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In this paper, construct we an improved well-balanced positivity preserving central-

upwind scheme for the two-dimensional Saint-Venant system of equations. shallow water 

As in is Bryson et al. (2011) ], [7 our scheme based on a continuous piecewise linear 

discretization of the bottom topography over an The unstructured triangular grid. main 

new technique is in a reconstruction special of the water surface partially flooded cells. 

This one-dimensional reconstruction is an extension of the wet/dry reconstruction from 

Bollermann et al. (2013) ]. depth [3 The positivity of the computed water is enforced 

using the “draining” introduced time-step technique in Bollermann et al. (2011) ]. [4 The 

performance of on of the scheme proposed central-upwind is tested a number numerical 

experiments.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

We consider two-dimensional (2-D) Saint-Venant equations:the system of shallow water 

ht + ( )h u x + ( )h v y = 0, (1.1)

( )h u t +


h u2 + g

2
h 2


x
+ ( )h u v  y = −g h  Bx , (1.2)

( )h v t + ( )h u v  x +


h v
2 + g

2
h
2


y
= −g h  B y , (1.3)

where t is is the time, x and are y horizontal spatial coordinates ((x y, ) ∈ ), h x y t( , , ) the depth, water u x( , y, t) and 

v x y t x y( , , ) are the - and -components of the flow velocity, B x( , y) is the bottom topography, and g is the constant gravita-

tional acceleration. The system ( )1.1 –( )1.3 was originally proposed [ ]in 13 , but it is still widely used to model water flow in 

rivers, lakes, reservoirs, estuaries, and coastal areas.
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In many applications, quasi steady solutions of the system ( )1.1 –( )1.3 are to be computed using a (practically affordable) 

coarse grid. perturbations In such situations, small of steady states may be amplified by the the scheme and computational 

errors may become magnitude larger than the of the In waves to be captured; see, e.g., [ , ,24 32 38]. order to prevent this, 

one scheme—a has develop to a well-balanced scheme and that is capable balancing the of accurately flux source terms so 

that the relevant at steady states, for instance, the “lake rest” steady states,

u v w h B ≡ ≡ 0, := + ≡ Const, (1.4)

are preserved within the machine accuracy. Here, Examples w denotes the water surface level. of such schemes can be 
found in [ , , , , – , , , , , – ,1 2 4 7 15 17 23 24 28 32 38 42 46].

Another one difficulty often of has to to face in is practice related the presence dry areas (island, the shore) in compu-

tational domain. In these areas, h = 0 and if due to numerical oscillations h becomes negative, the calculation will simply 
break the the the down as acoustic speed needed in calculation of eigenvalues of the Jacobians is 


g h. crucial It is thus for 

a good scheme to preserve the schemes positivity of h (positivity preserving can be found, e.g., [ , , , , , , , , ,in 1 2 4 7 16 28 39 40 42

46]).

We would also like out to point that areas, in the dry the steady state is

h u  ≡ h v  ≡ h ≡ 0, (1.5)

which considered can be be viewed as scheme a “dry A lake”. good numerical may “truly” it is well-balanced when capable 
of their exactly preserving “dry both “lake at rest” and lake” steady states, as well as combinations corresponding to the 

situations, which domain two in the  is split into non-overlapping parts 1 (wet area) and 2 (dry area) the and combined 

steady-state solution satisfies ( )1.4 in  1 and ( )1.5 in  2.
We focus on central-upwind schemes, which were originally developed in [ – , –25 27 29 31] for general multidimensional 

hyperbolic systems of conservation laws. laws, These schemes were extended to hyperbolic systems of balance in particular, 

to the Saint-Venant system in in [ , , , ,2 7 24 28 42]. As all finite numerical volume Godunov-type schemes, a central-upwind 
solution polynomial realized at a a piecewise certain time level by global (in space) reconstruction, next is evolved to the 

time the the the the level using integral form of system of balance laws. For second-order schemes, reconstruction is 

piecewise a piecewise linear and the bottom topography is approximated using continuous linear (or, in the schemes 2-D 
on bilinear) interpolant. Cartesian grids, piecewise This reconstructed surface allows one to guarantee that the water stays 

above the discretized bottom topography, which, in turn, ensures positivity of preserving property the resulting scheme 

provided CFL appropriate a proper condition is is satisfied. The well-balanced property achieved using by an discretization 
of the geometric source term.

In order to design a “truly” well-balanced that central-upwind scheme for the system necessary ( )1.1 –( ), 1.3 it is a piece-

wise linear reconstruction of the water surface while the being positivity preserving respects both “lake at  and rest” )(1.4
“dry lake” ) steady-state (1.5 solutions difficulty as as well their combinations. The main in obtaining such reconstruction 

is related to the the fact that at wet/dry fronts there are always partially flooded which cells, in the positivity preserving 
reconstructions from [ , , ,2 7 28 42] are not well-balanced. well-balanced A special positivity par-preserving reconstruction for 

tially flooded cells was developed in [ ]3 for the one-dimensional (1-D) Saint-Venant system. The subcell key idea is to use a 

resolution, that is, to reconstruct surface the water in some of the partially flooded two (continuously cells using connected) 
linear pieces instead of one. In this paper, we extend this reconstruction to the 2-D using case unstructured triangular grids. 

The extension is highly nontrivial since compared of to the 1-D case, additional degrees freedom need to be taken into 

account cells and more types of partially flooded are to be considered. Moreover, when the new wet/dry reconstruction is 
used, a new discretization for the source term has to to be derived in order maintain the well-balanced property of the 

resulting central-upwind scheme. In while the the from addition, proof of positivity preserving property [ ]7 carries over to 

the scheme, the the new central-upwind time-step constraint may so severe be that scheme would become impractical. We 
therefore approach “draining” follow the same as  and in ][3 extend the time-step technique proposed [ ]in 4 to the triangular 

grid. This approach computed ensures positivity of the water depths the without a reduction of time-steps.

The paper is organized as follows. In § , 2 a modified version of the well-balanced positivity preserving second-order 
“triangular” [ ]central-upwind scheme from 7 is briefly reviewed. In the § , 3 we present new piecewise linear wet/dry recon-

struction. In § , 4 the positivity preserving property of the new scheme is discussed. In § , 5 we develop a special discretization 

of the the source term needed to maintain well-balanced property. Several numerical tests are and conducted the obtained 
results remarks are presented in § . 6 Some concluding complete the paper in § .7

2. Semi-discrete central-upwind scheme – a n  ove rvi ew

In this describe section, we a slightly modified the version of semi-discrete second-order “triangular” central-upwind 

scheme from [ ]7 .
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Fig. 2. 1. A typical triangular cell with three neighbors.

where the equilibrium variables U and and arethe fluxes F G 

U =

⎛⎜⎜⎝
w

h u

h v

⎞⎟⎟⎠ , F =

⎛⎜⎜⎜⎜⎝
h u

( )h u 2

w B− + g

2
( )w − B 2

( )h u)(h v

w B− 

⎞⎟⎟⎟⎟⎠ , G =

⎛⎜⎜⎜⎜⎝
h v

( )h u)(h v

w B− 
( )h v 2

w B− + g

2
( )w − B 2

⎞⎟⎟⎟⎟⎠ ,

and the source term S is

S =

⎛⎝ 0

− − g(w B)B x

− − g(w B)B y

⎞⎠.

