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Abstract We develop well-balanced finite-volume central schemes on overlapping cells for
the Saint-Venant shallow water system and its variants. The main challenge in deriving the
schemes is related to the fact that the Saint-Venant system contains a geometric source term
due to nonflat bottom topography and therefore a delicate balance between the flux gradients
and source terms has to be preserved. We propose a constant subtraction technique, which
helps one to ensure a well-balanced property of the schemes, while maintaining arbitrary
high-order of accuracy. Hierarchical reconstruction limiting procedure is applied to elim-
inate spurious oscillations without using characteristic decomposition. Extensive one- and
two-dimensional numerical simulations are conducted to verify the well-balanced property,
high-order of accuracy, and non-oscillatory high-resolution for both smooth and nonsmooth
solutions.
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1 Introduction

The Saint-Venant system [8] is one of the most commonly used models of shallow water
flows in rivers or coastal areas. Let h represent the water depth, u represent the velocity, B
represent the bottom elevation, and g be the gravitational acceleration constant. Then the
one-dimensional (1-D) Saint-Venant shallow water system has the following form:

⎧
⎨

⎩

ht + (hu)x = 0,

(hu)t +
(
hu2 + 1

2
gh2

)

x
= −ghBx .

(1.1)

Similarly, let u and v represent the x- and y-velocities. Then the two-dimensional (2-D)
Saint-Venant shallow water system reads

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 + 1

2
gh2

)

x
+ (huv)y = −ghBx ,

(hv)t + (huv)x +
(
hv2 + 1

2
gh2

)

y
= −ghBy .

(1.2)

The viscous effects were neglected by asymptotic analysis in the derivation of the Saint-
Venant system [8], and therefore, in the case of flat bottom topography (Bx ≡ By ≡ 0),
its behavior and features are very similar to the Euler equations of isentropic gas dynamics.
For situations like dam breaking, strong shocks can be formed just like in the isentropic gas
dynamics. For these reasons, high-resolution non-oscillatory shock-capturing schemes are
required to solve the Saint-Venant system, which in the case of nonflat bottom topography
is a hyperbolic system of balance laws. In principle, all numerical schemes designed for
hyperbolic conservation laws can be extended to balance laws. This motivates us to study
applicability of finite-volume central schemes on overlapping cells (CSOC), originally devel-
oped for hyperbolic systems of conservation laws in [18–20], to the shallow water equations.

In the past three decades, many numerical methods for the Saint-Venant system have been
proposed. Just like many other systems of balance laws, the Saint-Venant system admits
steady-state solution, in which the flux gradient is exactly balanced by the source term. The
simplest steady-state solutions are “lake at rest” ones. In the 1-D case, they are

w:=h + B ≡ Const, u ≡ 0,

where w represents the water surface. Similarly, the 2-D “lake at rest” satisfies

w ≡ Const, u ≡ v ≡ 0. (1.3)

The “lake at rest” solutions are physically significant since most of physically relevant water
waves are in fact small perturbations of “lake at rest” steady states. We therefore say that
a scheme is well-balanced if it is capable of exactly preserving “lake at rest” steady states.
Unfortunately, a straightforward discretization of the geometric source term typically leads
to a non-well-balanced scheme, which may produce artificial waves that are an order of
magnitude larger than the physical waves especially when a coarse grid is used (which is
always the case in practical applications in which using sufficiently fine grids is typically
unaffordable).

A second-order accurate quasi-steady wave-propagation scheme was proposed in [17]. In
this scheme, a new Riemann problem is introduced at the centroid of each cell such that the
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flux difference can exactly cancel the contribution of the source term. A Riemann-problem-
solver-free central-upwind scheme was proposed in [15,16]. In this scheme, w rather than h
is used in the reconstruction step to keep equilibrium variables constant and the numerical
flux term can be approximated with high-order accuracy, while the source term is only
second-order accurate to preserve the well-balanced property. A higher-order discretization
of the source term was proposed in [23,24]. Another approach was introduced in [36–38],
where high-orderwell-balanced finite-difference and finite-volumeweighted essentially non-
oscillatory (WENO) schemes as well as discontinuous Galerkin methods were derived using
a special local splitting of the source term for which all operators are linear and thus the
well-balanced property can be easily achieved. For several other well-balanced schemes for
the Saint-Venant system we refer the reader to [2,10,14,21,25].

In this paper, we develop finite-volume CSOC with the hierarchical reconstruction (HR)
limiter [18–20] for both the 1-D and 2-D Saint-Venant systems. Just like the schemes in [36–
38], our scheme can also be formulated to achieve arbitrary high-order while still preserving
well-balanced property using the constant subtraction technique, which is substantially easier
to implement than the well-balancing techniques used in [36–38]. Another attractive feature
of the proposed finite-volume CSOC is that no (approximate) Riemann problem solver needs
to be implemented and all significant spurious oscillations can be removed by the HR limiter
implemented together with a new remainder correction technique without local characteristic
decomposition.

