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Abstract We present a numerical method for solving tracking-type optimal control
problems subject to scalar nonlinear hyperbolic balance laws in one and two space
dimensions. Our approach is based on the formal optimality system and requires
numerical solutions of the hyperbolic balance law forward in time and its nonconser-
vative adjoint equation backward in time. To this end, we develop a hybrid method,
which utilizes advantages of both the Eulerian finite-volume central-upwind scheme
(for solving the balance law) and the Lagrangian discrete characteristics method (for
solving the adjoint transport equation). Experimental convergence rates as well as
numerical results for optimization problems with both linear and nonlinear constraints
and a duct design problem are presented.

Keywords Optimal control · Multidimensional hyperbolic partial differential
equations · Numerical methods

1 Introduction

We are concerned with numerical approaches for optimization problems governed by
hyperbolic PDEs in both one and two space dimensions. As a prototype, we consider
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690 A. Chertock et al.

a tracking type problem for a terminal state ud prescribed at some given time t = T
and the control acts as initial condition u0. A mathematical formulation of this optimal
control problem is reduced to minimizing a functional, and, for instance, in the two-
dimensional (2-D) case it can be stated as follows:

min
u0

J (u(·, ·, T ); ud(·, ·)), (1.1a)

where J is a given functional and u is the unique entropy solution of the nonlinear
scalar balance law

ut + f (u)x + g(u)y = h(u, x, y, t), (x, y) ∈ � ⊆ R
2, t > 0,

u(x, y, 0) = u0(x, y), (x, y) ∈ � ⊆ R
2.

(1.1b)

If � �= R
2, then (1.1b) is supplemented by appropriate boundary conditions.

In recent years, there has been tremendous progress in both analytical and numer-
ical studies of problems of type (1.1a), (1.1b), see, e.g., [1–3,8–10,13,18,19,21–
24,28,40,44,45]. Its solution relies on the property of the evolution operator S t :
u0(·, ·) → u(·, ·, t) = St u0(·, ·) for (1.1b). It is known that the semi-group St gen-
erated by a nonlinear hyperbolic conservation/balance law is generically nondifferen-
tiable in L1 even in the scalar one-dimensional (1-D) case (see, e.g., [10, Example 1]).
A calculus for the first-order variations of St u with respect to u0 has been established
in [10, Theorems 2.2 and 2.3] for general 1-D systems of conservation laws with a
piecewise Lipschitz continuous u0 that contains finitely many discontinuities. Therein,
the concept of generalized first order tangent vectors has been introduced to charac-
terize the evolution of variations with respect to u0, see [10, equations (2.16)–(2.18)].
This result has been extended to BV initial data in [3,8] and lead to the introduction
of a differential structure for u0 → St u0, called shift-differentiability, see e.g. [3,
Definition 5.1]. Related to that equations for the generalized cotangent vectors have
been introduced for 1-D systems in [11, Proposition 4]. These equations (also called
adjoint equations) consists of a nonconservative transport equation [11, equation (4.2)]
and an ordinary differential equation [11, equations (4.3)–(4.5)] for the tangent vector
and shift in the positions of possible shocks in u(x, t), respectively. Necessary condi-
tions for a general optimal control problem have been established in [11, Theorem 1].
However, this result was obtained using strong assumptions on u0 (see [11, Remark
4] and [3, Example 5.5]), which in the 1-D scalar case can be relaxed as shown for
example in [13,44,46]. We note that the nonconservative transport part of the adjoint
equation has been intensively studied also independently from the optimal control
context. In the scalar case we refer to [4–6,13,36,44,46] for a notion of solutions
and properties of solutions to those equations. The multidimensional nonconservative
transport equation was studied in [7], but without a discussion of optimization issues.
Analytical results for optimal control problems in the case of a scalar hyperbolic con-
servation law with a convex flux have also been developed using a different approach
in [44,46].

Numerical methods for the optimal control problems have been discussed in
[2,20,22,44,46]. In [18,19], the adjoint equation has been discretized using a
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Optimization problems governed by hyperbolic PDEs 691

Lax–Friedrichs-type scheme, obtained by including conditions along shocks and mod-
ifying the Lax–Friedrichs numerical viscosity. Convergence of the modified Lax–
Friedrichs scheme has been rigorously proved in the case of a smooth convex flux
function. Convergence results have also been obtained in [44] for the class of schemes
satisfying the one-sided Lipschitz condition (OSLC) and in [2] for implicit-explicit
finite-volume methods.

In [13], analytical and numerical results for the optimal control problem (1.1a)
coupled with the 1-D inviscid Burgers equation have been presented in the particular
case of a least-square cost functional J . Therein, existence of a minimizer u0 was
proven, however, uniqueness could not be obtained for discontinuous u. This result
was also extended to the discretized optimization problem provided that the numerical
schemes satisfy either the OSLC or discrete Oleinik’s entropy condition. Furthermore,
convergence of numerical schemes was investigated in the case of convex flux functions
and with a-priori known shock positions, and numerical resolution of the adjoint
equations in both the smooth and nonsmooth cases was studied.

In this paper, we consider the problem (1.1a), (1.1b) with the least-square cost
functional,

J (u(·, ·, T ); ud(·, ·)) := 1

2

∫∫

�

(
u(x, y, T )− ud(x, y)

)2
dx dy, (1.1c)

and a general nonlinear scalar hyperbolic balance law. To the best of our knowledge,
there is no analytical calculus available for the multidimensional problem (1.1a)–
(1.1c). We therefore study the problem numerically and focus on designing highly
accurate and robust numerical approach for both the forward equation and the non-
conservative part of the adjoint equation (leaving aside possible additional conditions
necessary to track the variations of shock positions). We treat the forward and adjoint
equations separately: The hyperbolic balance law (1.1b) is numerically solved forward
in time from t = 0 to t = T , while the corresponding adjoint linear transport equation
is integrated backward in time from t = T to t = 0. Since these two equations are
of a different nature, they are attempted by different numerical methods in contrast to
[13,18,19,44].

The main source of difficulty one comes across while numerically solving the for-
ward equation is the loss of smoothness, that is, the solution may develop shocks even
for infinitely smooth initial data. To accurately resolve the shocks, we apply a high-
resolution shock capturing Eulerian finite-volume method to (1.1b), in particular, we
use a second-order semi-discrete central-upwind scheme introduced in [31–34], which
is a reliable “black-box” solver for general multidimensional (systems of) hyperbolic
conservation and balance laws.

The nonconservative part of the arising adjoint equation is a linear transport equation
with generically discontinuous coefficients, and thus the adjoint equation is hard to
accurately solve by conventional Eulerian methods. We therefore use a Lagrangian
approach to numerically trace the solution of the adjoint transport equation along
the backward characteristics. The resulting Lagrangian method achieves a superb
numerical resolution thanks to its low numerical dissipation.
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The paper is organized as follows. In Sect. 2, we briefly revise the formal adjoint
calculus and additional interior conditions on the shock position in the 1-D case. Then,
in Sect. 3 we present an iterative numerical optimization algorithm followed by the
description of our hybrid Eulerian–Lagrangian numerical method, which is applied to
a variety of 1-D and 2-D optimal control problems in Sect. 4. Convergence properties
of the designed 1-D scheme are discussed in Sect. 5.

2 The adjoint equation

We are interested in solving the optimization problem (1.1a)–(1.1c). Formally, we
proceed as follows: We introduce the Lagrangian for this problem as

L(u, p) = 1

2

∫∫

R2

(
u(x, y, T )− ud(x, y)

)2
dx dy

−
∫∫

R2

p
(
ut + f (u)x + g(u)y − h(u, x, y, t)

)
dx dy.

We integrate by parts and compute the variations with respect to u and p. In a strong
formulation, the variation with respect to p leads to (1.1b) while the variation with
respect to u results in the following adjoint equation:

− pt − f ′(u)px − g′(u)py = hu(u, x, y, t) p, (2.1a)

subject to the terminal condition

p(x, y, T ) = u(x, y, T )− ud(x, y). (2.1b)

For sufficiently smooth solutions u, the above calculations are exact and the coupled
systems (1.1b), (2.1a), (2.1b) together with

p(x, y, 0) = 0 a.e. (x, y) ∈ R
2 (2.2)

represent the first-order optimality system for problem (1.1a)–(1.1c), in which (1.1b)
should be solved forward in time while the adjoint problem (2.1a), (2.1b) is to be solved
backward in time. These computations however have to be seriously modified once
the solution u possesses discontinuities. This was demonstrated in [8,10,13,18,21,44]
and we will now briefly review the relevant results.