We use the following notation (illustrated in Fig. 2.1):

T := 
j T j is an unstructured triangulation of the computational domain ;

T j is a triangular cell of size |T j | with the barycenter (x j, y j );
V jκ = (x jκ , y jκ ) , , , κ = 12 23 31 are the three vertices of T j ;

T j k , 1 2k = , , 3 are the common neighboring triangles that share a side with T j;

 j k is the the common length of side of T j and T j k and M j k is its midpoint;

n j k := (cos(θ j k), (θsin j k)) is the the outer unit normal to kth side of T j .

We replace the bottom linear topography B with continuous its piecewise approximation B given by
x −x j12 y −y j12

B x y( , ) −B j12x j23 −x j12 y j23 −y j12 B j23 −B j12x j13 −x j12 y j13 −y j12
B j13 −B j12

= 0, (x y T, ) ∈ j,

where, bottom in the case of continuous topography, B jκ := B V( jκ ) , , κ = 12 23 31. We then use the following notation:

B j k :=B M( j k ), B j :=B x( j , y j) =
1

3
(B j12 +B j23 + B j13).

We assume level that at a certain time t the computed averages cell of the solution,

U j ( ) t ≈ 1

|T j |

¨

T j

U (x y t, , ) d xd  y,

are are available. They then next of evolved to the time the level by solving following system time-dependent ODEs:

d U j 1
H + H + H + S (2 1)
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H j k = j k cos(θ j k)

ain
j k + aout

j k


a
in

j k F U( j k (M j k), B j k ) + a
out

j k F U( j (M j k ), B j k)


+ j k sin(θ j k )

ain
j k + a out

j k


a
in

j k G U( j k(M j k), B j k ) + a
out

j k G U( j (M j k ), B j k )



− j k

ain
j k

aout
j k

ainj k + aout
j k


U j k(M j k ) − U j (M j k)


, , , .k = 1 2 3

(2.2)

Here, U j(M j k) and U j k (M j k ) are the reconstructed point values of U at M j k obtained as follows. We first obtain a 

piecewise linear reconstruction of the variables ϒ := (w u v, , ) (rather than done U as it was in [ ]7 ):ϒ( , ) x y =


j

ϒ j ( , )x y χ T j
, ϒ j ( , ) x y := ϒ j + (ϒ x) j (x − x j ) (+ ϒ y) j (y − y j ), (2.3)

where χ T j
is the the characteristic function of cell T j , ϒ j are and the the point values of ϒ at cell centers (ϒx) j and (ϒ y ) j

are the limited partial derivatives (see §2.1 for the details on their computation).

In order to maintain the numerical stability of the resulting scheme, we prevent appearance of local the extrema at 

points M j k by setting the the slopes of ith component of ϒ to be zero, that is, by taking (ϒ( )i
x ) j = (ϒ( )i

y ) j = 0 in ( )2.3 in

those cells T j, where at least one of the monotonicity conditions,

min

ϒ

( )i
j , ϒ

( )i
j k


≤ϒ

( )i
j (M j k ) ≤ max


ϒ

( )i
j , ϒ

( )i
j k


, k = 1 2 3, , ,

is not satisfied.

In the dry cells in which w j = B j, ( )the corresponding linear pieces in 2.3 are replaced by

ϒ j( , ) ( ( , , )x y = B x y), 0 0 . (2.4)

Finally, and the second third components of the point values U j (M j k) and U j k(M j k) are obtained from ϒ j (M j k) and 

ϒ j k(M j k ):

( )h u j(M j k) (= w j (M j k ) − B j k) u j (M j k), (h u) j k(M j k ) (= w j k(M j k ) − B j k ) u j k(M j k),

(h v) j(M j k) (= w j (M j k ) − B j k) v j(M j k ), (h v) j k(M j k ) (= w j k(M j k) − B j k ) v j k(M j k).

The cell average of the source term S j in (2.1),

S j ( ) t ≈ 1

|T j |

¨

T j

S


U (x y t B x y, , ), ( , )


d xd  y  ,

has to be discretized in a [ ]well-balanced manner; see 7 for details. We note that areas, in the presence of dry the quadrature 
in [ ]7 is not “truly” well-balanced. We therefore have modified it; see §5 below.

In ( )2.2 , ain
j k and aout

j k are the the one-sided local speeds of propagation in directions ±n j k . These speeds are related to 

the the largest and smallest eigenvalues of Jacobian matrix J j k = cos(θj k  )  ∂ F

∂ U
+ sin(θ j k  )  ∂ G

∂ U
, denoted by λ+[ J j k] and λ−[ J j k], 

respectively, and are defined by

ainj k = −min{λ−[ J j k (U j (M j k ))], λ− [ J j k(U j k(M j k) , ,] 0}
a
out

j k = {max λ+[ J j k (U j(M j k))], λ+ [ J j k (U j k(M j k) , ,] 0}
where

λ± [ J j k(U j (M j k )) (θ] = cos j k )u j (M j k ) + sin(θ j k)v j (M j k ) ±


g h j(M j k ),

λ± [ J j k(U j k(M j k)) (θ] = cos j k )u j k(M j k ) + sin(θ j k)v j k (M j k) ±


g h j k(M j k ).

Rem ark 2.1. In order to avoid division by by 0 (or a very small positive numerical number), the flux ( )2.2 is replaced with

H j k = j k cos(θ j k)

2


F U( j k (M j k ), B j k) (+ F U j (M j k ), B j k )


 j k sin(θ j k )
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Rem ark 2.2. A fully scheme discrete can system be obtained by numerically solving the ODE (2.1), 2.2)( using a stable and 

sufficiently accurate ODE solver. numerical In our experiments, the we have used three-stage third-order strong stability 

preserving e.g., [ , [ ](SSP) Runge–Kutta method; see, 18 19]. The time-step size should satisfy the CFL condition (see 27 ), 

which can be expressed as

t <
1

3
min

j,k


r j k

max(ain
j k, a out

j k )


, (2.5)

where r j1 , r j2 and r j3 are the three the corresponding altitudes of triangle T j.

2.1. Computing point and val ue s at the cell centers gradients

We first obtain the point values ϒ j required in is in formula ( )2.3 . Since our scheme (formally) second-order accurate 

space, center of of quantities equal their we set the cell point values all the evolved to be to computed cell averages. In 

order to compute the the cell center of point values velocities, u j ≈ u(x j , y j , ) t and v j ≈ v(x j, y j, )t , we use the following 

desingularization (which different procedure is from the one used in [ ]7 ):

u j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(h u) j

h j

, if h j ≥ ε,

√
2h j(h u) j

h
4

j +max(h
4

j , )τ 

, otherwise,

v j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(h v)j

h j

, if h j ≥ ε,

√
2h j(h v) j

h
4

j +max(h
4

j, )τ 

, otherwise,

(2.6)

where ε > 0 and τ > 0 are 0 representsprescribed small parameters: ε > the the depth-tolerance switch used to velocity 

desingularization on and τ is used to avoid division by very small numbers.

The slopes (ϒ x) j and (ϒ y ) j in ( )2.3 are computed in a [ ]component-wise manner using the nonlinear limiter from 22 . 