This paper is organized as follows. In Sect. 2,we briefly review the finite-volumeCSOC for
general hyperbolic systems of balance laws. In Sect. 3, we propose the constant subtraction
technique and prove that it leads to well-balanced schemes. In Sect. 4, we review the HR
limiters and develop the remainder correction technique. Extensive numerical simulations
are conducted in Sects. 5 and 6 for the 1-D and 2-D Saint-Venant systems, respectively.
Finally, conclusions and perspectives of the future work are given in Sect. 7.

2 Finite-Volume Central Schemes on Overlapping Cells: A Brief Overview

A general 1-D hyperbolic system of balance laws has the following form:

ut + f (u)x = S(u, x, t). (2.1)

Let Di+ 1
2
:=[xi , xi+1] be a cell of uniform (xi+1 − xi ≡ �x) partition of the real line, and

let V
n
i+ 1

2
be the corresponding computed cell averages of u at time tn :

V
n
i+ 1

2
:≈ 1

�x

xi+1∫

xi

u(x, tn) dx .

Let Ci :=
[
xi− 1

2
, xi+ 1

2

]
be a dual cell of staggered uniform partition, and let U

n
i be the corre-

sponding computed cell averages of u at time tn :

U
n
i :≈ 1

�x

x
i+ 1

2∫

x
i− 1

2

u(x, tn) dx .

We can now apply CSOC from [18–20] to (2.1) to get the following fully discrete form (for
conciseness, we will only show the updating formula for {V i+ 1

2
}, the formula for {U i } is

similar):
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V
n+1
i+ 1

2
= θ

1

�x

xi+1∫

xi

Ũ
n
(x) dx + (1 − θ)V

n
i+ 1

2
− �t

�x

[

f (Ũ
n
(xi+1)) − f (Ũ

n
(xi ))

]

+ �t

�x

xi+1∫

xi

S(Ũ
n
(x), x, tn) dx . (2.2)

Here, Ũ is the reconstructed piecewise polynomial approximation of u(x, tn), and θ =
�t/�τ , where �τ is an upper bound for the current time stepsize �t . �τ is restricted by the
CFL condition a�τ

�x ≤ 1
2 , where a is the supremum of the spectral radius of the Jacobian ∂ f

∂u
over all of the relevant values of u. Also notice that CSOC with θ = 1 is a first-order in time
version of the (staggered) Nessyahu-Tadmor scheme [22]. For pure hyperbolic systems, θ in
principle should be as large as possible to allow large�t and hence reduce the computational
cost. When the source term is stiff, one can also take a smaller value of θ .

If we subtract V
n
i+ 1

2
from both sides of (2.2), divide by �t , and take the limit as �t → 0,

we obtain the following semi-discrete form of the finite-volune CSOC:

d

dt
V i+ 1

2
= 1

�τ

[
1

�x

xi+1∫

xi

Ũ(x) dx − V i+ 1
2

]

− 1

�x

[
f (Ũ(xi+1)) − f (Ũ (xi ))

]

+ 1

�x

xi+1∫

xi

S(Ũ(x), x, t)dx . (2.3)

One should use a stable, sufficiently accurate ODE solver to evolve the solution in time.

Remark 2.1 In our numerical experiments, we have used the third-order strong-stability
preserving Runge-Kutta (SSP-RK3) method [11,12,29].

Remark 2.2 Multidimensional finite-volume CSOC can be derived similarly, see [18].

3 Constant Subtraction Technique

Our goal is to design well-balanced CSOC. We first consider the 1-D case and denote the
equilibrium variables by a:=(w, hu)T , which remains constant at “lake at rest” steady states.
Next, we rewrite the geometric source term using the equilibrium variable w as follows:

− ghBx = −g(w − B)Bx =
(1

2
gB2

)

x
− gwBx , (3.1)

where the term ( 12 gB
2)x is in conservative form.

Remark 3.1 Notice that the same source term decomposition was used in [36] to maintain a
well-balanced property of arbitrary high-order finite-difference schemes.

Since a direct application of the CSOC to the Saint-Venant system (1.1) does not guarantee
the resulting method to be well-balanced, wemodify the system and obtain the well-balanced
CSOC using the following algorithm.
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Algorithm 3.1 (Constant Subtraction Technique)

Step 1. Let � be a computational domain of size |�|. Denote the global spatial average of
w(x, t) by

w(t):= 1

|�|
∫

�

w(x, t) dx

and decompose the nonconservative term on the right-hand side (RHS) of (3.1) into
the sum of a conservative term and a constant subtraction term as follows:

− gwBx = (−gw̄B)x + g(w̄ − w)Bx . (3.2)

Step 2. Use (3.1) and (3.2) to rewrite theSaint-Venant system (1.1) in termsof the equilibrium
variables a:

⎧
⎪⎨

⎪⎩

wt + (hu)x = 0,

(hu)t +
(

(hu)2

w − B
+ g[w(t) − w]B + g

2
w2

)

x
= g[w(t) − w]Bx .