Consider a scalar 1-D conservation law ut + f (u)x = 0 subject to the initial data
u(x, 0) = u0(x). Denote its weak solution by u(·, t) = St u0(·). Assume that both the
solution u(x, t) and initial data u0(x) contain a single discontinuity at xs(t) and xs(0),
respectively, and that u(x, t) is smooth elsewhere. As discussed above, the first-order
variation of St with respect to u0 can be computed using, for example, the concept
of shift-differentiability, and in the assumed situation, this amounts to considering the
corresponding linearized shock position x̂s given by d

dt

(
x̂s(t)[u(·, t)]) = [( f ′(u) −
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Optimization problems governed by hyperbolic PDEs 693

d
dt xs(t)û)(·, t)], where [u(·, t)] = u(xs(t)+, t) − u(xs(t)−, t). Here, û is a solution
of the linearized PDE

ût + ( f ′(u)û)x = 0.

Using the variations (û, x̂) shift-differentiability of the nonlinear cost functional
J (u(·, T ), ud(·)) = J (St u0(·), ud(·)) is also obtained, see [13,21,25,44]. It can be
shown that the variation δ J (St u0)û of J with respect to u0 can be also expressed
using an adjoint (or cotangent vector) formulation. More precisely, it has been shown
in [18] that in the particular setting considered above,

δ J (St u0)(û) =
∫

R

p(x, 0)û(x, 0) dx, (2.3)

p(x, T ) = u(x, T ) − ud(x) and p(xs(t), t) = 1
2 [(u − ud)

2]T /[u]T , where [u]T

represents the jump in u(x,T) across the shock at the final time. This value can be viewed
as a finite difference approximation to the derivative u − ud being the adjoint solution
on either side of the shock. The latter condition requires that the adjoint solution is
constant on all characteristics leading into the shock. Those rigorous results hold true
once the shock position in the solution u is a-priori known. For u0 to be optimal we
require the variation on the left-hand side of (2.3) to be equal to zero for all feasible
variations û.

In [19], the above result has been extended to the 1-D scalar convex case with
smooth initial data that break down over time. Note that due to the nature of the adjoint
equation, the region outside the extremal backwards characteristics emerging at xs(T )
are independent on the value along xs(t). Hence, neglecting this condition yields
nonuniqueness of the solution p in the area leading into the shock, see [2,10,13,44].
A recent numerical approach in [18] is based on an attempt to capture the behavior
inside the region leading into the shock by adding a diffusive term to the scheme with
a viscosity depending on the grid size. The results show a convergence rate of (�x)α

with α < 1. However, to the best of our knowledge, no multidimensional extension
of the above approach is available.

In this paper, we focus on the development of suitable numerical discretizations of
both forward and adjoint equations. The forward equation is solved using a second-
order Godunov-type central-upwind scheme [31–34], which is based on the evolution
of a piecewise polynomial reconstruction of u. The latter is then used to solve the
adjoint equation by the method of characteristics applied both outside and inside
the region entering shock(s). Similar to [2] we therefore expect convergence of the
proposed method outside the region of the backwards shock. We numerically study
the behavior of J and demonstrate that even in the case of evolving discontinuities,
the desired profile ud can be recovered using the presented approach.

Since the systems (1.1b) and (2.1a), (2.1b) are fully coupled, an iterative procedure
is to be imposed in order to solve the optimization problem. This approach can either
be seen as a damped block Gauss-Seidel method for the system or as a gradient descent
for the reduced cost functional. The reduced cost functional J̃ (u0) := J (St u0; ud)
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is obtained when replacing u in (1.1a) by St u0. Then, a straightforward computation
shows that δ

δu0
J̃ (u0) = p(·, ·, 0) if no shocks are present. As discussed above, rigorous

results on the linearized cost in the presence of shocks are available only in the 1-D
case, see [18,21] and [13, Proposition 4.1, Remark 4.7 and Proposition 5.1].

3 Numerical method

In this section, we describe the iterative optimization algorithm along with the
Eulerian–Lagrangian numerical method used in its implementation.

The underlying optimization problem can be formulated as follows: Given a ter-
minal state ud(x, y), find an initial datum u0(x, y) which by time t = T will either
evolve into u(x, y, T ) = ud(x, y) or will be as close as possible to ud in the L2-norm.
To solve the problem iteratively, we implement the following algorithm and generate
a sequence {u(m)0 (x)}, m = 0, 1, 2, . . ..

Iterative Optimization Algorithm

1. Choose an initial guess u(0)0 (x, y) and prescribed tolerance tol.

2. Solve the problem (1.1b) with u(x, y, 0) = u(0)0 (x, y) forward in time from t = 0
to t = T by an Eulerian finite-volume method (described in Sect. 3.1) to obtain
u(0)(x, y, T ).

3. Iterations for m = 0, 1, 2, . . .

while J (u(m); ud) = 1

2

∫∫

�

(
u(m)(x, y, T )− ud(x, y)

)2
dx dy > tol or

while |J (u(m); ud)− J (u(m−1); ud)| > tol

(a) Solve the linear transport equation (2.1a) subject to the terminal condition
p(m)(x, y, T ) := u(m)(x, y, T ) − ud(x, y) backward in time from t = T to
t = 0 using the Lagrangian numerical scheme (described in Sect. 3.2) to obtain
p(m)(x, y, 0).

(b) Update the control u0 using either a gradient descent or quasi-Newton method
[12,29,42].

(c) Solve the problem (1.1b) with u(x, y, 0) = u(m+1)
0 (x, y) forward in time from

t = 0 to t = T by an Eulerian finite-volume method (described in Sect. 3.1) to
obtain u(m+1)(x, y, T ).

(d) Set m := m + 1.

Remark 3.1 Note that in the given approach the full solution u needs not to be stored
during the iteration.

Remark 3.2 The above algorithm is similar to the continuous approach from [13]
though, unlike [13], we focus on the numerical methods in steps 2, 3(a) and 3(c) and
thus do not use an approximation to the generalized tangent vectors to improve the
gradient descent method.
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Remark 3.3 If we use a steepest descent update in step 3(b) for some stepsize σ > 0
as

u(m+1)
0 (x, y) := u(m)0 (x, y)− σ p(m)(x, y, 0),

then, due to a global finite-volume approximation of u and an appropriate projection
of p (see Sect. 3.1), we obtain a piecewise polynomial control u(m+1)

0 in this step of the

algorithm. The fact that the control u(m+1)
0 is always piecewise polynomial prevents

the accumulation of discontinuities in the forward solution in our algorithm. Clearly,
other (higher-order) gradient-based optimization methods can be used to speed up the
convergence, especially in the advance stages of the above iterative procedure, see,
e.g., [29,42] for more details.

Remark 3.4 In [13], a higher number of iterations is reported when the adjoints to the
Rankine–Hugoniot condition are neglected. In view of 2-D examples, we opt in this
paper for the higher number of optimization steps m compared with the necessity to
recompute the shock location and solve for the adjoint linearized Rankine–Hugoniot
condition.

3.1 Finite-volume method for (1.1b)

In this section, we briefly describe a second-order semi-discrete central-upwind
scheme from [34] (see also [31–33]), which has been applied in steps 2 and 3(c)
in our iterative optimization algorithm on page 5.

We start by introducing a uniform spatial grid, which is obtained by dividing the
computational domain into finite-volume cells C j,k := [x j− 1

2
, x j+ 1

2
] × [yk− 1

2
, yk+ 1

2
]

with x j+ 1
2
−x j− 1

2
= �x, ∀ j and yk+ 1

2
− yk− 1

2
= �y, ∀k. We assume that at a certain

time t , the computed solution is available and realized in terms of its cell averages

u j,k(t) ≈ 1

�x�y

∫∫

C j,k

u(x, y, t) dx dy.

according to the central-upwind approach, the cell averages are evolved in time by
solving the following system of ODEs:

d

dt
u j,k(t) = −

Fj+ 1
2 ,k

− Fj− 1
2 ,k

�x
−

G j,k+ 1
2

− G j,k− 1
2

�y
+ h(u j,k, x j , yk, t), (3.1)

using an appropriate ODE solver. In this paper, we implement the third-order strong
stability preserving Runge–Kutta (SSP RK) method from [26].

The numerical fluxes F and G in (3.1) are given by (see [31,34] for details):
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Fj+ 1
2 ,k

=
a+

j+ 1
2 ,k

f (uE
j,k)− a−

j+ 1
2 ,k

f (uW
j+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+

j+ 1
2 ,k

a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
uW

j+1,k − uE
j,k

]
,

G j,k+ 1
2

=
b+

j,k+ 1
2
g(uN

j,k)− b−
j,k+ 1

2
g(uS

j,k+1)

b+
j,k+ 1

2
− b−

j,k+ 1
2

+
b+

j,k+ 1
2
b−

j,k+ 1
2

b+
j,k+ 1

2
− b−

j,k+ 1
2

[
uS

j,k+1 − uN
j,k

]
.