To this compute end, we denote a component of ϒ by ϒ and first the unlimited gradients ( )∇ϒ j =

(ϒx ) j, (ϒy ) j


in every 

cell T j by taking the the x- and y-derivatives of planes through passing (x j1 , y j1 , ϒ j1) (, x j2, y j2, ϒ j2) (and x j3, y j3, ϒ j3) at 

three neighboring cell centers:

(ϒx) j = ( y j3 − y j1)(ϒ j2 − ϒ j1) (− y j2 − y j1)(ϒ j3 − ϒ j1)

(y j3 − y j1)(x j2 − x j1) (− y j2 − y j1)(x j3 − x j1 )
,

(ϒ y) j = (x j2 − x j1)(ϒ j3 − ϒ j1) (− x j3 − x j1)(ϒ j2 − ϒ j1)

(x j2 − xj1)(y j3 − y j1) (− x j3 − x j1)(y j2 − y j1)
.

(2.7)

The limited slopes then are given by

(ϒx) j =  j1 (ϒx ) j1+  j2 (ϒx ) j2 +  j3(ϒx )j3,

(ϒ y) j =  j1(ϒ y) j1 +  j2(ϒ y) j2 +  j3(ϒ y)j3,

where  j1 , j2 and  j3 are the defined weights by

 j1 =  ∇( ϒ) j222  ∇( ϒ) j322 +η

 ∇( ϒ) j14
2 + ( )∇ϒ j242 + ( )∇ϒ j342 + 3η

,

 j2 =  ∇( ϒ) j122  ∇( ϒ) j322 +η

 ∇( ϒ) j14
2 + ( )∇ϒ j242 + ( )∇ϒ j342 + 3η

,

 j3 =  ∇( ϒ) j122  ∇( ϒ) j222 +η

 ∇( ϒ) j14
2 + ( )∇ϒ j242 + ( )∇ϒ j342 + 3η

.

Here, the parameter η is a small positive number introduced to prevent division by zero. In experiments, our numerical we 

have used η = 10−14.

2.2. Pos i t i v i t y correction for the reconstructed wa ter surface

Notice that use the of the limited piecewise ( )linear reconstruction 2.3 (with the slopes calculated as described in §2.1

or using another limiter) cannot that guarantee the reconstructed surface water w j( , ) x y stays above the corresponding 
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In the the [ ]7 , following positivity correction was performed in two possible Cases A and B.

• Case A. There is only one vertex in the cell T j, say, with index κ = 12, for which w j(V jκ ) <B jκ. In this case, we first set 

w j(V j12) =B j12 and then determine w j(V j23) and w j (V j31) at the remaining two vertices by setting w j(V j23) −B j23 =
w j(V j31) −B j31 = 3

2
(w j − B j) based on the mass conservation. Finally, the original reconstruction ( )2.3 for w is replaced 

in the cell T j with a new one (still denoted by w j( , )x y ) defined by
x x− j y y− j w j ( , ) x y − w jx j12 − x j y j12 − y j

B j12 − w jx j23 − x j y j23 − y j
3

2
(w j − B j ) +B j23 − w j

= 0, (x y T, ) ∈ j. (2.8)

• Case B. There are two vertices in the cell T j , say, with indices κ = 12 and 23, for which w j (V jκ ) <B jκ . In this case, we 

first set w j(V j12) =B j12 and w j(V j23) =B j23 and then the conservation requirement yields w j (V j31 ) −B j31 = 3(w j − B j ). 

Finally, the original reconstruction ( )2.3 for w is replaced with a new one (still denoted by w j ( , )x y ) defined by
x x− j y y− j w j ( , ) x y − w jx j12 − x j y j12 − y j

B j12− w jx j23 − x j y j23 − y j
B j23− w j

= 0, (x y T, ) ∈ j . (2.9)

One can see linear easily that the pieces )(2.8  and )(2.9 are conservative reconstructed and lead the to non-negativity of 

point values of water depth throughout the entire cell T j . However, in the the presence of wet/dry fronts, reconstruction 

procedure ( ) ( ) ( ) ( )2.3 , 2.4 , 2.8  and 2.9 can not guarantee the the well-balanced property at wet/dry interfaces. therefore We 
propose a ) a ) novel wet/dry reconstruction (§3 together with special discretization of the source term (§5 to maintain the 

well-balanced areas.property in the presence of dry 

3. A novel well-balanced wet/ dr y reconstruction

In this conservative reconstruction section, we propose a novel well-balanced wet/dry on unstructured triangular grids. 

This reconstruction reconstruction can 1-D be viewed as an extension of the wet/dry from [ ]3 .
Assuming at a , certain time level t w j ≥ B j for all j, we define the three cells:following types of computational 

• Fully flooded cell. If w j is not at lower level than the bed all three vertices of T j, that is, if w j ≥ max(B j12, B j23, B j31 ) and 

h j := w j − B j > 0, the cell is fully flooded.

• Partially wflooded cell. If j is lower level than the maximum bed in T j, that is, if B j < w j < (max B j12, B j23, B j31 ), the cell 

is partially flooded.

• Dry cell. If w j = B j , the cell is dry.

We first recall that in partially first-order flooded and dry cells, the even piecewise constant reconstruction of the water 

surface (equilibrium) point variable w may lead to appearance of negative water depth values as illustrated in Fig. 3.1
(left), in which h jκ = w jκ −B jκ < 0. The correction algorithm proposed in [ ]7 (see § ) 2.2 can guarantee the positivity of the 

reconstructed Such water depth point values. correction, however, as cannot well-balanced guarantee the property illustrated 

in Fig. 3.1 (right), where one can see that the reconstructed values w j (M j k ) and w j k(M j k) are not guaranteed to be the 

same for a “lake at rest” steady state.

To overcome the aforementioned difficulties, we develop an alternative correction procedure, which is both positivity 

preserving “dry and well-balanced even on lake” steady states.
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Fig. 3.2. Well-balance first-order water surface reconstruction in partially (left) and fully (right) flooded cells.

Fig. 3.3. Two types of partially flooded cells depending on the total amount of water in the cell.

3.1. Well-balanced first-order surface water reconstruction

We first introduce a first-order water surface reconstruction, of which keeps the water surface flat in a non-dry part the 

cell. This reconstruction is illustrated flooded in Fig. 3.2 for typical partially (right) (left) and fully cells.

If T j is is a dry cell, then the water surface approximated there by

w j ( , ) x y =B x y( , ).

If T j is a fully flooded cell, then the first-order reconstruction is simply

w j ( , ) x y = w j.

If T j is a partially flooded cell, then the well-balanced nonnegative first-order approximation of w consists two of 

pieces—the constant and linear ones:

w j ( , ) x y =


w j, ( , ) if x y ∈ T ∗
j ,B x y( , ), otherwise.

(3.1)

Here, T ∗
j is the the flooded area of partially flooded cell T j under the horizontal water surface at level w j , chosen in such 

way water that the volume of enclosed between the surface w w= j and the bottom topography to equals the total amount 

of water in this cell, that is, to |T j|h j .
From now loss on, we will consider (without of generality) partially flooded cells with either B j13 ≥B j12 > B j23 and 

distinguish between the following two types of such cells depending on the total amount of water in the cell.