(3.3)

Step 3. Apply the CSOC described in Sect. 2 to the system (3.3) in a straightforward manner.

Remark 3.2 The systems (3.3) and (1.1) are equivalent for both smooth and nonsmooth
solutions.

Remark 3.3 The term g[w(t) − w]Bx will vanish at “lake at rest” steady states.

Theorem 3.1 The CSOC scheme with the forward Euler time discretization (2.2) for the
system (3.3) is well-balanced.

Proof Note that at “lake at rest” steady states w(t) is independent of time and assume that at
time t = tn the cell averages of a over both Ci and Di+1/2 cells are equal to (w, 0)T . After
performing a (high-order) piecewise polynomial reconstruction for the equilibrium variables
a, we obtain that the polynomial pieces over both Ci and Di+1/2 still satisfy h̃u ≡ 0 and
w̃ ≡ w. Therefore, both the flux difference and source term in the CSOC (2.2) vanish and
V

n+1
i+ 1

2
becomes a convex combination of 1

�x

∫ xi+1
xi

Ũ
n
(x) dx and V

n
i+ 1

2
, both of which are at

“lake at rest” steady state. Therefore, the cell averages at t = tn+1 also satisfy hu = 0 and
w = w and the proof of the theorem is complete. ��
Remark 3.4 We would like to stress that in order to guarantee the well-balanced property, it
is important to reconstruct the equilibrium variables a rather than the original ones, (h, hu)T .

Remark 3.5 Since SSPODE solvers [11,12,29] are based on a convex combination of several
forward Euler steps, Theorem 3.1 is valid for the semi-discrete CSOC (2.3) combined with
a higher-order SSP solver.

Remark 3.6 All of the results from Sect. 3 can be directly extended to the 2-D case.

Remark 3.7 In this paper, we design the scheme that preserves “lake at rest” steady states
h + B = C and u = 0, for which C is a constant in the entire computational domain.
This steady state has substantial practical importance. For more complicated situations, for
example, if we have two parts of the domain connected by a river system. Then, the “lake
at rest” steady states on the left and on the right may be at different water surface levels
and averaging them over the entire computational domain will not make any sense. One will
probably have to use a domain decomposition technique to design the CSOC scheme that
would preserve such steady states. This type of study goes beyond the scope of our paper.
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4 Non-oscillatory Hierarchical Reconstruction (HR)

For discontinuous solutions, a nonlinear limiting procedure is typically required to eliminate
spurious oscillations in the vicinities of discontinuities. In the past few decades, a wide
variety of nonlinear limiting techniques including the MUSCL [31–33], ENO [13,26,29,30]
and WENO [27,28] reconstructions and many others have been developed for solving this
problem. In this paper, we use the HR limiting technique originally designed in [19,20] for
overlapping grid methods.

4.1 HR Process: A Brief Overview

Let us assume that we are given a set of cell averages, ϕi and ϕi+ 1
2
, of a certain computed

quantity on overlapping cells. Then, using a standard conservation technique one can build
a central piecewise polynomial reconstruction of degree d on each cell (see, e.g., [20]).
Unfortunately, a piecewise polynomial approximant reconstructed in such a linear, nonlimited
way may have spurious oscillations in nonsmooth regions and thus it must be corrected using
a nonlinear limiter.

Supposewe have reconstructed polynomial pieces over the overlapping cellsCi and Di+ 1
2
,

ϕi (x) = ∑d
m=0

ϕ
(m)
i (xi )
m! (x − xi )m and ϕi+ 1

2
(x) = ∑d

m=0

ϕ
(m)

i+ 1
2
(x

i+ 1
2
)

m! (x − xi+ 1
2
)m , expressed

in terms of Taylor polynomials centered at xi and xi+ 1
2
, respectively. We now describe the

HR process applied to ϕi (x) (an application of the HR to ϕi+ 1
2
(x) is similar). Using the

HR to limit the polynomial ϕi (x) is to modify its coefficients ϕ
(m)
i (xi ) to obtain their new

values ϕ̃
(m)
i (xi ), thus generating a non-oscillatory polynomial ϕ̃i (x) with the same order of

accuracy. In the following, we use a pointwise HR proposed in [39] to explain the 1-D HR
algorithm.

Algorithm 4.1 (Pointwise HR)

Step 1. Suppose d ≥ 2. Then, for m = d, d − 1, · · · , 1 do the following:

(a) Take the (m − 1)th derivatives of ϕi and ϕi± 1
2
and write ϕ

(m−1)
i (x) = Lm,i (x) +

Rm,i (x), where Lm,i (x) is the linear part and Rm,i (x) is the remainder.

(b) Compute the cell average of ϕ
(m−1)
i over Ci to obtain the cell average ϕ

(m−1)
i . Also

compute the point values ϕ
(m−1)
i+ 1

2
(xi+ 1

2
) and ϕ

(m−1)
i− 1

2
(xi− 1

2
).

