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a b s t r a c t

We introduce a new second-order central-upwind scheme for shallow water equations on the unstructured

quadrilateral grids. We propose a new technique for bottom topography approximation over quadrilateral

cells as well as an efficient water surface correction procedure which guarantee the positivity of the computed

fluid depth. We also design a new quadrature for the discretization of the source term, using which the new

scheme exactly preserves “lake at rest” steady states. We demonstrate these features of the new scheme as

well as its high resolution and robustness and its potential advantages over the triangular central-upwind

scheme in a number of numerical examples.

© 2015 Elsevier Ltd. All rights reserved.

1

e⎧⎪⎨⎪⎩
a

t

a

o

p

s

u

b

a

t

+

u

d

fi

p

i

m

t

s

t

s

i

d

g

t

p

b

u

i

f

e

a

h

0

. Introduction

In this paper we consider the two-dimensional (2D) shallow water

quations (SWEs):

ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 + 1

2
gh2

)
x
+ (huv)y = −ghBx,

(hv)t + (huv)x +
(
hv2 + 1

2
gh2

)
y

= −ghBy.

(1)

Here, h(x, y, t) is the water depth, u(x, y, t) and v(x, y, t) are the x−
nd y− velocities, respectively, B(x, y) is bottom topography and g is

he gravitational constant. 2D SWEs are commonly used to simulate

wide range of problems in water resources engineering, modeling

ceans, rivers and coastal areas, etc.

The system (1) admits several steady-state solutions. One of the

ractically most important steady states is a so-called "lake at rest"

tate satisfying,

≡ v ≡ 0, h + B = const. (2)

A good numerical method for the SWEs (1) should be well-

alanced, that is, it should be capable to exactly preserve the "lake

t rest" steady states (2). It should also preserve positivity of the wa-

er depth h.
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Many numerical methods for SWEs were developed in past

ecades. We refer the reader, for example, to finite difference [1–4],

nite element [4–9] and finite volume [4,10–15] methods. In this pa-

er we focus on the finite volume method which are based on the

ntegral form of (1) and thus are naturally designed to conserve the

ass.

Central upwind scheme is one of the finite volume methods

hat is both well-balanced and positivity preserving. Central-upwind

chemes are Riemann-problem-solver-free Godunov-type methods

hat were originally introduced in [16] for the general multidimen-

ional systems of hyperbolic conservation law and further developed

n [17–20]. In [21,22], the central- upwind scheme for the SWEs were

eveloped in the one-dimensional (1D) and 2D cases using Cartesian

rids. In [23], the central-upwind schemes were extended to unstruc-

ured triangular meshes, and in [24], they were also generalized for

olygon cell-vertex meshes.

The main goal of this paper is to develop a second-order well-

alanced positivity preserving central-upwind scheme for (1) on

nstructured quadrilateral grids. Such grids have been widely used

n finite volume methods for various applications, in particular,

or numerically solving incompressible Navier–Stokes, diffusion

quations, semilinear elliptic and elliptic systems, see, e.g., [25–28]

nd references therein. In particular, quadrilateral grids have been

sed to develop finite volume methods for the 2D SWEs, see, e.g.,

29–34]. Unstructured quadrilateral grids are popular since they

llow one to relatively easily implement the local and adaptive mesh

efinement techniques [35,36], increase the formal order of spatial

ccuracy of the scheme, and discretize the second- and higher-order

erms [30,37]. Comparing to the triangular grids, one of the main
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Fig. 1. An unstructured quadrilateral cell with its four neighboring cells.
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advantages of the quadrilateral ones is that quadrilateral cells have

more neighboring cells and thus the quadrilateral time evolution

procedure is typically more accurate.

The proposed quadrilateral central-upwind scheme is an exten-

sion of the triangular central -upwind scheme from [23]. However,

some of the ingredients of the triangular scheme cannot be directly

carried to the quadrilateral case. For example, one cannot obtain a

continuous piecewise linear approximation of the bottom topogra-

phy. Instead, we introduce a new bottom topography approximation.

