
conditions at x = 0 and y = 0 and zero-order extrapolation conditions at x = 1.5 and
y = 1.5. As demonstrated in [12, 25], by the time t = 3.2 the circular contact curve

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Fig. 7. Example 4: Density (ρ) computed by the second-order fully discrete (left) and semidis-
crete (right) central-upwind schemes.
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Fig. 8. Example 5: Density (ρ) computed by the second-order fully discrete (left) and semidis-
crete (right) central-upwind schemes.

typically develops instabilities. Therefore, this example is a good test for the amount
of numerical dissipation present in the studied schemes.

We use a uniform mesh with ∆x = ∆y = 3/800 and compute the solution until the
final time t = 3.2 using both the fully discrete and semidiscrete second-order central-
upwind schemes. The obtained results are shown in Figure 8. As one can clearly see,
the contact surface computed by the fully discrete scheme is much “curlier” than the
one obtained by the semidiscrete scheme: this demonstrates that the fully discrete
scheme has substantially smaller amount of numerical dissipation.

Example 6 (implosion). In the final example, we consider the implosion prob-
lem from [25]. The initial conditions are

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)) =

{
(0.125, 0, 0, 0.14), |x|+ |y| < 0.15,

(1.000, 0, 0, 1.00) otherwise.

We use the square computation domain [0, 0.3] × [0, 0.3] and set the solid wall
boundary conditions. As shown in [25], a jet of fluid is expected to emerge. However,
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Fig. 9. Example 6: Density (ρ) computed by the second-order fully discrete (left) and semidis-
crete central-upwind schemes using ∆x = ∆y = 3/4000.
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Fig. 10. Same as Figure 9, but with ∆x = ∆y = 3/6000.
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Fig. 11. Same as Figures 9 and 10, but with ∆x = ∆y = 3/8000.

the numerical dissipation present in many second-order schemes may smear the jet as
demonstrated in [4, 25].

We compute the solution until the final time t = 2.5 using the second-order fully
discrete and semidiscrete central-upwind schemes. We first use a uniform grid with
∆x = ∆y = 3/4000 and plot the obtained results in Figure 9. As one can see, though
the results computed by the fully discrete scheme are a little sharper, no jet has
been formed. We therefore increase the resolution by taking a finer uniform mesh
with ∆x = ∆y = 3/6000 and show the obtained results in Figure 10, where one
can observe the jets formed by both studied schemes. As one can see, however, the
jet produced by the fully discrete scheme propagates faster, which indicates a lower
amount of numerical diffusion present in the fully discrete scheme. This is confirmed
by further mesh refinement; see Figure 11, where the results obtained using a uniform
mesh with ∆x = ∆y = 3/8000 are shown.

4. Conclusions. In this paper, we have developed a new second-order fully dis-
crete central-upwind scheme for 2-D hyperbolic systems of conservation laws.
Equipped with the set of cell averages of the solution computed at a certain time mo-
ment, we have proceeded as follows: (i) reconstructed a piecewise linear interpolant
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over the Cartesian mesh; (ii) used the one-sided local speeds of propagation at cell
interfaces to construct a nonuniform quadrilateral mesh with the vertices located in
the areas where the solution remains smooth until the next time level; (iii) evolved the
solution realized in terms of the cell averages over this auxiliary quadrilateral mesh to
the next time level; and (iv) projected the evolved solution onto the original Cartesian
mesh using a sharp piecewise linear interpolant, which was designed to ensure both
high resolution and nonoscillatory behavior of the resulting numerical solution.

The performance of the developed second-order fully discrete central-upwind
scheme has been tested on a number of numerical examples for the 2-D Burgers
equation and Euler equations of gas dynamics. We have first used the proposed
scheme to compute smooth solutions, for which the second-order convergence rate
has been achieved in the L1-norm and an advantage over the second-order semidis-
crete central-upwind scheme has been demonstrated. In the last three examples, non
smooth solutions of the Euler equations of gas dynamics were computed by both the
fully discrete and semidiscrete central-upwind schemes, and we have demonstrated
that the fully discrete scheme achieves sharper resolution of certain rough parts of
the computed solutions, which suggests that the fully discrete scheme has a smaller
amount of numerical dissipation than its semidiscrete counterpart.