(3.2)
Here, uE,W,N,S

j,k are the point values of the piecewise linear reconstruction for u

ũ(x, y) := u j,k + (ux ) j,k(x − x j )+ (uy) j,k(y − yk), (x, y) ∈ C j,k, (3.3)

at (x j+ 1
2
, yk), (x j− 1

2
, yk), (x j , yk+ 1

2
), and (x j , yk− 1

2
), respectively. Namely, we have:

uE
j,k := ũ(x j+ 1

2
− 0, yk) = u j,k + �x

2
(ux ) j,k, uW

j,k := ũ(x j− 1
2

+ 0, yk) = u j,k

− �x

2
(ux ) j,k,

uN
j,k := ũ(x j , yk+ 1

2
− 0) = u j,k + �y

2
(uy) j,k, uS

j,k := ũ(x j , yk− 1
2

+ 0) = u j,k

− �y

2
(uy) j,k .

(3.4)
The numerical derivatives (ux ) j,k and (uy) j,k are (at least) first-order approximations
of ux (x j , yk, t) and uy(x j , yk, t), respectively, and are computed using a nonlinear
limiter that would ensure a non-oscillatory nature of the reconstruction (3.3). In our
numerical experiments, we have used a generalized minmod reconstruction [35,37,
43,47]:

(ux ) j,k = minmod

(
θ

u j,k − u j−1,k

�x
,

u j+1,k − u j−1,k

2�x
, θ

u j+1,k − u j,k

�x

)
,

(uy) j,k = minmod

(
θ

u j,k − u j,k−1

�y
,

u j,k+1 − u j,k−1

2�y
, θ

u j,k+1 − u j,k

�y

)
,

θ ∈ [1, 2].

(3.5)
Here, the minmod function is defined as

minmod(z1, z2, ...) :=
⎧⎨
⎩

min j {z j }, if z j > 0 ∀ j,
max j {z j }, if z j < 0 ∀ j,
0, otherwise.

The parameter θ is used to control the amount of numerical viscosity present in the
resulting scheme: larger values of θ correspond to less dissipative but, in general,
more oscillatory reconstructions. In all of our numerical experiments, we have taken
θ = 1.5.
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Optimization problems governed by hyperbolic PDEs 697

The one-sided local speeds in the x- and y-directions, a±
j+ 1

2 ,k
and b±

j,k+ 1
2
, are

determined as follows:

a+
j+ 1

2 ,k
= max

⎧⎨
⎩ max

u∈
[
min{uE

j,k ,u
W
j+1,k },max{uE

j,k ,u
W
j+1,k }

] f ′(u), 0

⎫⎬
⎭ ,

a−
j+ 1

2 ,k
= min

⎧⎨
⎩ min

u∈
[
min{uE

j,k ,u
W
j+1,k },max{uE

j,k ,u
W
j+1,k }

] f ′(u), 0

⎫⎬
⎭ ,

b+
j,k+ 1

2
= max

⎧⎨
⎩ max

u∈
[
min{uN

j,k ,u
S
j,k+1},max{uN

j,k ,u
S
j,k+1}

] g′(u), 0

⎫⎬
⎭ ,

b−
j,k+ 1

2
= min

⎧⎨
⎩ min

u∈
[
min{uN

j,k ,u
S
j,k+1},max{uN

j,k ,u
S
j,k+1}

] g′(u), 0

⎫⎬
⎭ .

(3.6)

Remark 3.5 In equations (3.1)–(3.6), we suppress the dependence of u j,k , Fj+ 1
2 ,k

,

G j,k+ 1
2
, uE,W,N,S

j,k , (ux ) j,k , (uy) j,k , a±
j+ 1

2 ,k
, and b±

j,k+ 1
2

on t to simplify the notation.

Remark 3.6 We solve the balance law (1.1b) starting from time t0 = 0 and compute
the solution at time levels tn , n = 1, . . . , NT , where t NT = T . Since the obtained
approximate solution is to be used for solving the adjoint problem backward in time,
we store the values of u and its discrete derivatives, ux and uy , so the piecewise linear
approximants (3.3) are available at all of the time levels.

3.2 Discrete method of characteristics for (2.1a), (2.1b)

We finish the description of the proposed Eulerian–Lagrangian numerical method by
presenting the Lagrangian method for the backward transport equation (2.1a).

Since equation (2.1a) is linear (with possibly discontinuous coefficients), we follow
[14,15] and solve it using the Lagrangian approach, which is a numerical version of
the method of characteristics. In this method, the solution is represented by a certain
number of its point values prescribed at time T at the points (xc

i (T ), yc
i (T )), which

may (or may not) coincide with the uniform grid points (x j , yk) used in the numerical
solution of the forward problem (1.1b). The location of these characteristics points is
tracked backward in time by numerically solving the following system of ODEs:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dxc
i (t)

dt
= f ′(u(xc

i (t), yc
i (t), t)),

dyc
i (t)

dt
= g′(u(xc

i (t), yc
i (t), t)),

dpc
i (t)

dt
= −hu

(
u(xc

i (t), yc
i (t), t), xc

i (t), yc
i (t), t

)
pc

i (t),

(3.7)
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where xc
i (t), yc

i (t) is a position of the i th characteristics point at time t and pc
i (t) is a

corresponding value of p at that point.
Notice that since the piecewise linear approximants ũ are only available at the

discrete time levels t = tn, n = 0, . . . , NT , we solve the system (3.7) using the
second-order SSP RK method (the Heun method), see [26]. Unlike the third-order
SSP RK method, the Heun method only uses the data from the current time level and
the previous one and does not require data from any intermediate time levels. This
is the main advantage of the Heun method since the right-hand side of (3.7) can be
easily computed at each discrete time level t = tn . To this end, we simply check at
which finite-volume cell the characteristics point is located at a given discrete time
moment, and then set

u(xc
i (t

n), yc
i (t

n), tn) = ũ(xc
i (t

n), yc
i (t

n), tn)

= un
j,k + (ux )

n
j,k

(
xc

i (t
n)− x j

) + (uy)
n
j,k

(
yc

i (t
n)− yk

)
, if (xc

i (t
n), yc

i (t
n))∈C j,k .

(3.8)
Thus, as the time reaches 0, we will have the set of the characteristics points

(xc
i (0), yc

i (0)) and the corresponding point values pc
i (0). We then obtain the updated

initial data (step 3(b) in our iterative optimization algorithm on page 5) by first setting

u(m+1)
0 (xc

i (0), yc
i (0)) := u(m)0 (xc

i (0), yc
i (0))− σ pc

i (0), (3.9)

where σ = O(�x), and then projecting the resulting set of discrete data onto the
uniform grid. The latter is done as follows: For a given grid point (x j , yk), we
find four characteristics points (xc

i1
(0), yc

k1
(0)), (xc

i2
(0), yc

k2
(0)), (xc

i3
(0), yc

k3
(0)), and

(xc
i4
(0), yc

k4
(0)) such that

(
xc

i1
(0)−x j

)2 + (
yc

i1
(0)−yk

)2 = min
i : xc

i1
(0)>x j , yc

i1
(0)>yk

[(
xc

i (0)−x j
)2 + (

yc
i (0)−yk

)2
]
,

(
xc

i2
(0)−x j

)2 + (
yc

i2
(0)−yk

)2 = min
i : xc

i2
(0)<x j , yc

i2
(0)>yk

[(
xc

i (0)−x j
)2 + (

yc
i (0)−yk

)2
]
,

(
xc

i3
(0)−x j

)2 + (
yc

i3
(0)−yk

)2 = min
i : xc

i3
(0)<x j , yc

i3
(0)<yk

[(
xc

i (0)−x j
)2 + (

yc
i (0)−yk

)2
]
,

(
xc

i4
(0)−x j

)2 + (
yc

i4
(0)−yk

)2 = min
i : xc

i4
(0)>x j , yc

i4
(0)<yk

[(
xc

i (0)−x j
)2 + (

yc
i (0)−yk

)2
]
,

(3.10)
and then use a bilinear interpolation between these four characteristics points to obtain
u(m+1)

0 (x j , yk).
We are then ready to proceed with the next, (m + 1)-st iteration.

Remark 3.7 In the 1-D case, the projection procedure from the characteristics points
onto the uniform grid simplifies significantly, as one just needs to locate the two
characteristics points that are closest to the given grid point from the left and from the
right, and then use a linear interpolation.