In each quadrilateral cell the bottom topography function B is re-

placed with four continuous linear pieces, each of which connects

the values of B at two of the neighboring cell vertices with the ap-

proximation value of B at the geometric center of the cell. Another

novelty of our quadrilateral scheme is a new water surface recon-

struction correction technique, required to guarantee the positivity

of the water depth at the reconstruction step of the central-upwind

scheme. To this end, we first perform a piecewise linear reconstruc-

tion of the water surface and then, in the cells where some values of

the reconstructions fall below the corresponding values of the bot-

tom topography, we replace the linear piece with four continuously

matched linear pieces whose shape is similar to the bottom topogra-

phy approximant in this cell. As we prove in Theorem 1, this guaran-

tees the positivity of the water depth h. To ensure the well-balanced

property of the proposed scheme, we design a special quadrature for

the cell average of the geometric source term, which leads to a perfect

balance of the source and fluxes for the “lake at rest” state.

To the best of our knowledge, the designed central-upwind

scheme is among the first well-balanced positivity preserving

schemes on unstructured quadrilateral grids.

The paper is organized as follows. The proposed central-upwind

scheme is described in Section 2 and its well-balanced and positivity

preserving properties are proved in Sections 3 and 4. In Section 5,

the new scheme is tested on a number of numerical experiments

which demonstrate high accuracy robustness of the proposed scheme

and also emphasize its potential advantages over its triangular coun-

terpart. Finally, we finish the paper with concluding remarks in

Section 6.

2. Central-upwind cheme on unstructured quadrilateral grids

First, we introduce the water surface variable w = h + B and

rewrite the system (1) in the following equivalent form:

t + F (U, B)x + G(U, B)y = S(U, B), (3)

where

= (w, hu, hv)
T
, (4)

F (U, B) =
(

hu,
(hu)

2

w − B
+ g

2
(w − B)

2
,
(hu)(hv)

w − B

)T

, (5)

G(U, B) =
(

hv,
(hu)(hv)

w − B
,

(hu)
2

w − B
+ g

2
(w − B)

2

)T

, (6)

S(U, B)=(0,−g(w − B)Bx,−g(w − B)By)
T
. (7)

Let the computational domain discretization � = ∪N
j=1

E j be cov-

ered by a quadrilateral grids with the cells Ej of size |Ej|. A typical cell

Ej together with its neighbours E jk, k = 1, 2, 3, 4 are outlined in Fig. 1.

We denote by �n jk := (cos(θ jk), sin(θ jk)) the outer unit normals

of the corresponding sides of Ej of length l jk, k = 1, 2, 3, 4. The coor-

dinates of the geometric center (center of mass) of the Ej are denoted

by (xj, yj) and M jk := (x jk, y jk), k = 1, 2, 3, 4 is the midpoint of the

k−th side of the quadrilateral Ej.

In the semi-discrete central-upwind scheme, the cell average of

the computed solutions, Ū (t)
j

≈ 1
E j

∫U
E j

(x, y, t)dxdy,are evolved in time
y solving the following system of ODEs:

dŪj

dt
= − 1∣∣Ej

∣∣ 4∑
k=1

l jk cos
(
θ jk

)
ain

jk
+ aout

jk

[
ain

jkF
(
Ujk

(
Mjk

)
, B

(
Mjk

))
+ aout

jk F
(
Uj

(
Mjk

)
, B

(
Mjk

))]
− 1∣∣Ej

∣∣ 4∑
k=1

l jk sin
(
θ jk

)
ain

jk
+ aout

jk

[
ain

jkG
(
Ujk

(
Mjk

)
, B

(
Mjk

))
+ aout

jk G
(
Uj

(
Mjk

)
, B

(
Mjk

))]
+ 1∣∣Ej

∣∣ 4∑
k=1

l jk

ain
jk

aout
jk

ain
jk

+ aout
jk

[
Ujk

(
Mjk

)
− Uj

(
Mjk

)]
+ S̄ j, (8)

hich can be derived similarly to the derivation procedure proposed

or a triangular grids in [20,23]. Notice that all the indexed quantities

n (8) are functions of t, but from now on we omit this dependence

or the sake of brevity.

