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Central-upwind scheme for shallow water
equations with discontinuous bottom topography
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Abstract. Finite-volume central-upwind schemes for shallow water equations were
proposed in [A. Kurganov and G. Petrova, Commun. Math. Sci., 5 (2007), 133–160].
These schemes are capable of maintaining “lake-at-rest” steady states and preserving
the positivity of the computed water depth. The well-balanced and positivity preserving
features of the central-upwind schemes are achieved, in particular, by using continu-
ous piecewise linear interpolation of the bottom topography function. However, when
the bottom function is discontinuous or a model with a moving bottom topography is
studied, the continuous piecewise linear approximation may not be sufficiently accurate
and robust.
In this paper, we modify the central-upwind scheme by approximating the bottom
topography function using a discontinuous piecewise linear reconstruction (the same
approximation used to reconstruct evolved quantities in the finite-volume setting) as
well as implementing a special quadrature for the geometric source term and draining
time step technique. We prove that the new central-upwind scheme possesses the well-
balanced and positivity preserving properties and illustrate its performance on a number
of numerical examples.

Keywords: hyperbolic system of conservation and balance laws, semi-discrete central-
upwind scheme, Saint Venant system of shallow water equations.

Mathematical subject classification: 76M12, 65M08, 35L65, 86-08, 86A05.

1 Introduction

In this paper, we are interested in solving the one-dimensional (1-D) Saint-
Venant system of shallow water equations introduced in [6] and still widely used
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in modeling flows in rivers, lakes and coastal areas as well as atmospheric and
oceanic flows in certain regimes. The 1-D Saint-Venant system reads as follows:(

h
hu

)
t

+
(

hu
hu2 + g

2 h2

)
x

=
(

0
−ghBx

)
, (1.1)

where B(x) is the bottom topography elevation, h(x , t) is the fluid depth above
the bottom, u(x , t) is the velocity, and g is the gravitational constant.

When solving the system of balance laws (1.1) numerically, one typically
faces several difficulties. One difficulty stems from the fact that many physi-
cally relevant solutions of (1.1) are small perturbations of steady-state solutions.
Therefore, if a delicate balance between the flux and geometric source term in
the second equation in (1.1) is not respected, the solution may develop spurious
waves of a magnitude that can become larger than the exact solution. A second
numerical challenge is when the water depth h is very small. In this regime, even
small numerical oscillation in the computed solution can result in a negative
computed h value, which is not only physically irrelevant, but also cause the
numerical scheme to break down since the eigenvalues of the Jacobian of (1.1)
are u ± √

gh.
To overcome these numerical challenges, one needs to use a scheme that is

both well-balanced and positivity preserving. We start by noting that the system
(1.1) has a family of smooth steady-state solutions given by:

q := hu ≡ Const,
u2

2
+ g(h + B) ≡ Const. (1.2)

The most practically important steady-state solutions among (1.2) are the “lake-
at-rest” solutions characterized by:

q = 0, w := h + B = Const, (1.3)

where w is the water surface. We will call the scheme well-balanced if it
is capable of exactly preserving equilibrium variables q and w in (1.3) at the
discrete level.

A number of well-balanced and positivity preserving numerical methods have
been proposed in the literature, see, e.g., [1, 2, 3, 4, 12, 17]. In particular,
central-upwind schemes, proposed in [12], are Riemann-problem-solver-free
Godunov type methods originally developed in [10, 11, 13] for general multidi-
mensional hyperbolic systems of conservation laws. The central-upwind scheme
in [12] is well-balanced and positivity preserving thanks to several special tech-
niques, including a continuous piecewise linear approximation of the bottom
topography function B. Though the scheme in [12] is quite robust, its accuracy
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may deteriorate when B is not smooth, in which case the continuous interpolation
of B may prevent the scheme from achieving high resolution. Moreover, enforc-
ing continuity of B may create difficulties when the central-upwind scheme is
extended to models with moving, time-dependent bottom topography function
B (studying of such models is out of scope of the current paper).

In this paper, we introduce a modified version of the second-order semi-
discrete central-upwind scheme from [12]. The new scheme relies on a dis-
continuous piecewise linear reconstruction of the bottom topography function B
and thus is suitable for functions B containing large jumps. The well-balanced
feature of the new scheme is guaranteed by a special numerical quadrature used
for approximating the geometrical source term in the right-hand side (RHS) of
the system (1.1). The quadrature is similar to the one proposed in [9] in the
context of compressible two-phase flows. The positivity of the computed water
depth is achieved by applying a draining time step technique from in [3]. We
illustrate the performance of the introduced central-upwind scheme on a number
of numerical examples.