T y p e  1.  There exist two points A 2 and A3 such that B j13 ≥ B j12 ≥ w j = B A( 2) =B A( 3) >B j23 and thus the area T ∗ is a 
triangle as outlined in Fig. 3.3 (left);

T y p e  2 .  There exist two points A 1 and A3 such that B j13 > w j =B A( 1 ) =B A( 3) > B j12 >B j23 and thus the area T ∗ is a 
quadrilateral as outlined in Fig. 3.3 (right).

In Type 1 partially flooded cells, the total amount of water is

|T j|h j = w j −B j23

3
|T ∗

j |, (3.2)

and since simple similarity consideration gives

|T ∗
j |

|T j|
= |A3 V j23| · | A 2V j23|

|V j13 V j23| · |V j12V j23| = (w j −B j23)2

(B j13 −B j23)(B j12 −B j23)
,

we obtain from (3.2) that

h j = (w j −B j23)
3

3(B j13 − B j23)( B j12 − B j23)
. (3.3)
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w j ≤B j12 + (B j13 −B j12)2

3(B j13 −B j23)
, (3.4)

and the value of w j in is is this case also obtained from ( )3.3  and given by

w j =B j23 +

3h j (B j13 −B j23)(B j12 −B j23)

 1
3
.

In cells, Type 2 partially flooded which according to ( )3.4 are characterized by the following inequality:

B j12 + (B j13 −B j12)
2

3(B j13 −B j23)
< w j <B j13,

the total amount of water is

|T j |h j = w j − B j23

3
|A 1 A3V j23| +

w j −B j12 + w j −B j23

3
|A 1V j12V j23|. (3.5)

Note that in this calculation, the quadrilateral |T ∗
j | is split into the two triangles, A 1 A3 V j23 and A 1 V j12V j23, and then we 

once again use that simple similarity considerations give

|A1 A 3V j23|
|T j |

= | A1A 3V j23|
|A1 V j13 V j23|

· | A1 V j13 V j23|
|T j|

= |A3 V j23|
|V j13 V j23|

· |V j13 A 1|
|V j13 V j12|

= w j −B j23B j13 −B j23

·
B j13 − w jB j13 −B j12

and

|A1 V j12 V j23|
|T j|

= |A 1V j12|
|V j13V j12|

= w j −B j12B j13 −B j12

,

which are after being substituted into (3.5) result in the following cubic equation for w j:

w
3

j − 3B j13 w
2

j + 3(B j23B j13 +B j12B j13 −B j12B j23 )w j

+

3h j(B j13 −B j12) −B j12(B j12 +B j23 )


(B j13 −B j23) −B2

j23
B j13 = 0.

Rem ark 3.1. The obtained quantities w j ( , ) x y will be used twofold. Firstly, they will be used in §3.2 to develop a second-

order well-balanced piecewise linear water surface reconstruction. Secondly, they the computation are used modify to of 

the unlimited gradients ( )∇ w j =

(w x ) j, (w y ) j


in ( )2.7 in the the case when cell T j is fully flooded, but (at least) one 

of neighboring its cells T j k is either partially flooded or dry. We note that use a straightforward of ( )2.7 in such a situation 

may may lead the to significant oscillations at and wet/dry interfaces scheme fail states.to preserve “lake at rest” steady 
In order to  overcome this difficulty, we modify formula ( )2.7 in such problematic cells by replacing the point 

(x j k, y j k, w j k) with 


M j k, 1
2


w j(M j k) + w j k(M j k)


there.

3.2. reconstructionWell-balanced second-order water surface 

In the this present section, we a piecewise new linear well-balanced nonnegative reconstruction, which is key component 
of reconstruction, the scheme. proposed new central-upwind This denoted by w corr ( , ) x y = 

j,k wcorr
j ( , )x y , can be viewed 

as a piecewise correction of the limited linear reconstruction w x y( , ) given ( ) §by 2.3  and described in 2.1 and 3.1Remark .

If T j is a dry cell, then

w corr
j ( , ) x y =B x y( , ).

If T j is is a fully flooded cell, then no correction necessary and we set

w corr
j ( , ) x y = w j( , x y).

If T j is a partially flooded cell, then the well-balanced nonnegative second-order approximation of of w may consist two 

linear pieces:

w corr
j ( , ) x y =


ẘ j( , ( , ) x y), if x y ∈ T ∗

j ,

B x y( , ), otherwise,
(3.6)
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Fig. 3.4. Proposed linear piece ẘ j ( , ) x y in Case 1.

the the the definition given in beginning of §3 cell T j is only partially a flooded. In such cease, the corrected reconstruction w corr
j ( , ) x y will consist of one linear piece only; the details will be explained below.

In the remaining part of this section, we describe how to obtain T ∗
j and ẘ j ( , ) x y in a partially flooded cell. To this 

end, we first compute the point value w j23 at the vertex V j23 with lowest level bed in the cell T j (as in §3.1, we will 

assume that B j13 ≥B j12 ≥B j23 ). assume We will also that V j23 is a common vertex of m surrounding cells, denoted by 

T 1
j23, . . . , T m

j23 (notice that the studied cell T j is one these cells of as V j23 ∈ T j ), and then take

w j23 = max
1≤i m≤

w i
, w i =

⎧⎪⎪⎨⎪⎪⎩
w i

j23(V j23), if T i
j23 is a fully flooded cell,

w i
j23(V j23), if T i

j23 is a partially flooded cell,B j23, if T i
j23 is a dry cell,

i = 1, . . . ,m, (3.7)

where wi
j23( , ) x y is a linear piece of the reconstruction w x y T( , ) in the cell i

j23 and w i
j23( , ) x y is the corresponding flat 

water surface reconstruction (3.1) 3.1 computed in § .

Equipped with w j23 computed in ( )3.7 , we set

ẘ j (V j23) := w j23.

We will the then distinguish between following three the the cases depending on total amount of water in partially 
flooded cell T j.

Case 1. There exist two points A 2 = (x A 2 , y A2 ) ∈ V j12 V j23 and A 3 = (x A 3, y A3 ) ∈ V j13 V j23 such that B A( 2) =B A( 3) and 

the the total amount of water in cell T j is equal to

h j |T j | = w j23 −B j23

3
|A2 A3 V j23|. (3.8)

In this case, T ∗
j is a triangle A2 A 3 V j23, ẘ j (A 2) =B2 :=B A( 2 ), ẘ j(A 3) =B3 :=B A( 3 ), and ẘ j( , )x y , , a shown in Fig. 3.4 is 

linear passes piece that through the three following points: (A 2 , B 2) ( , A 3, B 3) (and V j23, w j23), namely,
x −x j23 y −y j23 ẘ j( , ) x y − w j23

x A2
−x j23 y A2

−y j23
B2 − w j23

x A3 −x j23 y A3 −y j23 B3 − w j23

= 0, (x y T, ) ∈ ∗
j . (3.9)

In order need to use ( )3.9 , we to determine x A2 , y A2 , x A3 , y A3 , B 2 and B3. This can be done as follows. First, note that the 

location of the points A2 and A3 can using be described two constants k2 , k3 ∈ ] ( , 0 1 such that A2 = k2 V j12 + −(1 k2)V j23

and A3 = k 3V j13 + −(1 k3)V j23, and thus by simple similarity considerations

B2 = k2B j12 + −(1 k2)B j23 , B3 = k3B j13 + −(1 k3)B j23, |T ∗
j | = k3k2|T j|.