The values Uj(Mjk) and Ujk(Mjk) are the values at Mjk of the two

olynomial pieces reconstructed in cells Ejand Ejk, respectively. The

orresponding piecewise linear reconstruction is:

˜
j(x, y) = Ūj + (Ux) j

(
x − x j

)
+ (Uy) j

(
y − yj

)
. (9)

To minimize the oscillations, the slopes (Ux)j and (Uy)j are to

e computed using a nonlinear limiter. We propose the following

inmod-type limiter which will be applied in a component wise

anner. Consider the ith component of U, we first construct four lin-

ar interpolations L12
j

, L23
j

, L34
j

and L41
j

, each of which is obtained by

onsidering the three points at the geometric center of Ej and corre-

ponding two neighboring cells. For example, L12
j

is obtained by pass-

ng the plane through (x j, y j, Ū (i)
j

), (x j1, y j1, Ū (i)
j1

) and (x j2, y j2, Ū (i)
j2

).

otice that all of the four obtained interpolants are conservative in

he cell Ej by construction. We then select the linear piece with the

mallest magnitude of the gradient, say Lkm
j

, and we set:

(Ux)
(i)
j

, (Uy)
(i)
j

)
= ∇Lkm

j . (10)

In order to further minimize the reconstruction oscillations, the

econstructed values calculated at the points M jk, k = 1, 2, 3, 4 are

hecked. If the reconstructed value of U (i)
j

(M jk) is not between the

ell averages Ū (i)
j

and Ū (i)
jk

, we set

(Ux)
(i)
j

, (Uy)
(i)
j

)
= 0. (11)



H. Shirkhani et al. / Computers and Fluids 126 (2016) 25–40 27

a

S

b

a

s

V

w

a

w

z

u

i

I

s

2

t

m

p

I

B

B

o

o

s

o

f∫
w

v

o

Fig. 2. Subdividing cell Ejinto four triangles Aj1, Aj2, Aj3 and Aj4.

o

[

o

2

p

a

n

a

u

h

e

r

p

w

w

t

t

S

e

t

f

h

a

o

r

i

The quantity S̄ j which is used in (8) is a discretization of the cell

verages of the source term:

¯
j(t) ≈ 1∣∣Ej

∣∣ S

∫
Ej

(U(x, y, t), B(x, y))dxdy. (12)

The well-balanced discretization form of the source term S̄ j will

e discussed in Section 3.

Finally ain
jk

and aout
jk

in (8) are the directional local speeds of prop-

gation at the kth interface of the cell Ej, which are defined as the

mallest and largest eigenvalues of the Jacobian

jk = cos
(
θ jk

) ∂F

∂U
+ sin

(
θ jk

) ∂G

∂U
, (13)

ith

ain
jk = −min

{
λ1

[
Vjk

(
Uj

(
Mjk

))]
, λ1

[
Vjk

(
Ujk

(
Mjk

))]
, 0

}
,

out
jk = max

{
λ3

[
Vjk

(
Uj

(
Mjk

))]
, λ3

[
Vjk

(
Ujk

(
Mjk

))]
, 0

}
, (14)

here λ1[Vjk] ≤ λ2[Vjk] ≤ λ3[Vjk] are the eigenvalues of Vjk.

It should be noted that if the ain
jk

and aout
jk

are zero or very close to

ero, the semi-discrete scheme (8) will reduce to:

dŪj

dt
= − 1∣∣Ej

∣∣ 4∑
k=1

l jk cos
(
θ jk

)
2[

ain
jkF

(
Ujk

(
Mjk

)
, B

(
Mjk

))
+ aout

jk F
(
Uj

(
Mjk

)
, B

(
Mjk

))]
− 1∣∣Ej

∣∣ 4∑
k=1

l jk sin
(
θ jk

)
2

[
ain

jkG
(
Ujk

(
Mjk

)
, B

(
Mjk

))
+ aout

jk G
(
Uj

(
Mjk

)
, B

(
Mjk

))]
+ S̄ j. (15)

In all the numerical experiments reported in this paper, we have

sed (15) instead of (8) whenever ain
jk

+ aout
jk

< 10−8.

The semi-discretization (8) is a system of ODEs, which has to be

ntegrated in time using a sufficiently accurate and stable ODE solver.

n all of the numerical experiments, we have used the third-order

trong stability preserving (SSP) Runge–Kutta method [38,39].

.1. Piecewise linear approximation of the bottom

In this section, we describe how the bottom topography func-

ion B(x, y) is replaced by its continuous piecewise linear approxi-

ation B̃(x, y). To this end, we first define values of the bottom to-

ography B jκ , κ = 1, 2; 2, 3; 3, 4; 4, 1 at the vertices of the cell Ej.

f the function B(x, y) is continuous at the vertices we simply take

jκ = B(x jκ , x jκ ), otherwise we use the following formula:

jκ = 1

2

(
max

ζ 2+η2=1
lim

h,l→0
B
(
x̃ jk + hζ , ỹ jk + lη

)
+ min

ζ 2+η2=1
lim

h,l→0
B
(
x̃ jk + hζ , ỹ jk + lη

))
.