2 Modified Central-Upwind Scheme

Following [12], we start by rewriting the system (1.1) in terms of the equilibrium
variables U = (w, q)T :(

w

q

)
t

+
(

q

qu + g

2
(w2 − 2wB)

)
x

=
(

0
−gwBx

)
. (2.1)

We introduce a uniform grid xα := α�x , with a finite volume cell denoted by
I j := [x j− 1

2
, x j+ 1

2
], in which a cell average of the computed solution, U j (t) ≈

1

�x

∫
I j

U (x , t)dx , is assumed to be known at a given time t . The cell averages

are evolved in time based on the following equation:

d

dt
U j (t) = −

H j+ 1
2
(t) − H j− 1

2
(t)

�x
+ S j (t), (2.2)

where H j+ 1
2

are the numerical fluxes and

S j (t) ≈ 1

�x

∫
I j

S(U , B)dx (2.3)

are the cell averages of the geometric source term S = (0, −gwBx)
T . For the

rest of this paper we will drop the notation t for time dependence for simplicity
where it is appropriate.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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The construction of the scheme will be complete once the numerical fluxes
H j+ 1

2
in (2.4) and the source term S j in (2.3) are computed so that the resulting

method is well-balanced and positivity preserving.

Numerical Fluxes. In (2.2), we use the central-upwind numerical fluxes from
[11]:

H j+ 1
2
(t) =

a+
j+ 1

2
F
(

U−
j+ 1

2
, B−

j+ 1
2

)
− a−

j+ 1
2

F
(

U+
j+ 1

2
, B+

j+ 1
2

)
a+

j+ 1
2
− a−

j+ 1
2

+
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

[
U+

j+ 1
2
− U−

j+ 1
2

] (2.4)

with F(U , B) := (
q, qu + g

2 (w2 − 2wB)
)T

.

Reconstruction. In equation (2.4), U±
j+ 1

2
are the left and right point values of

the piecewise linear reconstructions

˜U(x) =
∑

j

[
U j + (Ux) j (x − x j )

] · χ I j
(x) (2.5)

obtained at cell interfaces x = x j+ 1
2

by

U+
j+ 1

2
= U j+1 − �x

2
(Ux) j+1 , U−

j+ 1
2

= U j + �x

2
(Ux) j . (2.6)

In (2.5) and (2.6), χ I j
(x) is the characteristic function of the interval I j and

(Ux) j are the numerical derivatives, which should be computed using a nonlinear
limiter in order to minimize oscillations. In our numerical experiments, we use
the generalized minmod limiter (see, e.g., [15, 16, 18, 19]):

(Ux) j =

minmod

(
θ

U j − U j−1

�x
,

U j+1 − U j−1

2�x
, θ

U j+1 − U j

�x

)
, θ ∈ [1, 2],

(2.7)

where the minmod function is defined by

minmod(z1, z2, . . .) :=

⎧⎪⎨⎪⎩
min j {z j }, if z j > 0 ∀ j,

max j {z j }, if z j < 0 ∀ j,

0, otherwise.

(2.8)

The parameter θ in (2.7) is used to control the amount of the numerical viscosity,
with large θ values resulting in less dissipative results.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Piecewise Linear Approximation of B. Unlike the original central-upwind
scheme in [12], where the bottom topography function B was replaced with a
continuous piecewise linear approximation, here we approximate B by using the
same generically discontinuous piecewise linear reconstruction

B̃(x) =
∑

j

[
B(x j ) + (Bx) j (x − x j)

] · χ I j
(x) (2.9)

to obtain the point values B±
j+ 1

2
at x = x j+ 1

2
:

B+
j+ 1

2
= B j+1 − �x

2
(Bx) j+1, B−

j+ 1
2

= B j + �x

2
(Bx) j . (2.10)

Positivity Correction for w̃. When w̃ is reconstructed using (2.5), some of
the point values w±

j± 1
2
, obtained in (2.6), may be smaller than the correspond-

ing values B±
j± 1

2
, which would lead to negative point values of h. We there-

fore follow [12] and correct the reconstruction of w̃ according to the following
simple algorithm:

if w−
j+ 1

2
< B−

j+ 1
2
, then take (wx) j :=

B−
j+ 1

2
− w j

�x/2

=⇒ w−
j+ 1

2
= B−

j+ 1
2
, w+

j− 1
2

= 2w j − B−
j+ 1

2
, (2.11)

if w+
j− 1

2
< B+

j− 1
2
, then take (wx) j :=

w j − B+
j− 1

2

�x/2

=⇒ w−
j+ 1

2
= 2w j − B+

j− 1
2
, w+

j− 1
2

= B j− 1
2
. (2.12)

Notice that this correction algorithm works as long as w j > B j .
After the values w±

j+ 1
2

are corrected, we compute the point values of the water

depth as follows:
h±

j+ 1
2

:= w±
j+ 1

2
− B±

j+ 1
2
. (2.13)

Velocity Desingularization. In order to avoid division by zero (or by a very
small number), we desingularize the computation of the velocity point values
needed in (2.4) by setting

u±
j+ 1

2
=

2h±
j+ 1

2
q±

j+ 1
2(

h±
j+ 1

2

)2 + max
[(

h±
j+ 1

2

)2
, ε2
] , (2.14)

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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where ε is a small desingularization parameter (in all of our numerical exam-
ples, we have used ε = 10−5). For more details on different desingularization
strategies, see the discussions in [5, 12].