(c) Let R̃m,i (x) be Rm,i (x) with its coefficients replaced by the corresponding modified

values. Compute the cell average of R̃m,i over Ci to obtain the cell average R̃m,i .
Also compute the point values R̃m,i (xi+ 1

2
) and R̃m,i (xi− 1

2
).

(d) Let Lm,i :=ϕ
(m−1)
i − R̃m,i and Lm,i± 1

2
:=ϕ

(m−1)
i± 1

2
(xi± 1

2
) − R̃m,i (xi± 1

2
).

(e) Reconstruct a non-oscillatory linear function L(x) on Ci using Lm,i , Lm,i+ 1
2
and

Lm,i− 1
2
, and define the modified coefficient ϕ̃(m)

i (xi ):=L ′(x).

Step 2. The modified 0th degree coefficient ϕ̃i (xi ) is chosen such that the cell average of
ϕ̃i (x) over Ci is equal to ϕi .

After the set of modified coefficients ϕ̃
(m)
i (xi ) has been computed, we obtain a non-

oscillatory polynomial piece ϕ̃i (x) on Ci .
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Remark 4.1 The HR is quite computationally expensive. To substantially reduce the overall
computational cost, one can utilize a smoothness detector to turn off the HR in smooth
regions. In all of the numerical simulations reported below, we have used the same low cost
smoothness detector as in [7] and [20].

4.2 Remainder Correction Technique

As any of the existing high-order limiting techniques, the HR is capable of limiting the
spurious oscillations, which unfortunately cannot be completely eliminated, especially in the
most demanding shallow water models containing nonconservative source terms appearing
on the RHS of (3.3) in the case of discontinuous bottom topography function B. Here, we
introduce a technique to further regulate the remainder term R̃m,i (x) in Step 1(c) ofAlgorithm
4.1. This technique does not affect its approximation order of accuracy and further reduces
possible overshoots/undershoots near discontinuities.

In this paper, we will only consider the third-order HR. Let R̃m,i (x) = αm,i (x−xi )2 (with
m = 1, d = 2). Obviously, R̃m,i (x) = O((�x)2) in Ci , where �x is the spatial grid size.
Based on R̃m,i , we want to construct a corrected remainder R̃corr

m,i satisfying the following
two conditions:

{
R̃corr
m,i (x) = R̃m,i (x) + O((�x)3), ∀x ∈ Ci ,

|R̃corr
m,i (x)| < M, ∀x ∈ R, for some constant M.

(4.1)

The first requirement in (4.1) is needed to avoid any loss of accuracy. The second condition
in (4.1) is introduced to control the spurious oscillations, because R̃m,i grows quite fast away
from xi and the values R̃m,i (xi± 1

2
) used in Step 1(d) of Algorithm 4.1may lead to oscillations.

There are many different ways to ensure (4.1). In this paper, we take

R̃corr
m,i (x) = R̃m,i (x)

1 + √|αm,i | |x − xi | + |αm,i |(x − xi )2
. (4.2)

Theorem 4.1 The corrected remainder R̃corr
m,i given by (4.2) satisfies the two conditions in

(4.1).

Proof The definition of R̃corr
m,i , (4.2), and the fact that R̃m,i (x) = O((�x)2) in Ci imply that

the first condition in (4.1) holds, namely:

R̃corr
m,i (x) = R̃m,i (x)

[
1 + O

(√|αm,i | |x − xi | + |αm,i |(x − xi )
2
)]

= R̃m,i (x)
[
1 + O (

�x + (�x)2
)]

= R̃m,i (x) + O((�x)3), ∀x ∈ Ci .

The second condition in (4.1) holds because R̃corr
m,i is continuous and

lim|x |→∞ R̃corr
m,i (x) = lim|x |→∞

αm,i (x − xi )2

1 + √|αm,i | |x − xi | + |αm,i |(x − xi )2
= sgn(αm,i ) = ±1.

��
Remark 4.2 The remainder correction technique presented in this section can be extended to
higher-order HR by increasing the degree of the polynomial in the denominator on the RHS
of (4.2).
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Remark 4.3 In the HR process presented in Algorithm 4.1 one has to compute cell averages.
This can be done analytically when the averaged quantities are polynomials. However, for
other functions, for example, for the corrected remainder (4.2), it may be not easy or even
impossible to evaluate the integral exactly. In such case, we replace a required cell average
(except for updating the 0th degree coefficient for conservation purpose) by the average of
three point-values (two end points and the center of the cell in 1D), which will not reduce the
accuracy of the HR process as long as both the old polynomial and the new one are averaged
in the same manner (see [39] for more details). In 2D simulations, the original HR [20] is
used which works sufficiently well.

5 One-dimensional Numerical Examples

In this section, we demonstrate performance of the well-balanced CSOCwith the HR limiter.
We use the third-order schemes though higher-order well-balanced CSOC can also be con-
structed. In all of the examples, we take the CFL number 0.4 and the gravitational acceleration
constant g = 9.812.