Remark 3.8 It is well-known that one of the difficulties emerging when Lagrangian
methods are applied to linear transport equations with discontinuous coefficients is
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that the distances between characteristics points constantly change. As a result, char-
acteristics points may either cluster or spread too far from each other. This may lead
not only to a poor resolution of the computed solution, but also to an extremely low
efficiency of the method. To overcome this difficulties, we either add characteristics
points to fill appearing gaps between the points (the solution values at the added points
can be obtained using a similar bilinear/linear interpolation) or remove some of the
clustered characteristics points.

Remark 3.9 Notice that if ud(x, y) is discontinuous, the solution of the optimization
problem is not unique: Due to the loss of information at the shock, there will be
infinitely many different initial data u0(x, y), which would lead to the same solution
of (1.1b).

Remark 3.10 It should be observed that the solution of the adjoint transport equation
(2.1a) can be computed back in time using different methods. We refer the reader, e.g.,
to [25], where several first-order discretizations of the 1-D transport equation without
source terms have been presented and analyzed. In the numerical results below, we
compare the proposed discrete method of characteristics with an upwind approach
from [25] when applied to the 1-D equation (2.1a) (see Example 1 in Sect. 4.1).

4 Numerical results

In this section, we illustrate the performance of the proposed method on a number of
numerical examples. We start with a grid convergence study by considering a linear
advection equation in (1.1b) as a constraint. We then consider a control problem of the
inviscid Burgers equation and demonstrate the non-uniqueness of optimal controls in
the case of nonsmooth desired state. Next, we numerically solve a duct design problem
modified from [44]. Finally, we apply the proposed method to the 2-D inviscid Burgers
equation.

4.1 The one-dimensional case

In this section, we consider the 1-D version of the optimization problem (1.1a)–(1.1c):

min
u0

J (u(·, T ); ud(·)), J (u(·, T ); ud(·)) := 1

2

∫

I

(
u(x, T )− ud(x)

)2
dx, (4.1a)

where u is a solution of the scalar hyperbolic PDE

ut + f (u)x = h(u, x, t), x ∈ I ⊆ R, t > 0,
u(x, 0) = u0(x), x ∈ I ⊆ R.

(4.1b)

If I �= R, then (4.1b) is augmented with appropriate boundary conditions.
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The corresponding adjoint problem is

−pt − f ′(u)px = hu(u, x, t)p, x ∈ I ⊆ R, t > 0,

p(x, T ) = pT (x) := u(x, T )− ud(x) x ∈ I ⊆ R.
(4.2)

Example 1: Linear constraints

We numerically solve the optimization problem (4.1a)–(4.1b) with the terminal state
ud(x) = e−(x−π)2 and subject to a linear advection equation as constraint:

ut + ux = 0, x ∈ [0, 2π ], t > 0, (4.3)

with the periodic boundary conditions. The corresponding adjoint equation is

− pt − px = 0 x ∈ [0, 2π ], t < T . (4.4)

Since both (4.3) and (4.4) are linear advection equations with constant coefficients,
the exact solution u0 of the studied optimization problem is unique and can be easily
obtained:

u0(x) = ud(x − T ). (4.5)

In this example, we start the iterative optimization algorithm (page 5) with the
constant initial condition,

u(0)0 (x) ≡ 0.5,

and illustrate that the proposed Eulerian–Lagrangian method is second-order accu-
rate. We use spatial grids with �x = 2π/100, 2π/200, 2π/400 and 2π/800 for the
Eulerian part of the method and the corresponding number of the characteristics points
(100, 200, 400 or 800) for the Lagrangian part. We set T = 2π and tol, and measure
the L1-errors for both the control (see (4.5)),

‖e0‖L1 := �x
∑

j

∣∣∣u(m)0 (x j )− ud(x j − 2π)
∣∣∣ ,

and the terminal state,

‖eT ‖L1 := �x
∑

j

∣∣∣u(m)(x j , 2π)− ud(x j )

∣∣∣ .

The results of the numerical grid convergence study displayed in the Table 1 for
tol = (�x)4, clearly show that the expected second-order rate of convergence has
been achieved.

It should be pointed out that problem (4.1a) does not contain any regularization
with respect to u0. In general, this may lead to a deterioration of the iteration numbers
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Table 1 Example 1: L1-convergence study

�x No. of iterations ‖e0‖L1 Rate ‖eT ‖L1 Rate

2π/50 29 8.32 × 10−2 – 5.05 × 10−2 –
2π/100 81 2.13 × 10−2 1.97 1.26 × 10−2 2.00
2π/200 207 5.46 × 10−3 1.96 3.24 × 10−3 1.96
2π/400 505 1.36 × 10−3 2.00 8.09 × 10−4 2.00
2π/800 1189 3.44 × 10−4 1.98 2.04 × 10−4 1.99

Optimization is terminated when J ≤ tol = (�x)4

Table 2 Example 1: L1-convergence study for the regularized cost functional

�x α No. of iterations ‖e0‖L1 Rate ‖eT ‖L1 Rate

2π/100 10 0 70 7.92 × 10−3 - 7.95 × 10−3 -
10−1 75 1.92 × 10−2 - 1.16 × 10−2 -
10−2 80 2.13 × 10−2 - 1.27 × 10−2 -

2π/200 10 0 135 2.05 × 10−3 1.95 2.06 × 10−3 1.94
10−1 191 4.93 × 10−3 1.96 2.97 × 10−3 1.97
10−2 205 5.42 × 10−3 1.97 3.24 × 10−3 1.97

2π/400 10 0 313 5.16 × 10−4 1.99 5.18 × 10−4 1.99
10−1 464 1.25 × 10−3 1.98 7.50 × 10−4 1.98
10−2 500 1.36 × 10−3 1.99 8.09 × 10−4 2.00

Optimization is terminated when Jreg ≤ tol = (�x)4

within the optimization. In order to quantify this effect, we present, in Table 2, the
results obtained for the regularized problem

min
u0

Jreg(u(·, T ); ud(·)),

Jreg(u(·, T ); ud(·)) := J (u(·, T ); ud(·))+ α

2

∫

I

(
u0(x)− u∗(x)

)2
dx, (4.6)

where u is a solution of (4.3), u∗(x) = e−(x−π)2 , and α is a regularization parameter.
Obviously, the gradient computation in (3.9) has to be modified accordingly, but no
further changes compared with the previous example are made. As expected, Table 2
shows that increasing value of parameter α leads a decreasing number of iterations
while preserving the second order of accuracy of the method.

Furthermore, we compare the performance of the proposed discrete method of
characteristics with an upwind approach from [25] for solving the adjoint transport
equation (4.4). To this end, we apply a first-order version of the central-upwind scheme
(briefly discussed in “Appendix A”) to the forward equation (4.3) and then use either
the method of characteristics or the first-order upwind scheme for solving the adjoint
equation (4.4). Since in this case, the overall accuracy of the method is one, we chose
a much larger tol = (�x)2. Table 3 shows the number of iterations and L1-errors
for both cases. We observe that the iteration numbers are slightly better if the adjoint
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Table 3 Example 1: Comparison of the upwind scheme and the method of characteristics for solving (4.4)

Upwind Characteristics

�x No. of Iterations ‖e0‖L1 ‖eT ‖L1 No. of Iterations ‖e0‖L1 ‖eT ‖L1

2π/100 46 2.50 × 10−1 1.90 × 10−1 38 2.10 × 10−1 2.00 × 10−1

2π/200 107 1.40 × 10−1 1.00 × 10−1 99 1.10 × 10−1 1.00 × 10−1

2π/400 251 7.25 × 10−2 5.22 × 10−2 243 5.20 × 10−2 5.12 × 10−2

2π/800 584 3.71 × 10−2 2.61 × 10−2 574 2.62 × 10−2 2.60 × 10−2

Optimization is terminated when J ≤ tol = (�x)2

equation is solved by the method of characteristics; they are also lower compared to
the corresponding numbers in Table 1 due to the reduced tolerance. As expected, the
rate of convergence is approximately one.

Example 2: Nonlinear constraints

In this section, we consider the optimization problem (4.1a)–(4.1b) subject to the
nonlinear inviscid Burgers equation,

ut +
(

u2

2

)
x

= 0, x ∈ [0, 2π ], t > 0,

u(x, 0) = u0(x), x ∈ [0, 2π ],
u is 2π -periodic,

(4.7)

as the constraint and use its solution at a certain time as a terminal state for the control
problem. We generate this terminal state ud by solving (4.7) with the initial data given
by

u0(x) = 1

2
+ sin x, x ∈ [0, 2π ]. (4.8)

It is easy to show that for t < π/2 the solution of (4.7), (4.8) is smooth, whereas
it breaks down and develops a shock wave at the critical time of t = π/2 (later on,
the shock travels to the right with a constant speed of s = 0.5). In the following, we
will consider both smooth, u(x, T = π/4), and nonsmooth, u(x, T = 2), solutions of
(4.7), (4.8), computed by the 1-D version of the second-order semi-discrete central-
upwind scheme (see Sect. 3.1), and use them as terminal states ud in the optimization
problem.