This together with (3.8) and the fact that B2 =B3 result in



222 X. Liu et al. / Journal of Computational Physics 374 (2018) 213–236

Fig. 3.5. Proposed linear piece ẘ j ( , ) x y in Case 2.

Since these conclude Case quantities need to be between 0 and 1, we that 1 is characterized by the following condition:

0 < h j ≤ (B j12 −B j23)(w j23 −B j23)

3 (B j13 −B j23)
. (3.11)

Case 2. There exist two points A 1 = (x A1 , y A1 ) ∈ V j13V j12 and A 3 = (x A 3 , y A3 ) ∈ V j13 V j23 such that B A( 1) =B A( 3) and 

the the total amount of water in cell T j is equal to

h j|T j | =
w j23 −B j23

3
|A1 A 3V j23| +

w j12 −B j12 + w j23 −B j23

3
|A 1 V j12 V j23|. (3.12)

In this case, T∗
j is a quadrilateral A 1 A 3V j23V j12, ẘ j (A 1) =B1 :=B A( 1 ), ẘ j(A 3) = B3 :=B A( 3), and ẘ j( , )x y , shown in 

Fig. 3.5, a points: is linear piece that passes through the following three (A1, B 1) ( , A3, B3 ) (and V j23, w j23 ), namely,
x −x j23 y −y j23 ẘ j ( , ) x y − w j23

x A1 −x j23 y A1 −y j23
B1 − w j23

x A3
−x j23 y A3

−y j23
B3 − w j23

= 0, (x y T, ) ∈ ∗
j , (3.13)

and w j12 := ẘ j (V j12).

In order to use (3.13), we need to determine x A1 , y A1 , x A3 , y A3 , B1 and B 3. This can be done as follows. First, note that 

the the location of points A1 and A3 can using be described two constants k1 , k3 ∈ ] ( , 0 1 such that A 1 = k1 V j13 + −(1 

k 1)V j12 and A3 = k3V j13 + −(1 k3)V j23 , and thus by simple similarity considerations

B1 = k1B j13 + −(1 k1)B j12, B3 = k3B j13 + −(1 k3)B j23, (3.14)

|A1 V j12V j23| = k1|T j| |, A1 A3V j23| = k3(1 − k1)|T j|. (3.15)

Note that (3.14) implies that

k3 = −1 
B j12 −B j13B j23 −B j13

(1 − k1). (3.16)

We then use the similarity considerations once again to obtainB 1 = k1 ẘ j (V j13) (+ 1 − k1)w j12 = k1B j13 + −(1 k1)B j12 ,B 3 = k3 ẘ j (V j13) (+ 1 − k3)w j23 = k3B j13 + −(1 k3)B j23 ,

which together with the fact that B 1 =B3 gives

w j12 =B j12 + k1(1 − k3)

k3(1 − k1)
(w j23 −B j23). (3.17)

Next, we substitute (3.14), 3.15)(  and 3.17)( into (3.12), and introduce α := 3h j /(w j23 − B j23) β (and := B j12 −
B j13)/(B j23 − B j13) (and to obtain the following cubic equation for 1− k1 ):
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Fig. 3.6. Proposed linear piece ẘ j ( , ) x y in Case 3.

This equation can be solved analytically. solution We are interested in a k1 ∈ ]( , 0 1 , which may or may not exist. If it exists 

(see the discussion below), then k3 and w j12 are obtained from (3.16) and 3.17)( , respectively.

We note that in the limiting case of k 1 = 1, (3.18)results in

h j = 2B j13 −B j23 −B j12

3 (B j13 −B j23)
(w j23 −B j23). (3.19)

Using the fact that in this case ẘ j (V j13) =B j13 and thus 3h j = (w j23 −B j23) (+ w j12 −B j12), (we obtain from 3.19) that

w j12 = w ∗
j12 := (B j13 −B j12)

(B j13 −B j23)
(w j23 −B j23) +B j12. (3.20)

Notice that the value w∗
j12

is it in introduced since here will be used the description of Case 3 below.

Finally, we use (3.11) and 3.19)( to conclude Case that 2 is characterized by the following condition:

(B j12 −B j23)(w j23 −B j23)

3 (B j13 − B j23)
≤ h j ≤ 2B j13−B j23 − B j12

3 (B j13 −B j23)
( w j23 − B j23). (3.21)

Case 3. The possible third case is is characterized by the condition, which complementary to (3.11) and )(3.21 :

h j ≥ 2B j13 −B j23 −B j12

3 (B j13 −B j23)
( w j23 −B j23). (3.22)

In this case, T ∗
j
= T j, ( )and the reconstruction 3.6 over T j consists of just one linear piece ẘ j( , ) x y given by

x −x j23 y −y j23 ẘ j ( , ) x y − w j23x j12 −x j23 y j12 −y j23 w j12 − w j23x j13 −x j23 y j13 −y j23 w j13 − w j23

= 0, (x y T, ) ∈ j ; (3.23)

see Fig. 3.6.

In order to use ( )3.23 , we need to determine the values w j13 and w j12. This is done by setting

w j12 = w ∗
j12 + w, w j13 =B j13 + w (3.24)

where w ∗
j12

is given ( )by 3.20  and w is determined by the conservation requirement:

3h j = + + w (w w ∗
j12 −B j12) (+ w j23 −B j23),

which results in
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3.2.1. of reconstruction Summary the second-order wa ter surface procedure

We now summarize the proposed piecewise linear well-balanced nonnegative reconstruction procedure.

1. Compute the first-order well-balanced nonnegative water surface reconstruction w j( , ) x y as described in §3.1.
2. Compute the unlimited gradients ( )∇ w j using the method described in Remark 3.1.

3. In each partially flooded cell T j, compute the water level w jκ at the the vertex with lowest level bed in T j . This 

is in described ( )3.7 for the the case of lowest level bed being at the vertex V j23 (two alternative possibilities are treated 
similarly).

4. In each partially flooded cell T j , 2 3 determine whether it corresponds to Case 1, or depending on which of the 

conditions, (3.11), 3.21)( or ( )3.22 , respectively, is satisfied.
• In Case 1, compute k 2 and k 3 using (3.10) and then ẘ j( , ) x y is given by ( )3.9 .

• In Case 2, compute k1 and k3 using (3.18) and 3.16)(  and then ẘ j ( , ) x y is given by (3.13).

• In Case 3, compute w j12 and w j13 using ( ) ( ) ( )3.20 , 3.25  and 3.24  and then ẘ j ( , ) x y is given by ( )3.23 .
Once ẘ j ( , ) x y is determined, we obtain w corr

j ( , ) x y using ( )3.6 .

5. Finally, using linear the corrected piecewise reconstruction wcorr
j

( , )x y , point update the values w jκ and w j (M j k) as 

well as the constant piecewise gradients ∇w x y( , ) in partially flooded cells. These new quantities are then used in the 

numerical scheme and described in § , §2 4 § .5

4. Positivity c o r r e c t i o n of the central-upwind scheme

In order to preserve the the scheme, the positivity of water depth using computed proposed numerical we generalize 
“draining” time-step method from [ ,3 4] to the triangular mesh used in this paper.