Example 5.1 (Verification of theWell-Balanced Property) This test problem is taken from
[36]. The computational domain is 0 ≤ x ≤ 10, and the initial condition is the “lake at
rest” state with w(x, 0) ≡ 10, (hu)(x, 0) ≡ 0, which should be exactly preserved. We use
absorbing boundary conditions and test two different bottom topography functions. The first
one is smooth:

B(x) = 5e− 2
5 (x−5)2 ,

while the second one is nonsmooth:

B(x) =
{
4, if 4 ≤ x ≤ 8,
0, otherwise.

We use N = 200 uniform cells, and obtain that even at large final times both the L1- and
L∞-errors are machine zeros for both smooth and nonsmooth bottom topographies.

Example 5.2 (Accuracy Test) The goal of this numerical example, taken [36], is to experi-
mentally verify the order of accuracy of the (formally) third-order CSOC. The computational
domain is 0 ≤ x ≤ 1 and the boundary conditions are periodic. The initial data and bottom
topography are

w(x, 0)=5.5− 0.5 cos(2πx)+ecos(2πx), (hu)(x, 0)=sin(cos(2πx)), B(x)=sin2(πx).

We compute the solution of this initial-boundary value problem up to time t = 0.1 when the
solution is still smooth (shockswill be developed at a later time). Sincewe use the smoothness
detector mentioned in Remark 4.1, the HR limiter is essentially turned off for this smooth
solution.

Since the exact solution is not available, we use Aitken’s formula [1] to estimate the
experimental order of accuracy r :

r = log2

(‖u �x
2

− u�x‖
‖u �x

4
− u �x

2
‖

)

,

where u�x denotes the numerical solution computed using the uniform grid of size �x . In
Table 1, we show the experimental orders of accuracy measured in the L1- and L∞-norms.
As one can clearly see, the expected third order of accuracy is reached for both w and hu.
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Table 1 Example 5.2: experimental orders of accuracy

�x w hu

L1-order L∞-order L1-order L∞-order

1/50 2.3671 1.5893 1.7588 1.1060

1/100 2.4040 1.8154 2.5282 1.8850

1/200 2.8303 2.3321 2.8365 2.3537

1/400 2.9355 2.7597 2.9361 2.7652

1/800 2.9880 2.9796 2.9885 2.9729

1/1600 2.9982 2.9942 2.9982 2.9943

0 2000 4000 6000 8000 10000 12000 14000
10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000 14000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fig. 1 Example 5.3: numerical (circles) and analytic (solid line) approximate solutions (h is on the left, u is
on the right)

Example 5.3 (TidalWaveFlow) This example is taken from [3] and [36]. The computational
domain is 0 ≤ x ≤ L with L = 14,000, the initial data are

w(x, 0) ≡ 60.5, (hu)(x, 0) ≡ 0,

the bottom topography is given by

B(x) = 10 + 40x

L
+ 10 sin

(4πx

L
− π

2

)
,

and the boundary conditions are

w(0, t) = 64.5 − 4 sin
( 4π t

86400
+ π

2

)
, (hu)(L , t) = 0.

This is a good test problem since a very accurate asymptotic approximation of the exact
solution was obtained in [3]:

w(x, t) = 64.5−4 sin
( 4π t

86400
+ π

2

)
, (hu)(x, t) = π(x − L)

5400
cos

( 4π t

86400
+ π

2

)
. (5.1)

We compute the numerical solution at time t = 7,552.13 using 200 uniform cells and
compare the obtained results with (5.1). As one can see in Fig. 1, the numerical and analytic
approximate solutions are in a very good agreement.
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Example 5.4 (Perturbations of the “Lake atRest” Steady State) This example is a slightly
modified test problem, proposed in [17], which was designed to verify the ability of tested
scheme to accurately capture quasi steady-state solutions. The computational domain is
0 ≤ x ≤ 2, and the initial data are

(hu)(x, 0) ≡ 0, w(x, 0) =
{
1 + ε, if 1.1 ≤ x ≤ 1.2,
1, otherwise,

where ε is a small perturbation constant. We use absorbing boundary conditions and consider
both large (ε = 0.2) and small (ε = 0.001) perturbations. The bottom topography contains
a hump and is given by

B(x) =
{
0.25 [cos(10π(x − 1.5)) + 1] , if 1.4 ≤ x ≤ 1.6,
0, otherwise.

In this setting, the small perturbation of size ε will split into two waves, one of which will
propagate to the left, while the other one will move to the right. The final time is set to be
t = 0.2, by which the right-going wave has already passed the bottom hump. It is well-known
(see, e.g., [15,17,36]) that when ε is small, non-well-balanced schemes cannot capture the
right-going wave without producing large magnitude artificial (nonphysical) waves unless
an extremely fine mesh is used.