In Figs. 1 and 2, we plot the recovered smooth optimal initial data u(m)0 (x) together
with the exact initial data u0(x) from (4.8) and the computed terminal state u(m)(x, T =
π/4) together with ud(x), respectively. The Eulerian part of the computations were
performed on a uniform grid with�x = 2π/100. At the beginning of each backward
Lagrangian step, the characteristics points were placed at the center of each finite-
volume cell. We have also solved the optimization problem on finer grids, namely,
with�x = 2π/200 and 2π/400. The plots look very similar to those shown in Figs. 1
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Fig. 1 Example 2 (smooth case): Recovered initial data u(m)0 (x) with m = 1, 5, 20, 50, 100 and 150
(dashed line) and the exact initial data (4.8) (solid line)

and 2 and therefore are not presented here. In all of the computations, the iterations
were started with the initial guess u(0)0 (x) ≡ 0.5.

We also perform a numerical grid convergence study, whose results are presented
in Table 4. One can clearly see that similarly to the case of linear constraint (Example
1), the expected second-order rate of convergence has been achieved in the smooth
nonlinear case with tol = 25(�x)4.

We then proceed with the nonsmooth terminal state ud(x) = u(x, T = 2). In this
case, the solution of the studied optimization problem is not unique. Our Eulerian–
Lagrangian method recovers just one of the possible solutions, which is presented
in Figs. 3 and 4. In Fig. 3, we plot the recovered initial data u(m)0 (x) together with
the initial data (4.8), used to generate u(x, T = 2) by the central-upwind scheme.
In Fig. 4, we show the computed terminal state u(m)(x, T = 2) together with ud(x).
The plotted solutions are computed on a uniform grid with �x = 2π/100 and the
corresponding number of characteristics points (as before, similar results are obtained
on finer grids but not reported here).

Further, we conduct a comparison of the convergence behaviour for the smooth
(T = π/4) and nonsmooth (T = 2) solutions of the optimization problem (4.1a),
(4.7). In the nonsmooth case, the terminal state ud is discontinuous. The discontinuity is
located at x̄ = π+1 with the left ud(x̄−) = ul = 3/2 and right ud(x̄+) = ur = −1/2
states, respectively. The extremal backward characteristics emerging at x̄ reach the
points xl = x̄ − 3 and xr = 1 + x̄ at time t = 0. In order to avoid the problem of
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Fig. 2 Example 2 (smooth case): Recovered solution of the optimal control problem, u(m)(x, T = π/4)
with m = 1, 5, 20, 50, 100 and 150 (dashed line) and the terminal state ud (solid line)

Table 4 Example 2: L1-convergence study for smooth solutions

�x No. of iterations ‖e0‖L1 Rate ‖eT ‖L1 Rate

2π/100 127 6.44 × 10−2 – 6.10 × 10−2 –
2π/200 404 1.75 × 10−2 1.88 1.57 × 10−2 1.94
2π/400 1365 3.20 × 10−3 2.45 3.07 × 10−3 2.35

nonuniqueness of the optimal solution in the region xl ≤ x ≤ xr , we compute in the
nonsmooth case the L1-error only on the intervals Il := [0, xl ] and Ir := [xr , 2π ],
that is, in this case we define

‖e0‖L1
loc

:= �x
∑

j

χIl∪Ir (x j )|u(m)0 (x j )− u0(x j )|.

Here, u0 is given by equation (4.8) and χI is the characteristic function on the interval
I . The tolerance for both cases is set to tol = (�x)2 and the results are reported in
Table 5.

We also check the numerical convergence of the computed adjoint solution p.
Notice that inside the region of the extremal backwards characteristics, p is constant

and according to [19], its value is equal to 1
2
(u(x̄+,T )−ud (x̄))2−(u(x̄−,T )−ud (x̄)2

u(x̄+,T )−u(x̄−,T ) = 0.
Therefore, p(x, 0) ≡ 0 everywhere, and we measure the computed p in the maximum
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Fig. 3 Example 2 (nonsmooth case): Recovered initial data u(m)0 (x) with m = 1, 5, 20, 50, 100 and 200
(dashed line) and u0(x) given by (4.8) (solid line)

norm at time t = 0. The results are shown in Table 6, where we demonstrate the
behavior of max |p j (0)| both outside, max

j :x j ∈Il∪Ir
|p j (0)|, and inside, max

j :x j ∈[xl ,xr ]
|p j (0)|,

the shock region. As expected, a pointwise convergence is only observed away from
the region of the extremal backwards characteristics.

Example 3: Duct design problem

In this example, we consider a duct design problem from [16] (see also [44, p. 233]).
In the original model in [16], the flow within a duct area A(x) is described by

the 1-D Euler equations. Under several simplifying assumptions, this problem can be
reduced to an optimization problem for A subject to the following ODE constraint
(see [17]):

f (u)x = h(u, A), x ∈ (0, 1), (4.9)

with

f (u) = u + H

u
, h(u, A) = − A′

A

(
γ u − H

u

)
, (4.10)

where γ and H are positive constants, and appropriate boundary conditions are sup-
plied.

The boundary conditions for (4.9), (4.10) given in [16] are such that the solution has
a discontinuity at some unknown point x∗, at which the Rankine–Hugoniot condition
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Fig. 4 Example 2 (nonsmooth case): Recovered solution of the optimal control problem, u(m)(x, T = 2)
with m = 1, 5, 20, 50, 100 and 200 (plotted with points) and the terminal state ud (solid line)

Table 5 Example 2: Comparison of convergence behavior for J ≤ tol = (�x)2 and terminal times
T = π/4 and T = 2, for which the terminal states ud is smooth and nonsmooth, respectively

T = π/4 T = 2

�x No. of
iterations

‖e0‖L1 ‖eT ‖L1 No. of
iterations

‖e0‖L1
loc

‖eT ‖L1
loc

2π/50 21 4.10 × 10−1 3.60 × 10−1 30 2.41 × 10−1 3.45 × 10−1

2π/100 70 2.10 × 10−1 2.00 × 10−1 90 1.17 × 10−1 1.53 × 10−1

2π/200 313 1.10 × 10−1 1.00 × 10−1 271 4.63 × 10−2 5.19 × 10−2

2π/400 1033 5.00 × 10−2 4.88 × 10−2 5226 3.47 × 10−2 4.11 × 10−2

2π/800 5845 2.47 × 10−2 2.44 × 10−2 1953 1.17 × 10−2 1.41 × 10−2

Table 6 Example 2: Maximum
values of the adjoint solution p,
computed at time t = 0 outside
and inside the region of the
extremal backwards
characteristics

�x No. of iterations max
j :x j ∈Il∪Ir

|p j (0)| max
j :x j ∈[xl ,xr ] |p j (0)|

2π/50 30 7.46 × 10−2 6.29 × 10−1

2π/100 90 3.38 × 10−2 4.11 × 10−1

2π/200 271 1.05 × 10−2 4.26 × 10−1

2π/400 5226 8.61 × 10−3 1.12 × 10−1

2π/800 1953 3.08 × 10−3 1.36 × 10−1
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holds. The desired profile of A is then obtained by solving a minimization problem for
a given state ud(x) obtained as a solution of (4.9), (4.10) for a prescribed area Ad(x)
and the following boundary data u(0) = u� = 1.299 and u(1) = ur = 0.506. The
function Ad is defined as the following cubic polynomial:

Ad(x) = −1.19x3 + 1.785x2 + 0.1x + 1.05.

In [44, Section 7.1], a time dependent version of the original duct design problem
has been considered subject to the nonlinear hyperbolic balance law constraint:

ut + f (u)x = h(u, A), x ∈ (0, 1), t > 0,

u(x, 0) = u0(x), x ∈ (0, 1),

u(0, t) = u�(1 + 0.15 sin(4π t)), u(1, t) = ur , t > 0,

(4.11)

with f and h given by (4.10). The terminal velocity profile ud is given by the solution
of (4.11) with A = Ad . The optimization for A is then performed using a tracking-
type functional on the full spatial and temporal grid and a regularization of A. In this
paper, we consider a slightly different optimization problem: For a given A = Ad and
a desired flow profile ud we identify the initial flow condition u0. Hence, we study
an optimization problem (4.1a) subject to the constraint (4.11). In our numerical
experiments, we choose the parameters γ = 1

6 and H = 1.2 as in [16]. The terminal
state ud is obtained as the numerical solution of (4.11) (computed by the 1-D version
of the second-order semi-discrete central-upwind scheme from Sect. 3.1) at time T =
0.15 from Riemann initial data with

u(x, 0) =
{

u�, x < 0.5,

ur , x > 0.5.
(4.12)

The recovered initial condition u(m)0 (x) is shown in Fig. 5. As in the previous
nonsmooth example, the recovered initial condition is not unique since the terminal
state is discontinuous. In Fig. 6, we plot the obtained solution of the optimal control
problem (4.1a), (4.11). As one can see, the convergence in this example is much slower
than on the previous ones, but after about 2000 iterations we recover u(2000)(x, T =
0.15), which almost coincides with ud .