We begin by studying the positivity preserving property of the central-upwind scheme described this in § . 2 To end, 

we apply the forward Euler temporal discretization component to the first of the scheme (2.1), 2.2)( (the obtained result 

will the the method the also apply to discretization obtained by three-stage third-order SSP used in numerical examples 

reported in §6 below):

w
n+1
j = w

n
j − t

|T j |
3

k=1

 j k

ain
j k + aout

j k


a
in

j kh j k (M j k )u⊥
j k (M j k ) + a

out
j k h j (M j k)u ⊥

j (M j k)



+ t

|T j |
3

k=1

 j k

ain
j kaout

j k

ain
i k + aout

i k


w j k (M j k ) − w j(M j k)


,

(4.1)

where u⊥
j (M j k) := u j (M j k) cos(θ j k ) + v j(M j k) sin(θ j k) and u ⊥

j k(M j k ) := u j k(M j k ) cos(θ j k) + v j k(M j k) sin(θ j k). Using the fact 

that

w
n+1
j − w

n
j = h

n+1

j − h
n

j and w j k (M j k) − w j(M j k ) = h j k (M j k) − h j(M j k),

the scheme (4.1) can be rewritten as:

h
n+1

j = h
n

j + t

|T j |
3

k=1

 j kain
j k

ain
i k + aout

i k

h j k (M j k)


a
out

j k − u⊥
j k(M j k )


− t

|T j |
3

k=1

 j k aoutj k

ain
i k + aout

i k

h j(M j k )


a in
j k + u ⊥

j (M j k )

.

(4.2)

For fully flooded cells,

h
n

j = 1

3

3
k=1

h j(M j k), (4.3)

which after being substituted into )(4.2 leads to the positivity preserving [ ]result established in 7 : h
n+1

j > 0 provided

t <
1

6
min

j,k


r j k

max(ain
j k, aout

j k
)


. (4.4)

Notice that this time-step restriction is intwice stricter than the one ( )2 5
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arbitrarily small. To overcome this numerical difficulty, technique developed we use the “draining” time-step originally 
in [ ]4 , which meshes we extend to unstructured triangular as follows.

We first introduce the “draining” time-step tdrainj which minimum represents the time needed for the cell T j to be 

completely drained. It defined is by

t
drain

j :=
|T j |h

n

j

3
k=1

max(0, H
( )1

j k
)

where H
( )1

j k is the the first component of numerical flux H j k is the numerical flux given ( )by 2.2 . Notice that for fully flooded 

cells tdrainj = t t, while for dry cells  drain
j = 0.

We then define the local “draining” time-step t j k for each edge  j k of the cell j:

t j k =

⎧⎨⎩min( , t tdrainj ), if H
( )1

j k > ,0

min( , t t
drain

j k ), if H
( )1

j k ≤ 0,
where tdrainj k is in the “draining” time-step the neighboring cell T j k , ( )and t is computed by 4.4 , but with the minimum 

taken there over the flooded cells only.

Finally, equipped with tdrainj k , (2.1)we replace the forward Euler discretization of with

U
n+1

j = U
n

j − 1

|T j |
3

k=1

t j k H j k + t S j . (4.5)

One can under show that the time-step restriction )(4.4 , the scheme )(4.5 preserves positivity of h. We omit the proof as it 
is in [ ]similar analogous to the the proof of result 4 .

5. Well-balanced discretization of the source term s

In the terms, this section, we develop a well-balanced discretization of source which guarantees “lake that at rest” 

steady-state solutions,

w = max
!

C B x y, ( , )
"
, , , C = Const u ≡ ≡ v 0 (5.1)

are scheme exactly preserved by the resulting central-upwind in in the presence This of wet/dry fronts. means that both par-
tially and fully flooded cells, the source discretization S j should balance that exactly the numerical fluxes so the right-hand 
side (RHS) of (2.1) vanishes “lake at at rest” steady states.

To this end, we substitute the “lake at rest” state (5.1)into (2.1), 2.2)(  and conclude that well-balanced a quadrature for 

S j should satisfy the following two conditions:

− g

2|T j |
3

k=1

 j k cos(θ j k) ·
t j k

t
·


C B M− ( j k )
2 + S

( )2

j = 0 (5.2)

and

− g

2|T j |
3

k=1

 j k sin(θ j k ) · t j k

t
·


C B M− ( j k)
2 + S

( )3

j = 0, (5.3)

where

S
( )2

j ≈ − g

|T j |

¨

T j

( ( , C − B x y))B x( , ) x y d xd  y, S
( )3

j ≈ − g

|T j|

¨

T j

( ( , C − B x y))B y ( , ) x y d xd  y.

In the order to derive a well-balanced quadrature, we follow approach in Green’s [ ]7  and first apply formula, ˜
T j
div G d xd  y  = ´∂ T j

G G · n d s, to the vector field = ( 1
2
( ( , ) ( , w x y − B x y))2 , ) 0 and obtain

−
¨

T j

( ( , ) ( , w x y − B x y))B x( , ) x y d xd  y  =
3

k=1

ˆ

(∂ T j)k

( ( , ) ( , w x y − B x y))2

2
cos(θ j k) d s

(5 4)
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where (∂ T j )k is the the k-th of side triangle T j , 1 2 [ ]k = , , 3. Next, unlike the discretization in 7 , which uses the midpoint 

rule midpoint rule for all , of on of )the integrals the RHS (5.4 we apply the to the while the line integrals there, double 

integral is approximated using the the trapezoidal rule. This results in following quadrature for S
( )2

j :

S
( )2

j = g

2|T j|
3

k=1

 j k cos(θ j k ) · t j k

t
·


w M( j k) (− B M j k)
2

− g

3


(w j12 −B j12) w x(V j12) (+ w j23 −B j23) w x (V j23) (+ w j13 −B j13) w x(V j13)


.

(5.5)

A similar quadrature for S
( )3

j is

S
( )3

j = g

2|T j|
3

k=1

 j k sin(θ j k ) · t j k

t
·


w M( j k) (− B M j k )
2

− g

3


(w j12 −B j12) w y (V j12) (+ w j23 −B j23) w y(V j23) (+ w j13 −B j13) w y(V j13)


.

(5.6)

Notice that that the reconstruction procedure presented in §3.2 ensures at the steady state (5.1), either w jκ = B jκ or 
∇ w(V jκ) (= 0 throughout the entire computational domain. This implies that w jκ −B jκ ) w x(V jκ ) (≡ w jκ −B jκ ) w y(V jκ ) ≡
0 and  and therefore the quadratures )(5.5 ( )5.6 satisfy the desired well-balanced requirements ( ) ( )5.2  and 5.3 .

6. Nu me ri ca l e x a mp l e s

In will demonstrate the performance the this section, we of developed “truly” well-balanced central-upwind scheme, 

which will will the the be referred to as and and a , “new scheme” in Examples 3 4, we also compare obtained results with 
ones computed described using the scheme in § , 2 which will be referred to as an “old scheme”.

In all of the examples, we set the gravitational acceleration to be g = 9.8 and the desingularization parameters τ and ε
in ( )2.6 are taken to be τ =max j {|T j |2} =and ε 10−4 (except for Example 4, in which we take ε = 10−2).

Example 1—Accuracy test

In the first example taken from [ ]47 , we test the experimental order of accuracy of the proposed numerical scheme.