We compute the numerical solution by both the well-balanced and non-well-balanced
CSOC on a 200 uniform grid and compare the obtained results with the reference numerical
solution computed using 3,000 uniform cells. (The non-well-balanced CSOC is obtained
by a direct application of the CSOC to the original Saint-Venant system (1.1) rather than
to its modified version (3.3).) The results for ε = 0.2 and ε = 0.001 are shown in Figs. 2
and 3, respectively. As one can see there, when ε = 0.2 (relatively large perturbation),
there is no significant difference between the solutions computed by the well-balanced and
non-well-balanced CSOC. On the contrary, when ε = 0.001 (much smaller perturbation),
the non-well-balanced CSOC generates significant artificial waves, while the well-balanced
CSOC leads to a quite accurate non-oscillatory solution.

Example 5.5 (Dam Break over a Discontinuous Bottom) This problem is taken from [35]
and [36] to simulate a fast changing flow over a nonsmooth bottom. The computational
domain is 0 ≤ x ≤ 1,500, the initial data are

(hu)(x, 0) ≡ 0, w(x, 0) =
{
20, if x ≤ 750,
15, otherwise,

and absorbing boundary conditions are used at both ends of the computational domain. The
bottom topography contains a rectangular bump and is given by

B(x) =
{
8, if 562.5 ≤ x ≤ 937.5,
0, otherwise.

We compute the numerical solutions using 500 and 5,000 uniform cells at two different final
times: t = 15 (Fig. 4) and t = 55 (Fig. 5). As one can clearly see, the obtained results are
very accurate and practically oscillation-free.

Remark 5.1 In this problem, the bottom topography B is a discontinuous step function,
which needs to be treated carefully due to the appearance of the Dirac delta function
in the source term g[w(t) − w]Bx . We follow the approach in [16] and replace B in
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Fig. 2 Example 5.4: ε = 0.2 (relatively large perturbation). Solutions (w in the top row, hu in the bottom
row) computed by the non-well-balanced (left column) and well-balance (right column) CSOC using uniform
grids with 200 (circles) and 3,000 (solid line, reference solution) cells

this example with its continuous piecewise linear approximation in the vicinity of jump
discontinuities,

B̃(x) = Bi− 1
2

+ (Bi+ 1
2

− Bi− 1
2
) ·

x − xi− 1
2

�x
, ∀x ∈ Ci ,

for any cell Ci in the vicinity of discontinuities, where

Bi+ 1
2
:=

B(xi+ 1
2

+ 0) + B(xi+ 1
2

− 0)

2
.

Notice that B̃ → B as �x → 0.

Example 5.6 (Saint-Venant SystemwithManning’sFriction) In this example,we consider
the 1-D Saint-Venant system with Manning’s friction term (see, e.g., [9,35]):

⎧
⎨

⎩

ht + (hu)x = 0,

(hu)t +
(
hu2 + 1

2
gh2

)

x
= −ghBx − g

M2

h1/3
u|u|,

(5.2)

where M = M(x) is a given Manning’s friction coefficient.
We note that in addition to the “lake at rest” steady states, the system (5.2) admits another

physically relevant set of steady-state solutions corresponding to the water flowing down a
slanted surface of a constant slope (see, e.g., [4–6]). However, in this paper, we only consider
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Fig. 3 Example 5.4: ε = 0.001 (smaller perturbation). Solutions (w in the top row, hu in the bottom row)
computed by the non-well-balanced (left column) and well-balanced (right column) CSOC using uniform
grids with 200 (circles) and 3,000 (solid line, reference solution) cells

the “lake at rest” steady states and therefore, the equilibrium variables are the same as for
the original Saint-Venant system (1.1), namely, a:=(w, hu)T .

We now apply Algorithm 3.1 and rewrite the system (5.2) as
⎧
⎪⎨

⎪⎩

wt + (hu)x = 0,

(hu)t +
(

(hu)2

w − B
+ g[w(t) − w]B + g

2
w2

)

x
= g[w(t) − w]Bx − g

M2(hu)|hu|
(w − B)7/3

,

(5.3)
and obtain a well-balanced scheme by a direct application of the CSOC to (5.3). To illustrate
the performance of the resulting scheme, we follow [35] and consider the same setting as in
Example 5.5, but with Manning’s friction term with M(x) ≡ 0.1. The solutions computed at
times t = 15 and t = 55 are shown in Figs. 6 and 7, respectively. As one can clearly see, the
obtained results are well-resolved and almost non-oscillatory, and the coarse and fine grid
solutions are in a very good agreement.