The presented results were obtained using the initial guess u(0)0 (x) = u� + (ur −
u�)x , which satisfies the prescribed boundary condition at time t = 0. We have used
a uniform finite-volume grid with �x = 1/100 and taken 400 characteristics points,
which were placed uniformly in the interval (0, 1) at the terminal time T = 0.15.
Notice that some of the traced characteristics curves leave the computational domain
at times t ∈ (0, T ). This may lead to appearing and widening gaps at/neat the shock
area. We fill these gaps using the linear interpolation technique discussed in Remark
3.8.
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Fig. 5 Example 3: Recovered initial data of the optimal control problem, u(m)0 (x, T = 0.15) with m =
10, 50, 200, 500, 1000 and 2000 (dashed line) and u0(x) given by (4.12) (solid line)

4.2 The two-dimensional case

We finally turn to the 2-D example.

Example 4: 2-D Burgers equation

We numerically solve the 2-D optimization problem (1.1a)–(1.1c) subject to the invis-
cid Burgers equation:

ut +
(

u2

2

)
x

+
(

u2

2

)
y

= 0. (4.13)

The optimal control problem is solved in the domain [0, 2π ]×[0, 2π ] with the period
boundary conditions and the terminal state ud obtained by a numerically solving
(using the second-order semi-discrete central-upwind scheme described in Sect. 3.1)
Eq. (4.13) subject to the following initial data:

u(x, y, 0) = 1

2
+ sin2

(1

2
x
)

sin2
(1

2
y
)
. (4.14)

The solution was computed on a uniform finite-volume grid with�x = �y = 2π/100.
We have started the Lagrangian method of characteristics with 104 points uniformly
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Fig. 6 Example 3: Recovered solution of the optimal control problem, u(m)(x, T = 0.15) with m =
10, 50, 200, 500, 1000 and 2000 (plotted with points) and the terminal state ud (solid line)

distributed throughout the computational domain at time t = T . We show 2-D plots of
the optimal controls and the corresponding optimal states at times T = 1 and T = 3
(both the top view and the 1-D diagonal slice along the line y = x). The results for
T = 1 are shown in Figs. 7 and 8, while the results for T = 3 are presented in
Figs. 9 and 10. In the former cases, when the terminal state is smooth, the solution
of the optimization problem exhibits quite fast convergence in recovering both the
initial data and the terminal state. In the latter case of a nonsmooth terminal state, the
convergence is slower, and the control u0 given by (4.14) is not fully recovered due
to lack of uniqueness. Nevertheless, the optimal state u(200)(x, y, T = 3) in Fig. 10
almost coincides with ud .

5 A convergence analysis

In this section, we discuss convergence properties of the proposed method in the 1-D
case. Here, the derivation closely follows [44] and we apply the results from [44] to
the presented scheme in order to proof its convergence.

To this end, we consider the problem (4.1b) in R with no source term (h(u, x, t ≡
0)):

ut + f (u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(5.1)
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Fig. 7 Example 4 (T = 1): Recovered initial data u(m)0 (x, y) with m = 1, 5, 20, 50 and 130 and the exact
initial data (4.14) (top left). The bottom part contains the corresponding plots along the diagonal y = x
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Fig. 8 Example 4: Recovered solution of the optimal control problem, u(m)(x, y, T = 1), with m =
1, 5, 10, 20, 50 and 130 and the terminal state ud (top left). The bottom part contains the corresponding
plots along the diagonal y = x
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Fig. 9 Example 4 (T = 3): Recovered initial data u(m)0 (x, y) with m = 1, 5, 10, 50, 100 and 200 and
the exact initial data (4.14) (top left). The bottom part contains the corresponding plots along the diagonal
y = x
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Fig. 10 Example 4: Recovered solution of the optimal control problem, u(m)(x, y, T = 3), with m =
1, 5, 10, 50, 100 and 200 and the terminal state ud (top left). The bottom part contains the corresponding
plots along the diagonal y = x
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and a strictly convex flux function f ∈ C2(R), that is,

f ′′ ≥ c > 0 for some c > 0. (5.2)

The adjoint problem is then of the type

pt + v(x, t)px = 0, x ∈ R, t ∈ (0, T ),

p(x, T ) = pT (x) x ∈ R,
(5.3)

where v(x, t) = f ′(u(x, t)) in the case under consideration. It can be shown that if
pT is Lipschitz continuous and v ∈ L∞((0, T )× R) is OSLC, that is, it satisfies,

vx (·, t) ≤ α(t), α ∈ L1(0, T ), (5.4)

then there exists a reversible solution of (5.3). We refer, for instance, to [25, Definition
2.1, Theorem 2.2] and [44, Definition 3.7.2, Theorem 3.7.3] for the notion of reversible
solutions. Further results on (5.3) can be found in [4].

Remark 5.1 The adjoint equation (5.3) as well as the assumption (5.4) is well-defined
for v(x, t) = f ′(u(x, t)) only if u does not contain any shocks. Therefore, the follow-
ing convergence analysis is only applicable where the characteristics are outside the
region entering a shock.

Under the above assumptions convergence properties within a general theory were
established in [25,44] for some first-order numerical methods. The assumptions are
restrictive but to the best of our knowledge no results for multidimensional problems,
general flux functions or higher-order methods are available. Even though our numer-
ical experiments clearly demonstrate the convergence of the proposed second-order
Eulerian–Lagrangian method, we have been unable to formally prove this. Instead,
we significantly simplify our method by adding a substantial amount of numerical
diffusion to both the Eulerian and Lagrangian parts as described below, and prove the
convergence for the simplified method only.

We first reduce the order of the method to the first one. The central-upwind scheme
then becomes the HLL scheme [27], which can be written in the fully discrete form as

un+1
j = un

j − λ

(
Fn

j+ 1
2

− Fn
j− 1

2

)
, (5.5)

where un
j ≈ 1

�x

∫ x
j+ 1

2
x

j− 1
2

u(x, tn) dx are the computed cell averages, λ := �t/�x and

the numerical fluxes are given by

Fn
j+ 1

2
=

a+
j+ 1

2
f (un

j )− a−
j+ 1

2
f (un

j+1)

a+
j+ 1

2
− a−

j+ 1
2

+
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

(un
j+1 − un

j ), (5.6)
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with the following one-sided local speeds:

a+
j+ 1

2
= max

{
f ′(un

j ), f ′(un
j+1), 0

}
, a−

j+ 1
2

= min
{

f ′(un
j ), f ′(un

j+1), 0
}
. (5.7)

The amount of numerical viscosity present in the HLL scheme (5.5)–(5.7) can be
reduced by setting

a+
j+ 1

2
= −a−

j+ 1
2

= a j+ 1
2

:= max
{
| f ′(un

j )|, | f ′(un
j+1)|

}
, (5.8)

which leads to the Rusanov scheme [41] with the numerical flux

Fn
j+ 1

2
= 1

2

(
f (un

j )+ f (un
j+1)

)
−

a j+ 1
2

2
(un

j+1 − un
j ). (5.9)

However, the numerical diffusion in the Rusanov scheme (5.5), (5.8), (5.9) is still not
large enough and we thus further reduce it by considering the modified Lax–Friedrichs
scheme studied, for instance, in [44, Section 6.5.2]: We replace the local speeds a j+ 1

2
by the global ones, which results in the following numerical flux:

Fn
j+ 1

2
= 1

2

(
f (un

j )+ f (un
j+1)

)
− γ

2λ
(un

j+1 − un
j ), γ = λmax

j
a j+ 1

2
. (5.10)

Assuming that at time T the set of the characteristics points coincides with the
finite-volume grid, the 1-D method of characteristics for the adjoint problem (5.3) is

⎧⎪⎪⎨
⎪⎪⎩

dxc
i (t)

dt
= f ′(u(xc

i (t), t)), xc
i (T ) = xi ,

dpc
i (t)

dt
= 0, pc

i (T ) = pT (x
c
i (T )) = pNT

i .