For consistency, the desingularized velocities should be used to modify the
corresponding values of the discharge by

q±
j+ 1

2
= h±

j+ 1
2
· u±

j+ 1
2
.

Local Speeds. The one-sided local speed of propagation a±
j+ 1

2
used in the

central-upwind numerical flux (2.4) are obtained using the largest and smallest
eigenvalues of the Jacobian of (1.1) and are given by

a+
j+ 1

2
= max

{
u+

j+ 1
2
+
√

gh+
j+ 1

2
, u−

j+ 1
2
+
√

gh−
j+ 1

2
, 0
}

,

a−
j+ 1

2
= min

{
u+

j+ 1
2
−
√

gh+
j+ 1

2
, u−

j+ 1
2
−
√

gh−
j+ 1

2
, 0
}

.

(2.15)

Well-Balanced Quadrature for the Geometric Source Terms. In order to
ensure the method is well-balanced a special quadrature should be used to dis-

cretize the second component S
(2)

j of the source term in (2.3). A proper dis-
cretization should guarantee that the RHS of (2.2) vanishes at at “lake-at-rest”
steady states, at which q±

j+ 1
2

= q±
j− 1

2
= 0, w±

j+ 1
2

= w±
j− 1

2
= w j , and thus

H (2)

j− 1
2
− H (2)

j+ 1
2

�x

= gw j

�x

⎛⎝a+
j+ 1

2
B−

j+ 1
2
− a−

j+ 1
2

B+
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

−
a+

j− 1
2

B−
j− 1

2
− a−

j− 1
2

B+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

⎞⎠ .

Therefore the RHS of (2.2) is equal to zero if the source term is discretized as
follows:

S
(2)

j ≈ −gw j

�x

⎛⎝a+
j+ 1

2
B−

j+ 1
2

− a−
j+ 1

2
B+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

−
a+

j− 1
2

B−
j− 1

2
− a−

j− 1
2

B+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

⎞⎠ . (2.16)

Time Evolution. The central-upwind semi-discretization (2.2) is a system of
ODEs, which should be integrated by a sufficiently accurate and stable ODE
solver. We first note that the bottom topography function B is independent of

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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time and therefore the forward Euler time step for the first component in (2.2)
can be written in the following form:

h
n+1
j = h

n
j − �t

�x

(
H (1)

j+ 1
2
− H (1)

j− 1
2

)
, (2.17)

where �t is the time step constrained by the CFL condition (see [12])

�t

�x
max

j

∣∣a±
j± 1

2

∣∣ ≤ 1

2
. (2.18)

In order to guarantee the positivity of h
n+1
j provided h

n
j ≥ 0 ∀ j , we adopt a

draining time-step technique from [4, 3]. To this end, we introduce the draining
time step

�t drain
j := �x h

n
j

max
(

0, H (1)

j+ 1
2

)
+ max

(
0, −H (1)

j− 1
2

), (2.19)

which describes the time when the water contained in cell I j in the beginning of
the time step has left via the outflow fluxes. We now replace the evolution step
in (2.17) by:

h
n+1
j = h

n
j −

�t j+ 1
2

H (1)

j+ 1
2
− �t j− 1

2
H (1)

j− 1
2

�x
, (2.20)

where the time step �t j+ 1
2

is defined as:

�t j+ 1
2

= min
(
�t, �t drain

i

)
, i = j + 1

2
−

sgn
(

H (1)

j+ 1
2

)
2

, (2.21)

with �t satisfying (2.18). Thus, we have h
n+1
j ≥ 0, ∀ j in our new scheme by

construction.
A higher-order time discretization can be obtained using strong stability pre-

serving (SSP) ODE solvers, which can be represented as a convex combination
of forward Euler time steps, see, e.g., [7, 8]. Positivity preserving SSP methods
are thus obtained by replacing the forward Euler steps (2.17) with the modified
ones (2.20). In all of our numerical experiments, we used a modified version of
the third-order SSP Runge-Kutta method.

3 Numerical Examples

In this section, we present three numerical examples. In all of the numerical
simulations, the bottom topography is reconstructed according to (2.9) with

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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(Bx) j computed using the minmod limiter with θ = 1. The equilibrium vari-
ables w and q are reconstructed using the minmod limiter with either θ = 1.3
(Examples 1 and 2) or θ = 1 (Example 3, in which we select the most diffusive
version of the limiter to limit the oscillations). In all of the examples below, we
use absorbing boundary conditions on both ends of the domain.