We would like to point out that Manning’s friction is only a damping term which does
not smear the discontinuities. Compared with the numerical results in Example 5.5, one
can see that the effect of Manning’s friction is that the original horizontal line above the
bump becomes oblique and the velocity magnitude decreases, which are typical effects of a
damping term. Our results are in good agreements with the results reported in [35], where
exactly the same phenomenon has been observed.
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Fig. 4 Example 5.5: w(x, 15) together with B(x) (top left), w(x, 15) (top right), hu(x, 15) (bottom left) and
u(x, 15) (bottom right), computed using uniform grids with 500 (circles) and 5,000 (solid line) cells. The
bottom topography B is plotted with the dashed line

Example 5.7 (Steady Flows over a Hump) In this example, we study steady states with
the nonzero discharge hu. The properties of such flows depend on the bottom topography
and free-stream Froude number Fr = u/

√
gh. If Fr < 1 (subcritical flow) or Fr > 1

(supercritical flow) everywhere, then the steady-state solution will be smooth. Otherwise,
the flow is transcritical with transitions at the points where Fr passes through 1, and thus
one of the eigenvalues u ± √

gh of the Jacobian matrix passes through zero. In such case,
the steady-state solution may contain a stationary shock. Steady flows over a hump are
classical benchmarks for transcritical and subcritical steady flows, and are widely used to
test numerical schemes for the shallow water system, see, for example, [15,17,34,36].

The computational domain is 0 ≤ x ≤ 25, and the initial data are

w(x, 0) ≡ 0.5, (hu)(x, 0) ≡ 0.

The bottom topography contains a hump and is given by

B(x) =
{
0.2 − 0.05(x − 10)2, if 8 ≤ x ≤ 12,
0, otherwise.

The nature of the solution depends on the boundary condition: The flow can be subcritical or
transcritical with or without a stationary shock. The final time is set to be t = 200 by which
all of the solutions reach their corresponding steady states.
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Fig. 5 Example 5.5: w(x, 55) together with B(x) (top left), w(x, 55) (top right), hu(x, 55) (bottom left) and
u(x, 55) (bottom right), computed using uniform grids with 500 (circles) and 5,000 (solid line) cells. The
bottom topography B is plotted with the dashed line

Case 1: Subcritical Flow.
We set the following upstream and downstream boundary conditions: (hu)(0, t) = 4.42
and w(25, t) = 2. In Fig. 8 (left), we plot the obtained Froude number Fr , which gradually
increases to a large (but still smaller than 1) value above the humpand thengradually decreases
back to the original value. We compute the numerical solutions using 100 and 1,000 uniform
cells. As it can be seen in Fig. 9, the obtained solutions are in good agreement and both are
non-oscillatory.

Case 2: Transcritical Flow without a Stationary Shock.
We now take different upstream and downstream boundary conditions: (hu)(0, t) = 1.53
andw(25, t) = 0.41. In Fig. 8 (middle), we plot the obtained Froude number Fr , which now
gradually increases to a value >1 above the hump and then remains constant. Therefore, no
stationary shocks appear on the surface. We compute the numerical solutions using 200 and
2,000 uniform cells. As in the subcritical case, the coarse and fine grid solutions are in a good
agreement and both are practically non-oscillatory, see Fig. 10.

Case 3: Transcritical Flow with a Stationary Shock.
In this case, the upstream and downstream boundary conditions are (hu)(0, t) = 0.18 and
w(25, t) = 0.33. The obtained Froude number Fr is plotted in Fig. 8 (right). As in the
previous case, the Froude number gradually increases to a value greater than 1 above the
hump, but then it jumps down to the value much smaller than 1. Therefore, a stationary shock

123



692 J Sci Comput (2015) 63:678–698

0 500 1000 1500
0

2

4

6

8

10

12

14

16

18

20

22

0 500 1000 1500
14

15

16

17

18

19

20

21

0 500 1000 1500

0

5

10

15

20

25

0 500 1000 1500

0

0.5

1

1.5

2

2.5

Fig. 6 Example 5.6: w(x, 15) together with B(x) (top left), w(x, 15) (top right), hu(x, 15) (bottom left) and
u(x, 15) (bottom right), computed using uniform grids with 500 (circles) and 5,000 (solid line) cells. The
bottom topography B is plotted with the dashed line

appears on the surface. We compute the numerical solutions, presented in Fig. 11, using 100
and 1,000 uniform cells. As in Cases 1 and 2, both solutions are almost non-oscillatory and
in a good agreement, and the stationary shock wave is sharply resolved.

6 Two-Dimensional Numerical Examples

In this section, we consider the 2-D Saint-Venant system (1.2), for which “lake at rest”
steady-state solutions are given by (1.3) and the corresponding equilibrium variables are
a:=(w, hu, hv)T . When written in terms of a, the source term becomes S = (

0,−g(w −
B)Bx ,−g(w − B)By

)T .
Let w(t) be the global spatial average of the water surface w(x, y, t). We now apply the

constant subtraction technique presented in Sect. 3 to the system (1.2) and rewrite it as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wt + (hu)x + (hv)y = 0,

(hu)t +
(

(hu)2

w − B
+ g[w(t) − w]B + g

2
w2

)

x
+

(
(hu)(hv)

w − B

)

y
= g[w(t) − w]Bx ,

(hv)t +
(

(hu)(hv)

w − B

)

x
+

(
(hv)2

w − B
+ g[w(t) − w]B + g

2
w2

)

y
= g[w(t) − w]By .