(5.11)

Here, the value of u(xc
i (t), t) is obtained from the piecewice constant reconstruction

ũ(x, ·) =
∑

j

χ j (x)u j (·), (5.12)

that is,

u(xc
i (t

n), tn) = ũ(xc
i (t

n), tn) = un
j ,

provided the characteristic point xc
i is located in cell j at time tn . The ODE system

(5.11) is then to be integrated backward in time starting from t = T .
In order to establish a convergence result, we modify the method of characteristics

as follows. At the end of each time step, the obtained solution is first projected to
the finite-volume cell centers {x j } (this procedure adds a substantial amount of a
numerical diffusion to the nondiffusive method of characteristics) and then the method
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is restarted. This way, at time t = tn+1 each characteristics will start from the cell
center and provided the CFL number is smaller than 1/2, it will stay in the same cell
at the end of the time step. Therefore, the new location of the characteristics can be
obtained using the Euler method:

xc
j (t

n) = x j −�t f ′n
j , where f ′n

j := f ′(un
j ). (5.13)

The resulting Lagrangian method then reduces to a first-order Eulerian (finite-
difference) one, which can be described as follows:

• If f ′n
j = 0, then

pn
j = pn+1

j ; (5.14)

• If f ′n
j > 0, then

pn
j = (1 − βn

j ) pn+1
j + βn

j pn+1
j+1, (5.15)

where

βn
j = λ f ′n

j

1 − λ( f ′n
j+1 − f ′n

j )
+ = λ f ′n

j

1 − λ(�+ f ′n
j )

+ ; (5.16)

• If f ′n
j < 0, then

pn
j = (1 − γ n

j ) pn+1
j + γ n

j pn+1
j−1, (5.17)

where

γ n
j = −λ f ′n

j

1 − λ( f ′n
j − f ′n

j−1)
+ = −λ f ′n

j

1 − λ(�+ f ′n
j−1)

+ . (5.18)

In (5.16) and (5.18), we have used the standard notations �+ω j := ω j+1 − ω j ,
ξ+ := max(ξ, 0), and ξ− := min(ξ, 0).

It should be observed that ∀ j, n,

βn
j > 0, γ n

j > 0,
1

2
≤ 1 − λ(�+ f ′n

j )
+ ≤ 3

2
, λ(�+ f ′n

j )
+ ≤ 1

2
, (5.19)

as long as the following CFL condition is imposed:

λ ≤ 1

4 max
j,n

| f ′n
j |
. (5.20)

Remark 5.2 Notice that if f ′n
j+1 ≥ f ′n

j , then (5.15), (5.16) is a result of the linear
interpolation between the point values of p at the characteristic points xc

j (t
n) and

xc
j+1(t

n), while if f ′n
j+1 < f ′n

j , then (5.15), (5.16) reduces to a simple first-order
upwinding:

pn
j = pn+1

j + λ f ′n
j (p

n+1
j − pn+1

j+1).

A similar argument holds for (5.17), (5.18).
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Next, we reformulate the above cases and rewrite equations (5.14)–(5.18) in the
following compact form (see also [44, (6.45)] or [25, (3.9)]):

pn
j = βn

j H( f ′n
j )p

n+1
j+1 + γ n

j H(− f ′n
j )p

n+1
j−1 +

(
1 − βn

j H( f ′n
j )− γ n

j H(− f ′n
j )p

n
j

)

=
1∑

l=−1

Bn,l
j pn+1

j−l , (5.21)

where

Bn,−1
j := λv

n,0
j = βn

j H( f ′n
j ) = λ

( f ′n
j )

+

1 − λ(�+ f ′n
j )

+ ,

Bn,1
j := −λvn,1

j−1 = γ n
j H(− f ′n

j ) = −λ ( f ′n
j )

−

1 − λ(�+ f ′n
j−1)

+ ,

Bn,0
j := 1 + λ(v

n,1
j−1 − v

n,0
j ) = 1 − γ n

j H(− f ′n
j )− βn

j H( f ′n
j ),

(5.22)

and H is the Heaviside function. We also note that the difference�+ pn
j can be written

as

�+ pn
j =

1∑
l=−1

Dn,l
j �

+ pn+1
j−l , (5.23)

where

Dn,−1
j := λv

n,0
j+1, Dn,1

j := −λvn,1
j−1, Dn,0

j := 1 + λ(v
n,1
j − v

n,0
j ). (5.24)

Taking into account (5.19) and the CFL condition (5.20), it is easy to check that

Bn,l
j ≥ 0, Dn,l

j ≥ 0, ∀ j, n and l ∈ {−1, 0, 1}. (5.25)

In what follows, we prove the convergence of the discrete scheme (5.21), (5.22)
towards the solution of (5.3) with v = f ′(u). We follow the lines of [25,44] and
assume that:

(A1) There exist constants �0,Mu > 0 such that for all �t = λ�x ≤ �0, we have

‖ũ‖∞ ≤ Mu, ũ(·, t) → u(·, t) in L1
loc(R) ∀t ∈ [0, T ], (5.26)

where ũ is given by (5.12) and u is the entropy solution of (5.1), (5.2);
(A2) There exists a function μ ∈ L1(0, T ) such that for all �t = λ�x ≤ �0, the

discrete OSLC holds, that is,

�+un
j ≤ λ

tn+1∫

tn

μ(s) ds ∀ j, n. (5.27)
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It was proved in [44] that solutions obtained by the scheme (5.5), (5.10) satisfy the
assumptions (A1) and (A2). The OSLC property and rigorous convergence rate esti-
mates were established for several first-order [38,39] and second-order [30] schemes.
Numerous numerical experiments reported in the literature suggest that solutions of
both the HLL (5.5)–(5.7) and Rusanov (5.5), (5.9) schemes also satisfy the assump-
tions (A1) and (A2). However, to the best of our knowledge, no rigorous proof of this
is available.

Equipped with the above assumptions, we apply [44, Theorem 6.3.4] to our scheme.
To this end, we verify that the discrete functions vn,l

j in (5.22) fulfill the following
conditions which are similar to the assumptions (A1) and (A2) (see [25, Theorem
2.4]):

(A3) There exist a constant Ma > 0 such that for all �t = λ�x ≤ �0

‖̃vl‖∞ ≤ Ma, ṽ =
1∑

l=0

ṽl → v = f ′(u) in L1
loc((0, T )× R) as �x → 0.

(5.28)
Here,

ṽl(x, t) :=
∑
j,n

v
n,l
j χQn

j
(x, t),

whereχQn
j
is a characteristic function of the space-time volume Qn

j := [x j− 1
2
, x j+ 1

2
)×

[tn, tn+1);

(A4) There exists a function α ∈ L1(0, T ) such that for all �t = λ�x ≤ �0

1∑
l=0

�+vn,l
j ≤ λ

tn+1∫

tn

α(s) ds ∀ j, n. (5.29)

We start by proving (5.28) and note that

‖̃vl‖∞ ≤ 2 max
j,n

| f ′n
j | =: Ma < ∞,

since ‖ũ‖∞ is bounded, and

ṽ(x, t) =
1∑

l=0

ṽl(x, t) =
∑
j,n

( f ′n
j )

+ + ( f ′n
j+1)

−

1 − λ(�+ f ′n
j )

+ χQn
j
(x, t).
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Taking into account (5.26), (5.27), we have that for all R > 0 and all�t = λ�x ≤ λ

‖ũ(· +�x, ·)− u‖L1((−R,R)×(0,T ))
= ‖ũ(· +�x, ·)− u(· +�x, ·)+ u(· +�x, ·)− u‖L1((−R,R)×(0,T ))
≤ ‖ũ − u‖L1((−R−1,R+1)×(0,T )) + ‖u(· +�x, ·)

− u‖L1((−R,R)×(0,T )) → 0 as �x → 0. (5.30)

We also have

∣∣∣ f ′(u)−
1∑

l=0

ṽl
∣∣∣ ≤

∑
j,n

[ ∣∣∣( f ′(u))+ − v
n,0
j

∣∣∣ +
∣∣∣( f ′(u))− − v

n,1
j

∣∣∣
]
χQn

j
(x, t)

≤2
∑
j,n

[ ∣∣∣( f ′(u))+ − ( f ′n
j )

+
∣∣∣ + λ

∣∣∣( f ′(u))+(�+ f ′n
j )

+
∣∣∣

+
∣∣∣( f ′(u))− − ( f ′n

j+1)
−
∣∣∣ + λ

∣∣∣( f ′(u))−(�+ f ′n
j )

+
∣∣∣
]
χQn

j
(x, t)

and

∣∣∣( f ′(u))+(�+ f ′n
j )

+
∣∣∣ +

∣∣∣( f ′(u))−(�+ f ′n
j )

+
∣∣∣ ≤ 2‖ f ′(u)‖∞| f ′n

j+1 − f ′n
j |

≤ 2‖ f ′(u)‖∞ max
ũ

{| f ′′(̃u)|} |un
j+1 − un

j |

provided u ∈ L∞(R × (0, T )) and ũ satisfies (5.26) and (5.27). We then denote by
M0:=‖u‖∞, M1:= max|u|≤max{M0,Mu} | f ′(u)|, and M2:= max|u|≤max{M0,Mu} | f ′′(u)|
to obtain

∣∣∣ f ′(u)−
1∑

l=0

ṽl
∣∣∣ ≤ 4M2

∑
j,n

[
|u − un

j | + λM1|un
j+1 − un

j |
]
χQn

j
(x, t).