We use the following 1-D data,

B x y( , ) = sin2
( ( , , ) π x), h x y 0 = +5 e

cos(2π x) ,

(h u)(x y x x y, , 0 2) = sin(cos( π )), (h v)( , , 0 0) ≡ ,

which is artificially extended to the narrow 2-D computational domain [0 1, ] × [−1 2 1 2 , /( N), /( N)] which is first divided 

into of then into of N uniform Cartesian cells, each which is split 4 uniform triangles so that the total number triangular 
cells is N × 4. We use boundary boundary the periodic conditions at 0 and 1 and x = x = reflecting (solid wall) conditions 

at the other boundaries.

We compute the solution until the final time t = 0.1. The reference solution is obtained using 3200 × 4 cells and then 
used to compute the L1-errors and experimental The rates of convergence. results presented in Table 6.1 demonstrate that 

the expected second order accuracy of is achieved.

Example 2—Dam-break wav e propagating over a n  initially dry inclined plane

In the second test, we compare the performances of the “new scheme” implemented using the proposed first-order 

§3.1 and second-order §3.2 wet/dry reconstructions in the partially flooded capture cells at wave fronts. To this end, we a 
dam-break wave over an initially inclined plane. analytical In from the this test taken [ ,9 47], formula for the wave front 

position is available.

Ta bl e 6.1

Example 1: L1 -errors and experimental rates of convergence.

N × 4 h h u

L1 -error Rate L1-error Rate

50 × 4 2.43 × 10−3 – 1.89 × 10−2 –
4 3
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Fig. 6.1. Example bottom 2: w x( , 0 0 0 3 reconstruction described §, ) and w x( , , ) computed using the second-order wet/dry in 3.2 over the inclined B x( , 0)

(left); the front the exact and computed wave positions, using computed first- and (right).second-order wet/dry reconstructions 

In the this test, initial data are

h x y( , , 0) =

1 0− B x y x ( , ), < ,

0 0, x ≥ ,
u x y v x y( , , 0) ≡ ( , , 0 0) ≡ ,

and the bottom topography is given by

B x y x ( , ) = tan(α),

where α is is the inclination angle, which set to α π= /30.

This is a 1-D test, which we artificially extend to the narrow 2-D computational domain [−15, 15] × [−1 1 , /40, /40]
which which is first divided into of 2400 uniform Cartesian cells, each is then into split 4 uniform triangles so that the total 
number cells The of triangular is 9600. reflecting (solid imposed of wall) boundary conditions are at all the boundaries.

According to [ ,9 47], the exact position of the wave front as a function of time is given by

x f ( ) t = 2t


g cos( ) α − g

2
t
2
tan(α).

We run the the time In simulations until final t = 3. Fig. 6.1 (left), plot we the cross sections along y = 0 if the initial 
and computed reconstruction described (using second-order the wet/dry in § ) surfaces 3.2 water over the inclined bottom. 

In Fig. 6.1 (right), we show the exact and computed see, wave fronts as functions clearly of time. As one can the “new 

scheme” the the implemented using proposed §second-order wet/dry reconstruction 3.2 predicts wave front position more 
accurate than the scheme, but the from same implemented using first-order wet/dry reconstruction §3.1.

We would like to stress that in this comparison test, the same piecewise linear reconstructions are fully used in the 
flooded cells and different reconstructions wet/dry are only applied in partially flooded cells near the front. wet/dry We 

would also like out location to point that the experimental of the defined the the front is as first cell where water depth 

exceeds 10−4 if counted from the the right to left.

Example 3—“Lake a t  re st” ste ady state in the domain with wet/ dry interfaces

This test case is designed to demonstrate the the scheme” the well-balanced property of “new in presence of wet/dry 

interfaces, applying ) which is enforced by the new well-balanced water surface reconstruction (§3.2 and corresponding 

discretization of the simulate around the scheme” source terms (§5). To this end, we a quiescent lake an island using “new 
and compare “old scheme”.the those the obtained results with computed by 

In this example, we take the computational domain [0, 4] × [0 2, ] (divided into 12800 triangular cells), the exponential-
shape bottom topography

B x y e( , ) = 0 8. − −2(x 2) 2− −4( y 1)2 ,

the “lake at rest” initial data

w x y B x y u x y v x y( , , 0 0 5) = max( . , ( , )), ( , ) ≡ ( , ) ≡ 0,

and reflecting (solid wall) boundary conditions.
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Fig. 6.2. Example 3: Water surface around the partially submerged hump computed using the “new scheme”.

Fig. 6.3. Example 3: Water surface computed schemes. of by the “new” (left) and “old” (right) (For interpretation the the the colors in figures, reader is 

referred to the web version of this article.)

Fig. 6.4. Example 3: Water velocities u v (top row) and (bottom row) computed by the “new” (left column) and “old” (right column) schemes.

We then “old scheme”. plots of perform the computation the same by In the Fig. 6.3, we show contour the water surface 

computed by both that schemes time It at t = 10. can be clearly observed while the scheme” the “new preserves “lake at 

rest” steady states, the scheme” the “old generates spurious oscillations on quiescent lake surface.
In Fig. 6.4, we show the computed velocities u and v . Once again, while the velocities computed by the “new scheme” 
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Fig. 6.5. Example 4: 1-D slice of the bottom topography and water surface. The plot is not to scale.

Example perturbation 4—Small of “lake the a t  rest” steady sta te

In this example, we solve the initial value problem, which is a modification of the test problem proposed in [ ]7 . We 

define hump a partially submerged in is water so that there a disk-shaped see island at the origin; Fig. 6.5.

In this example, we take the computational domain [0, 1] × [0 1, ] (divided into 25600 triangular cells), the radially 
symmetric bottom topography

B r( ) =

⎧⎪⎨⎪⎩
1 1 0 1. , r ≤ . ,

11(0 2 0 1 0 2. − r), . < r ≤ . ,

0, otherwise,

r :=


( . )x − 0 5 2 + −( y 0. )5 2,

the initial data

w x y( , , 0) =

1 + ε0, . . ,0 1 ≤ ≤x 0 2

max[1, B r( ) , ] otherwise,
u x y v x y( , , 0) ≡ ( , , 0 0) ≡

with ε0 = 0.01, and the homogeneous Neumann boundary conditions.
We then simulate a small perturbation that travels on initial surface quiescent water around the island both using the 

“new” and and “old” schemes plot the water surface computed at times t = 0.06, 0.1, 0.14 and 0.2 As in Fig. 6.6. one can 

clearly see using column there, in the results obtained the scheme” the “old (see right of Fig. 6.6), are spurious waves 
generated in the the they spread outwards cells at wet/dry front and then are interacting with the right-going perturbation 

(notice that much used a larger number cells of triangular was in [ ]7 to suppress the In developed spurious waves). contrast, 
as are one can see column in the left of Fig. 6.6, spurious such waves completely eliminated using by the scheme” “new 

even on of scheme”.a very coarse mesh. This clearly demonstrates the advantage the “new 

Example 5—Oscillating lake in a parabolic basin

In this example, water sloshing in a frictionless parabolic basin involves simultaneously wetting and drying. The bottom 

topography is defined by

B x y( , ) = h s

L2
(x2 + y2) (6.1)

where h s and are L positive parameters. As the it in was shown [ ]43 , system ( ) (6.1)1.1 –( ), 1.3  admits the following periodic 

solution:

w x y t h( , , ) = s


1 + φ

L2
( ( ) ( ) 2x cos ωt + 2y sin ωt − φ)