(6.1)
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Fig. 7 Example 5.6: w(x, 55) together with B(x) (top left), w(x, 55) (top right), hu(x, 55) (bottom left) and
u(x, 55) (bottom right), computed using uniform grids with 500 (circles) and 5,000 (solid line) cells. The
bottom topography B is plotted with the dashed line
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Fig. 8 Example 5.7: Froude number Fr of the steady flows over a hump in the subcritical (left), transcritical
without a stationary shock (middle) and transcritical with a stationary shock (right) cases

The system (6.1) is advantageous over the original system (1.2) since at “lake at rest” steady
states, the source terms in the system (6.1) vanish and the fluxes are constant. Therefore, a
direct application of the CSOC from [18] leads to the 2-D well-balanced CSOC.

As in the 1-D case, all of the simulations in this section are conducted by the third-order
well-balancedCSOCwith theHR limiter. In all of the 2-D examples, we take the CFL number
0.45 and the gravitational acceleration constant g = 9.812.

Example 6.1 (Verification of theWell-Balanced Property) This test problem is taken from
[36]. The computational domain is [0, 1] × [0, 1], and the initial condition is the “lake
at rest” state with w(x, y, 0) ≡ 1, (hu)(x, y, 0) ≡ (hv)(x, y, 0) ≡ 0 and B(x, y) =
0.8e−50[(x−0.5)2+(y−0.5)2], which should be exactly preserved. We use absorbing boundary
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Fig. 9 Example 5.7, subcritical case: solutions (w together with B is on the left, u is on the right) computed
using uniform grids with 100 (circles) and 1,000 (solid line) cells. The bottom topography B is plotted with
the dashed line
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Fig. 10 Example 5.7, transcritical case without a stationary shock: solutions (w together with B is on the left,
u is on the right) computed using uniform grids with 200 (circles) and 2,000 (solid line) cells. The bottom
topography B is plotted with the dashed line
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Fig. 11 Example 5.7, transcritical case with a stationary shock: solutions (w together with B is on the left,
u is on the right) computed using uniform grids with 100 (circles) and 1,000 (solid line) cells. The bottom
topography B is plotted with the dashed line

conditions and compute the numerical solution at time t = 0.1 using a 100 × 100 uniform
mesh. The L1- and L∞-errors for both the surface level w and discharges hu and hv are
shown in Table 2. As one can see, the L1-errors are machine zeros, while the L∞-errors are
also very close to the round-off errors and are smaller than the errors reported in [36].

123



J Sci Comput (2015) 63:678–698 695

Table 2 Example 6.1: L1- and
L∞-errors at time t = 0.1

w hu hv

L1-error 2.2160 × 10−17 8.4091 × 10−18 9.5723 × 10−18

L∞-error 8.6597 × 10−15 3.9053 × 10−15 4.4746 × 10−15
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Fig. 12 Example 6.2: contour-plot of w on 200 × 100 (left) and 600 × 300 (right) uniform meshes. The
solution is shown at times t = 0.12, 0.24, 0.36, 0.48, 0.6 (from top to bottom)
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Wehave also computed a long time solution of this problemandobserved that the L1-errors
remain equal to machine zeros.

Example 6.2 (Small Perturbation of the “Lake atRest” State) This test problem, proposed
in [17], is a 2-D version of Example 5.4. The computational domain is [0, 2] × [0, 1], the
initial data are

(hu)(x, y, 0) ≡ (hv)(x, y, 0) ≡ 0, w(x, y, 0) =
{
1.01, if 0.05 ≤ x ≤ 0.15,
1, otherwise.

and absorbing boundary conditions are imposed at all of the boundaries. The bottom topog-
raphy contains a vertical hump is given by

B(x, y) = 0.8e−5(x−0.9)2−50(y−0.5)2 .

We compute the solution and monitor how the right-going disturbance propagates past
the hump (the left-going disturbance leaves the domain and does not affect the solution after
this). We use two uniform grids with 200 × 100 and 600 × 300 cells. The snapshots of the
computed solution at times t = 0.12, 0.24, 0.36, 0.48 and 0.6 are shown in Fig. 12. Notice
that the wave speed is smaller above the hump than anywhere else, which distorts the initially
planar disturbance. The obtained results clearly demonstrate that the CSOC can capture the
small perturbation and resolve the complicated features of the studied flow very well.

7 Conclusions and Future Works

In this paper, we have developed CSOC for the Saint-Venant system of shallow water equa-
tions in both one and two space dimensions. A new constant subtraction technique is proposed
to make the CSOC well-balanced, that is, to guarantee that they exactly preserve “lake at
rest” steady states while still maintain the original high-order of accuracy and non-oscillatory
property. In fact, this technique is quite general and can be utilized for development other
finite-volume schemes (this will be done in our future works). We have provided extensive
numerical results to demonstrate the well-balanced property, high-order of accuracy and
non-oscillatory nature of the proposed CSOC. Our future works will include development of
positivity-preserving CSOC and also extension of their well-balanced properties to the case
of more general steady-state solutions.
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