The last inequality together with (5.30) lead to (5.28) since ũ(x + �x, t) =∑
j,n un

j+1χQn
j
(x, t).

It remains to prove (5.29). Let α ∈ L1(0, T ), �0 > 0 such that (5.26) and (5.27)
hold with μ(t) = α(t), and assume without lost of generality that α(t) ≥ 0, ∀t . We
also denote by

� : = �+vn,0
j +�+vn,1

j−1

= ( f ′n
j+1)

+

1 − λ(�+ f ′n
j+1)

+ − ( f ′n
j )

+

1 − λ(�+ f ′n
j )

+ + ( f ′n
j+1)

−

1 − λ(�+ f ′n
j )

+

− ( f ′n
j )

−

1 − λ(�+ f ′n
j−1)

+ .
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To establish the required estimate, we distinguish between several cases, which are
treated using (5.19) and (5.20) to obtain:

• If f ′n
j+1 ≥ 0 and f ′n

j ≤ 0, then

� = f ′n
j+1

1 − λ(�+ f ′n
j+1)

+ − f ′n
j

1 − λ(�+ f ′n
j−1)

+

≤ 2
(

f ′n
j+1 − f ′n

j

)
≤ 2M2(�

+un
j )

+;

• If f ′n
j+1 ≥ 0, f ′n

j > 0 and f ′n
j+1 > f ′n

j , then

� = f ′n
j+1

1 − λ(�+ f ′n
j+1)

+ − f ′n
j

1 − λ�+ f ′n
j

= (1 − λ f ′n
j+1)�

+ f ′n
j + λ f ′n

j (�
+ f ′n

j+1)
+

(1 − λ�+( f ′n
j+1)

+)(1 − λ�+ f ′n
j )

≤ M2

[
4(�+un

j )
+ + (�+un

j+1)
+]

;

• If f ′n
j+1 ≥ 0, f ′n

j > 0 and f ′n
j+1 ≤ f ′n

j , then

� = f ′n
j+1

1 − λ(�+ f ′n
j+1)

+ − f ′n
j ≤ f ′n

j

1 − λ(�+ f ′n
j+1)

+ − f ′n
j ≤ 1

2
M2(�

+un
j+1)

+;

• If f ′n
j+1 < 0, f ′n

j > 0, then

� = f ′n
j+1

1 − λ(�+ f ′n
j )

+ − f ′n
j

1 − λ(�+ f ′n
j )

+ < 0;

• If f ′n
j+1 < 0, f ′n

j ≤ 0 and f ′n
j+1 ≤ f ′n

j , then

� = f ′n
j+1 − f ′n

j

1 − λ(�+ f ′n
j−1)

+ ≤ f ′n
j − f ′n

j

1 − λ(�+ f ′n
j−1)

+

≤ 1

2
M2(�

+un
j−1)

+;
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• If f ′n
j+1 < 0, f ′n

j ≤ 0 and f ′n
j+1 > f ′n

j , then

� = f ′n
j+1

1 − λ�+ f ′n
j

− f ′n
j

1 − λ(�+ f ′n
j−1)

+

= (1 + λ f ′n
j )�

+ f ′n
j − λ f ′n

j+1(�
+ f ′n

j−1)
+

(1 − λ�+ f ′n
j )(1 − λ�+( f ′n

j−1)
+)

≤ M2

[
4(�+un

j )
+ + (�+un

j−1)
+]

;

Assuming as before that u and ũ satisfy (5.26), (5.27), we conclude that in all of the
cases � can be estimated by

� ≤ cλ

tn+1∫

tn

α(s) ds

with c = c(M2).
The established estimates together with [44, Theorem 6.3.4] lead to the following

convergence result.

Theorem 5.1 Assume that f ∈ C2(R) satisfies the assumption (5.2). Let pT ∈
Lip(R) and u ∈ L∞(R × (0, T )) and satisfy (5.26), (5.27). Assume that the dis-
cretization of pT is consistent, that is, there exist constants MT > 0 and LT > 0 such
that

‖ p̃T ‖∞ ≤ MT , sup
x∈R

∣∣∣∣ p̃T (x +�x)− p̃T (x)

�x

∣∣∣∣ ≤ LT ,

p̃T → pT in [−R, R] for all R > 0 as �x → 0.

(5.31)

Assume also that the CFL condition (5.20) holds. Then, the solution to the adjoint
scheme (5.21) converges locally uniformly to the unique reversible solution p ∈
Lip(R × [0, T ]) of (5.3) with v = f ′(u), that is,

p̃ → p in [−R, R] × [0, T ] for all R > 0 as �t = λ�x → 0.

Here, p̃T and p̃ are piecewise constant approximations of pT (x) and the computed
solution {pn

j }, respectively.

Remark 5.3 While equations (5.26), (5.27) and (5.31) mimic the assumptions (D2),
(D3) and (C1) in [44], it should be observed that (5.27) can be weakened the same
way it was done in [44]. Similarly, one could use [25, Theorem 3.7] to establish the
convergence result for the adjoint equation.

The previous simplifications allow to state a convergence result for the gradients
for a smooth version of the cost functional (1.1c). For a given nonnegative function
φδ ∈ Lip0(R) with the support in [− δ

2 ,
δ
2 ] and

∫
R
φδ(x) dx = 1 and ψ ∈ C1

loc(R
2),

123



722 A. Chertock et al.

let Jδ be given by

Jδ(u0) :=
1∫

0

ψ
(
(φδ ∗ u)(x, T ), (φδ ∗ ud)(x)

)
dx . (5.32)

Here, u is the entropy solution of the initial value problem (5.1) and ∗ denotes a
convolution in x . For Jδ to be well-posed we assume ud ∈ L∞(R). We discretize Jδ
by

J̃δ (̃u0) =
∑

k

ψ
(
(φδ ∗ ũ)(xk, T ), (φδ ∗ ũd)(xk)

)
�x, (5.33)

where (̃·) denotes a corresponding piecewise polynomial (piecewise constant for first-
order methods) approximation.

The gradient of Jδ exists in the sense of Frechet differentials, see [44, Theorem
5.3.1]. Using Theorem 5.1 and [44, Theorem 6.4.8], one may obtain the follwoing
convergence result.

Theorem 5.2 Assume that f ∈ C2(R) satisfies the assumption (5.2). Let Jδ be given
by (5.32) and assume that u0 ∈ L∞(R × (0, T )) such that (u0)x ≤ K . Let

p̃(x j , T ) =
∑

k

φδ(x j − xk)∂1ψ
(
(φδ ∗ ũ)(xk, T ), (φδ ∗ ũd)(xk)

)
�x,

where ∂1ψ denotes a partial derivative of ψ with respect to its first component.
Let ũ(x, ·) be an approximate solution of (5.1) obtained by (5.5), (5.10), (5.12) and

p̃ be a piecewise constant approximation of the solution computed by (5.21). Let the
CFL conditions (5.20) and

λ max|u|≤‖u0‖∞
| f ′(u)| ≤ min{(1 − ρ)min(γ, 2 − 2γ ), 1 − γ }

hold for some fixed value of ρ ∈ (0, 1).
Then, p̃(·, 0) is an approximation to the Frechet derivative of Jδ with respect to u0

in the following sense:

p̃(·, 0) → p(·, 0) = ∇ Jδ(u0) in Lr (R) as �t = λ�x → 0,

for all r ≥ 1. Herein, p is the reversible solution of (5.3) with the terminal data

pT (x) =
1∫

0

φδ(x − z)∂1ψ
(
(φδ ∗ u)(z, T ), (φδ ∗ ud)(z)

)
dz.

Remark 5.4 A similar result holds under the assumption that (u0)x
∣∣
R\E ≤ K for some

closed set E , see [44, Chapter 6] for more details.
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