By Bjk we denote the value of the bottom topography at the center

f the kth side of the cell Ej, which equals to the average of the values

f the bottom topography at the two vertices of the corresponding

ide, for example, B j1 =
B j1,2

+B j4,1

2 . Then, we approximate the value

f the bottom topography at the geometric center of the cell Ej as

ollows:

Ej

B(x, y)dxdy ≈
4∑

k=1

μkB jk =: Bj, (16)

here μk = |A jk|/|E j| and |Ajk| is the area of the triangle whose first

ertex is (xj, yj) and two other vertices are the vertices of the kth side

f the cell Ej, see Fig. 2.
This way, the bottom approximation in each cell will consist

f four linear pieces that continuously match along the segments

B j, B jκ ], κ = 1, 2; 2, 3; 3, 4; 4, 1.

Finally, we obtain the continuous piecewise linear approximation

f the bottom topography B̃(x, y) ≈ B(x, y).

.2. Positivity preserving reconstruction for water surface elevation

In this section, we propose a simple and efficient algorithm for the

ositivity preserving reconstruction of the water surface level. Gener-

lly, the reconstruction of w is positivity preserving if it leads to non-

egative computed values of water depth h j(M jk), k = 1, 2, 3, 4, for

ll the cells Ej in the computational domain. First, we compute hj(Mjk)

sing the reconstructed values of w̃ and B̃as follows:

j

(
Mjk

)
= w̃ j

(
Mjk

)
− Bjk, k = 1, 2, 3, 4. (17)

However, some of the obtained values of hj(Mjk) may be negative

ven where w̄ j≥B j . Therefore, we may need to correct the original

econstruction for w to ensure hj(Mjk) ≥ 0 for all j, k. In the pro-

osed correction procedure, the correction is required when we have

˜ (x jκ , y jκ ) < B jκ at any of the vertices of the cell Ej (note that since

¯ j ≥ B j it is impossible to have w̃(x jκ , y jκ ) < B jκ at all the four ver-

ices of the cell Ej). In this case we replace the original reconstruc-

ion of w by four linear planes over the same four triangles, as used in

ection 2.1, to obtain the bottom topography approximation. To this

nd, we need to specify the new (corrected) values at each of the ver-

ices. We set wcorr
jκ

= B jκ at the vertices at which w̃(x jκ , y jκ ) < B jκ and

or the rest of the vertices we set wcorr
jκ

= h∗
j + B jκ where,

∗
j = w̄ j − Bj∑4

1 μkαk

,

α =

⎧⎨⎩
1, i f w̃ ≥ B̃ at both ends of the kth side of E j,

1
2
, i f w̃ ≥ B̃ at one of the ends of the kth side of E j,

0, i f w̃ < B̃ at both ends of the kth side of E j,

(18)

nd, as before, μk = |A jk|/|E j|. We also set wcorr
j

= w̄ j to be the value

f w at the geometric center of Ej. One can show that the corrected

econstruction of w, which consists of four linear pieces in the cell Ej,

s conservative. Indeed,

1∣∣Ej

∣∣ ∫
Ej

[
w̃corr

j (x, y) − B(x, y)
]
dxdy

= 1∣∣Ej

∣∣ 4∑
k=1

∫
Ajk

[
w̃corr

j (x, y) − B(x, y)
]
dxdy
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=
4∑

k=1

(
w̄ j − Bj

)
+ 2α jkh∗

3
μ jk

= w̄ j − Bj

3
+ 2

3
h∗

4∑
k=1

α jkμ jk = w̄ j − Bj,

which implies that

1∣∣Ej

∣∣ ∫
Ej

w̃corr
j (x, y)dxdy = w̄ j. (19)

Also note that since the linear pieces of the corrected reconstruc-

tion of w are over the same triangles A jk, k = 1, 2, 3, 4 as the linear

pieces of the B̃, all of the obtained values of h will be nonnegative.

Remark. We note that similarly to the correction procedures intro-

duced in [22] and [23], the correction procedure proposed here lo-

cally reduces the order of accuracy of the developed central-upwind

scheme to the first-order. However, this occurs only in the cells, which

are almost dry and thus the global accuracy of the computed results

is not expected to be heavily affected by the local order reduction un-

less the entire computational domain contains mostly (almost) dry

cells.