Example 1 – Small Perturbation of Steady State. In this problem, taken
from [12], we study propagation of a small perturbation of the steady-state
solution that contains nearly dry areas. The computational domain is [−1, 1],
the gravitational constant g = 1, the initial data are

w(x , 0) =
{

1.001, 0.1 ≤ x ≤ 0.2,

1, otherwise,
u(x , 0) ≡ 0,

and the bottom topography is given by

B(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
10(x − 0.3), 0.3 ≤ x ≤ 0.4,

1 − 0.0025 sin2(25π(x − 0.4)), 0.4 ≤ x ≤ 0.6,

−10(x − 0.7), 0.6 ≤ x ≤ 0.7,

0, otherwise.

A small perturbation of the “lake-at-rest” steady state initially located at
x ∈ [0.1, 0.2] is split into two parts propagating in the opposite directions.
When the right-going wave propagates over the oscillating part of the bottom
above which the initial water depth is very small (x ∈ [0.4, 0.6]), a compli-
cated surface wave structure is developed. In Figure 3.1, we compare the so-
lutions obtained by the proposed well-balanced central-upwind scheme and its
non-well-balanced version, obtained by replacing the well-balanced quadrature
(2.16) with the midpoint one,

S
(2)

j ≈ −gw j Bx(x j),

and increasing the value of the desingularization parameter ε from 10−5 to 10−4

(the latter is needed to improve the efficiency of the non-well-balanced version
of the scheme). Both solutions are computed until the final time t = 1 using
N = 400 (top row) and N = 1600 (bottom row) uniform cells. As one can
see, the non-well-balanced solution is very oscillatory and the magnitude of
oscillations decrease quite slow when the mesh is refined. More details can be
seen in Figure 3.1 (right column), where we zoom into the low water depth
region x ∈ [0.395, 0.5].
Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Figure 3.1: Example 1: Solution (w) computed by the well-balanced and
non-well-balanced central upwind schemes using N = 400 (top row) and
N = 1600 (bottom row) uniform cells. Right column: zoom into the region
x ∈ [0.395, 0.5].

Example 2 – Riemann Problem with Unique Solution. In this example, we
consider the Riemann problem from [14, Test 7], where the system (1.1) is solved
with g = 9.8 and the following Riemann data:

B(x) =
{

1.1, x < 0,

1, x > 0,
h(x, t) =

{
1, x < 0,

0.8, x > 0,
u(x, t) =

{
2, x < 0,

4, x > 0.
(3.1)

In [14], the exact solution of the initial value problem (IVP) (1.1), (3.1) was
obtained and it was also shown that the Godunov-type scheme based on the
exact solution of the Riemann problem fails at this test.

The central-upwind scheme proposed in this paper is, on the other hand,
capable of accurately capturing the exact solution of the IVP (1.1), (3.1). To
demonstrate this, we compute the numerical solution until the final time t = 0.03
on two uniform grids with �x = 0.004 and 0.001 and compare the obtained
solution with a reference one computed with �x = 0.00004. We plot the

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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computed water depth h and velocity u in Figure 3.2, where one can clearly
observe the convergence towards the reference solution, which agrees very well
with the exact one (see [14, Test 7]).

Figure 3.2: Example 2: Solution (h on the left and u on the right) computed
using �x = 0.004 and 0.001 and compared with the reference solution.

Example 3 – Riemann Problem with Multiple Solutions. In the final exam-
ple, we consider the Riemann problem from [14, Test 6], where the system (1.1)
is solved with g = 9.8 and different Riemann data:

B(x) =
{

1, x < 0,

1.2, x > 0,
h(x , t) =

{
0.2, x < 0,

0.75904946, x > 0,

u(x , t) =
{

5, x < 0,

1.3410741, x > 0.

(3.2)

As it was shown in [14], the IVP (1.1), (3.2) admits three distinct analytic
solution and Godunov-type upwind schemes based on different Riemann prob-
lem solvers converge to different analytic solutions. We compute the numeri-
cal solution until the final time t = 0.1 on three uniform grids with �x =
0.004, 0.001 and 0.00004 using both the central-upwind scheme proposed in
this paper and the central-upwind scheme from [12]. The results are plotted
in Figures 3.3 and 3.4, respectively. As one can see, the schemes converge to
different limits, each of which agrees well with the second and third analytic
solutions from [14, Test 6].
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Figure 3.3: Example 3: Solution (h on the left and u on the right) computed by
the proposed central-upwind scheme using �x = 0.004, 0.001 and 0.00004.

Figure 3.4: Example 3: Solution (h on the left and u on the right) computed by
the central-upwind scheme from [12] using �x = 0.004, 0.001 and 0.00004.
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