The proposed second-order fully discrete central-upwind scheme can be extended
to (unstructured) triangular meshes by evolving the solution over the auxiliary grid
designed using the cell-vertex approach. We do not expect the triangular version of
the scheme to be substantially more complicated than the Cartesian one. Extending
the fully discrete central-upwind scheme to a higher than second order of accuracy
seems to be a substantially more challenging but still accomplishable task. We plan
to investigate both aforementioned extensions in our future work.

Appendix A. Coordinates of the centers of mass. In this section, we
provide the coordinates of the centers of mass zCj,k, zEj,k, zWj,k, zNE

j,k , zNW
j,k , zNj,k, zSj,k,

zSEj,k, and zSWj,k , outlined in Figure 3 and used in section 2.2 to project the reconstructed
data onto the evolution cells Dj,k, Dj+ 1

2 ,k
, Dj,k+ 1

2
, and Dj+ 1

2 ,k+
1
2
.

First, the areas of the rectangles CNE
j,k , CNW

j,k , CSE
j,k , and CSW

j,k are

(A.1)

|CNE
j,k | = (xj+ 1

2
− xj+ 1

4 ,k+
1
4
)(yk+ 1

2
− yj+ 1

4 ,k+
1
4
),

|CNW
j,k | = (xj− 1

4 ,k+
1
4
− xj− 1

2
)(yk+ 1

2
− yj− 1

4 ,k+
1
4
),

|CSE
j,k | = (xj+ 1

2
− xj+ 1

4 ,k−
1
4
)(yj+ 1

4 ,k−
1
4
− yk− 1

2
),

|CSW
j,k | = (xj− 1

4 ,k−
1
4
− xj− 1

2
)(yj− 1

4 ,k−
1
4
− yk− 1

2
),

and their centers of mass are

zNE
j,k =

(xj+ 1
4 ,k+

1
4

+ xj+ 1
2

2
,
yj+ 1

4 ,k+
1
4

+ yk+ 1
2

2

)
,

zNW
j,k =

(xj− 1
4 ,k+

1
4

+ xj− 1
2

2
,
yj− 1

4 ,k+
1
4

+ yk+ 1
2

2

)
,

zSEj,k =
(xj+ 1

4 ,k−
1
4

+ xj+ 1
2

2
,
yj+ 1

4 ,k−
1
4

+ yk− 1
2

2

)
,

zSWj,k =
(xj− 1

4 ,k−
1
4

+ xj− 1
2

2
,
yj− 1

4 ,k−
1
4

+ yk− 1
2

2

)
.
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We then note that CE
j,k, CW

j,k, CN
j,k, and CS

j,k are right-angled trapezoids with the areas

(A.2)

|CE
j,k| =

(
xj+ 1

2
−
xj+ 1

4 ,k+
1
4

+ xj+ 1
4 ,k−

1
4

2

)
(yj+ 1

4 ,k+
1
4
− yj+ 1

4 ,k−
1
4
),

|CW
j,k| =

(xj− 1
4 ,k+

1
4

+ xj− 1
4 ,k−

1
4

2
− xj− 1

2

)
(yj− 1

4 ,k+
1
4
− yj− 1

4 ,k−
1
4
),

|CN
j,k| =

(
yk+ 1

2
−
yj+ 1

4 ,k+
1
4

+ yj− 1
4 ,k+

1
4

2

)
(xj+ 1

4 ,k+
1
4
− xj− 1

4 ,k+
1
4
),

|CS
j,k| =

(yj+ 1
4 ,k−

1
4

+ yj− 1
4 ,k−

1
4

2
− yk− 1

2

)
(xj+ 1

4 ,k−
1
4
− xj− 1

4 ,k−
1
4
)

and the centers of mass given by

zEj,k =

(
xj+ 1

4 ,k+
1
4

+ xj+ 1
4 ,k−

1
4

+ xj+ 1
2

3
+

(xj+ 1
2
− xj+ 1

4 ,k+
1
4
)(xj+ 1

2
− xj+ 1

4 ,k−
1
4
)