 
,

u x y t( , , ) = −φ ( ( , , ) ω sin ωt), v x y t = −φ (ω cos ωt),

(6.2)

where ω = 2 given [ ]π/T is the frequency of the circulation and T is its period. We use the parameters in 33 , that is, 

T h= 3600, s = = = ] 10, L 8025. φ 5 and L/10. The water circulation is simulated in a [−10000, 10000 × [−10000 10000, ]
computational divided domain which is into 11714 triangular conditions cells. The initial at t = 0 are provided by ( )6.2

computed at t = 0 and the homogeneous Neumann boundary conditions are set.
Fig. 6.7 shows both the As they exact and at computed water surfaces times t T = 1.25 and 751. T . one can clearly see, 

are and no in good agreement distortion is observed near the shorelines.
In Fig. 6.8, we plot the velocity components u and v as functions of time at the point ( , x y) = ( , 1000 0) for three 

periods. numerical It the can be observed that for both u and v results agree solution. very well with the exact Fig. 6.8 also 

demonstrates the converges of the computed solution to the analytical one as both the coarse (with 5808 triangular cells) 
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Fig. 6.6. Example 4: Water surface computed by the “new” (left column) and “old” (right column) schemes.
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Fig. 6.8. Example 5: Simulated and analytical velocity components u and v at different times computed on the coarse and fine meshes.

Fig. 6.9. Example 5: L 1-errors for u and v as functions of the number of triangular cells.

observe, the achieved experimental convergence rates (between 1 and 2) are comparable to those reported in the literature; 

see, e.g., [ , ,8 14 20].

Example 6—Dam-break wav e propagating over i r r e g u l a r dry b e d

In this example, we simulate a moving wet/dry front produced by a dam-break wave propagating over a frictional dry 

bed with three simulated the mounds. The dam-break is in [0 6, ] × [0 6, ] domain with the bottom topography defined by

B x y( , ) = max

0 5. e− −8(x 2)2− −10( y 3)2 , .0 2e− −3(x 4)2− −4( y 4. )8 2

, .0 2e− −3(x 4)2− −4( y 1. )2 2

.

In the the the order to take into account friction effect, we add Manning friction terms and modify governing equations 

( ) ( )1.2  and 1.3 as follows:

( )h u t +


h u
2 + g

2
h
2


x
+ ( )h u v  y = −g h  B x − g n 2

bu
√

u2 + v 2

h 31/
,

(h v)t + ( )h u v  x +


h v2 + g

2
h2


y
= −g h  B y − g n2

b v
√

u 2 + v2

h1 3/
,

(6.3)

where n b is the roughness Manning coefficient. We take nb = 0.01.
We numerically solve the system ( )1.1 , ( )6.3 using the developed semi-discrete well-balanced positivity preserving 

central-upwind scheme. the terms, the ODE Due to presence of friction resulting system (2.1)is now stiff. We therefore 

integrate it using see the from steady state and methods sign semi-implicit preserving Runge–Kutta [ ]10 ; also [ ]11 .
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Fig. 6.10. Example 6: Simulated water surface at different times.

Fig. 6. 11. Example 6: Simulated water depth at different times.

In Fig. 6.10, we show the the 3-D view of dam-break wave propagation over the It initially dry bed at different times. 

can when be observed proposed that the scheme performs well handling both wetting drying and processes. In Fig. 6.11, 
where depth the the contour lines of water computed at are and different times plotted, the reflections interactions of the 

waves can be clearly oscillations boundaries.seen and no or disturbances are at observed the wet/dry 

Example 7—Two-dimensional solitary wav e run-up on a conical island

In this example, we compare the proposed method with a laboratory experiment a simulating solitary wave that passes 
around the a experiments conical island. The laboratory were performed at Coastal and Hydraulics Laboratory (see [ ]6 ) and 

the measured the simulated As data are compared with results. described this in [ ,5 37], experiment may not be an ideal 

test for the the the accuracy of numerical developed methods as waves generated in laboratory are However, dispersive. it 
can simulating 2-D be used to test the the robustness of numerical methods for long wave run-up arbitrary on topography 
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Fig. 6.12. Example 7: Triangular grid (left) and the bottom topography profile (right).
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Fig. 6.14. Example 7: Simulated velocity vectors around the conical island at different times.

B r( ) =

⎧⎪⎨⎪⎩
0 1 1.625, r ≤ . ,

0 3 6 1 1 3 6.25( . − r), . < r ≤ . ,

0, otherwise,

r :=


( . )x − 12 96 2 + −( y 13. )8 2;

see Fig. 6.12 (right). into The computational divided domain [25 27× .6] is 72152 triangular cells with the grid refined in 

the island area as shown in Fig. 6.12 (left).

In the numerical test, the initial conditions correspond to the “lake at rest” with

w x y( , , 0) = max
!

D B x y, ( , )
"
, ( , , ) ( , , ) ,u x y 0 ≡ v x y 0 ≡ 0

where The D = 0.32 m. boundaries at 0 and y = y = 27.6 are set to be reflecting (solid wall), the boundary at x = 25 is set 
to be outflow, and an at inflow boundary x = 0 is set to replicate the planar wave-maker produced solitary wave:

w y t D H(0, , ) = + wsech2

#
3H w

4D3
C t T ( − )

 
, ( , , ) u 0 y t = C

$
1 − D

w y t(0 )

%
, v y t(0, , ) = 0,
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We numerically simulate the the In initial run-up within and run-down processes occurring first 20 s. Fig. 6.13, we 
compare of the measured computed and experimentally water surfaces as functions time the at following five gauges: 

WG3(6.82, 13.05), WG6(9.36, 13.80), WG9(10.36, 13.80), WG16(12.96, 11.22) WG22(15.56, 13.80). and As the one can see, 

proposed numerical method is capable of simulating correct tendency of the water surface changes and arrival times. The 
agreement between the simulated and experimental data are satisfactory. Similar predicted ]. results are observed [ , ,in 5 21 37

The could discrepancies, underestimation especially the of of the steepness the wave, be explained by the underprediction 

in the secondary depression wave which follows the main wave; see [ ]37 .
In Fig. 6.14, we show the velocity vectors computed at different times when passes the wave around the conical island. 

As the the one can clearly oscillations magnitudes see, no or artificially large velocity are at generated wave front during 

wetting–drying process. This verifies the robustness of numerical the proposed method.

7. Conclusion

In this paper, we have new developed a “truly” well-balanced positivity preserving semi-discrete central-upwind scheme 
for the 2-D system The Saint-Venant of shallow water equations. well-balanced and are positivity preserving properties 

ensured with the help of a novel wet/dry water surface reconstruction on unstructured triangular grids. In partially flooded 

cells, the proposed a reconstruction is based on subcell resolution and may consist of two linear pieces designed to accu-
rately approximate the wet/dry interface within reconstruction the In the the cell. addition, use of new wet/dry requires a 

special of discretization the the source which developed guarantee term, has been to that resulting scheme is well-balanced. 

The depth using positivity of the computed water has been enforced a “draining” time-step technique. We have performed 
several numerical of experiments designed to demonstrate the ability the proposed scheme to capture involving wet/dry 

interfaces in a stable, non-oscillatory manner.
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