3(2xj+ 1
2
− xj+ 1

4 ,k+
1
4
− xj+ 1

4 ,k−
1
4
)

,

yj+ 1
4 ,k+

1
4

+ yj+ 1
4 ,k−

1
4

2
−

(yj+ 1
4 ,k+

1
4
− yj+ 1

4 ,k−
1
4
)(xj+ 1

4 ,k+
1
4
− xj+ 1

4 ,k−
1
4
)

6(2xj+ 1
2
− xj+ 1

4 ,k+
1
4
− xj+ 1

4 ,k−
1
4
)

)
,

zWj,k =

(
xj− 1

4 ,k+
1
4

+ xj− 1
4 ,k−

1
4

+ xj− 1
2

3
−

(xj− 1
4 ,k+

1
4
− xj− 1

2
)(xj− 1

4 ,k−
1
4
− xj− 1

2
)

3(xj− 1
4 ,k+

1
4

+ xj− 1
4 ,k−

1
4
− 2xj− 1

2
)

,

yj− 1
4 ,k+

1
4

+ yj− 1
4 ,k−

1
4

2
+

(yj− 1
4 ,k+

1
4
− yj− 1

4 ,k−
1
4
)(xj− 1

4 ,k+
1
4
− xj− 1

4 ,k−
1
4
)

6(xj− 1
4 ,k+

1
4

+ xj− 1
4 ,k−

1
4
− 2xj− 1

2
)

)
,

zNj,k =

(
xj− 1

4 ,k+
1
4

+ xj+ 1
4 ,k+

1
4

2
−

(xj+ 1
4 ,k+

1
4
− xj− 1

4 ,k+
1
4
)(yj+ 1

4 ,k+
1
4
− yj− 1

4 ,k+
1
4
)

6(2yk+ 1
2
− yj+ 1

4 ,k+
1
4
− yj− 1

4 ,k+
1
4
)

,

yj− 1
4 ,k+

1
4

+ yj+ 1
4 ,k+

1
4

+ yk+ 1
2

3
+

(yk+ 1
2
− yj+ 1

4 ,k+
1
4
)(yk+ 1

2
− yj− 1

4 ,k+
1
4
)

3(2yk+ 1
2
− yj+ 1

4 ,k+
1
4
− yj− 1

4 ,k+
1
4
)

)
,

zSj,k =

(
xj− 1

4 ,k−
1
4

+ xj+ 1
4 ,k−

1
4

2
+

(xj+ 1
4 ,k−

1
4
− xj− 1

4 ,k−
1
4
)(yj+ 1

4 ,k−
1
4
− yj− 1

4 ,k−
1
4
)

6(yj+ 1
4 ,k−

1
4

+ yj− 1
4 ,k−

1
4
− 2yk− 1

2
)

,

yj− 1
4 ,k−

1
4

+ yj+ 1
4 ,k−

1
4

+ yk− 1
2

3
−

(yj+ 1
4 ,k−

1
4
− yk− 1

2
)(yj− 1

4 ,k−
1
4
− yk− 1

2
)

3(yj+ 1
4 ,k−

1
4

+ yj− 1
4 ,k−

1
4
− 2yk− 1

2
)

)
.

Finally, the coordinates of zCj,k are computed using the fact that the center of mass
of the cell Cj,k is (xj , yk), which leads to

zCj,k =
1

|Dj,k|

[
|Cj,k|(xj , yk)− |CE

j,k|zEj,k − |CW
j,k|zWj,k − |CN

j,k|zNj,k − |CS
j,k|zSj,k

− |CNE
j,k |zNE

j,k − |CNW
j,k |zNW

j,k − |CSE
j,k |zSEj,k − |CSW

j,k |zSWj,k
]
,

where |CNE
j,k |, |CNW

j,k |, |CSE
j,k |, and |CSW

j,k | are given by (A.1), |CE
j,k|, |CW

j,k|, |CN
j,k|, and

|CS
j,k| are given by (A.2), and

|Dj,k| = |Cj,k| − |CE
j,k| − |CW

j,k| − |CN
j,k| − |CS

j,k| − |CNE
j,k | − |CNW

j,k | − |CSE
j,k | − |CSW

j,k |.
(A.3)
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