Having the corrected reconstruction w̃, we continue with the

computation of the velocities u and v, and the one-sided local speeds

needed in (8). Since the computed values of water depth h may be

very small (or even zero), we use the following desingularization pro-

cedure to calculate the velocities (see [23]):

u =
√

2h(hu)√
h4 + max

(
h4, ε

) and v =
√

2h(hv)√
h4 + max

(
h4, ε

) , (20)

where ɛ is a prescribed positive tolerance. In all our numerical tests,

we have used ε = max {|E j|2}. After computing h, u, and v, we re-

compute the flux vectors F and G as

(hu) = h · u,

(hv) = h · v,

F (U, B) =
(
hu, hu · u + g

2 (w − B)
2
, hu · v

)T
,

G(U, B) =
(
hv, hv · u, hv · v + g

2 (w − B)
2
)T

,

(21)

at the corresponding points used in (8). Now, we are also able to com-

pute the one-sided speeds of propagation:

ain
jk = −min

{
uθ

j

(
Mjk

)
−
√

ghj

(
Mjk

)
, uθ

jk

(
Mjk

)
−
√

ghjk

(
Mjk

)
, 0

}
,

aout
jk = max

{
uθ

j

(
Mjk

)
+
√

ghj

(
Mjk

)
, uθ

jk

(
Mjk

)
+
√

ghjk

(
Mjk

)
, 0

}
,

uθ
j

(
Mjk

)
= cos

(
θ jk

)
uj

(
Mjk

)
+ sin

(
θ jk

)
v j

(
Mjk

)
, uθ

jk

(
Mjk

)
= cos

(
θ jk

)
ujk

(
Mjk

)
+ sin

(
θ jk

)
vk j

(
Mjk

)
(22)

where uθ
j
(M jk) and uθ

jk
(M jk) are the normal velocities at the mid-

point of the kth side Mjk.

3. Well-balanced discretization of the source term

Here, we propose a new well-balanced discretization of the source

term for unstructured quadrilateral grids. Indeed, the proposed semi-

discrete central-upwind scheme (8) includes the cell averages of the

source term S̄ j. Recall that a well- balanced scheme should exactly

preserve steady-state solutions. For this aim, a specific quadrature

must be designed in order to exactly preserve a "lake at rest" with

w ≡ C, u ≡ v ≡ 0, where C is a constant. In this case, the two momen-

tum equations in (8) will become:
− g

2
∣∣Ej

∣∣ 4∑
k=1

l jk cos
(
θ jk

)(
C − Bjk

)2 + S̄(2)
j

= 0,

− g

2
∣∣Ej

∣∣ 4∑
k=1

l jk sin
(
θ jk

)(
C − Bjk

)2 + S̄(3)
j

= 0. (23)

We now design an appropriate quadrature in order to satisfy the

ell-balancing conditions (23). First, we use the divergence theo-

em, ∫
E j

div �ςdxdy = ∫
∂E j

�ς.�nds, to obtain

¯(2)
j

= − g∣∣Ej

∣∣ ∫
Ej

(w(x, y) − B(x, y))Bxdxdy

= − g∣∣Ej

∣∣ 4∑
k=1

∫
∂Ejk

(w(x, y) − B(x, y))
2

2
cos

(
θ jk

)
ds

− g∣∣Ej

∣∣ ∫
Ej

(w(x, y) − B(x, y))wxdxdy, (24)

here ∂Ejk is the kth side of the quadrilateral E j, k = 1, 2, 3, 4.

ue to the correction of water surface reconstruction, it may happen

hat we have four linear planes, instead of one, for each cell Ej, with

ifferent wx. Thus, the second integral on the RHS of (24) should be

ubdivided into four integrals over A jk, k = 1, 2, 3, 4 (see Fig. 2):

− g∣∣Ej

∣∣ ∫
Ej

(w(x, y) − B(x, y))wxdxdy

= − g∣∣Ej

∣∣ 4∑
k=1

∫
Ajk

(w(x, y) − B(x, y))wxdxdy. (25)

Finally, applying the midpoint rule to the integrals on the RHS of

24) and (25) and replacing B with its piecewise linear approximant
˜, we arrive at the following quadrature for the cell average S̄(2)

j
,:

¯(2)
j

= g∣∣Ej

∣∣ 4∑
k=1

[(
w

(
Mjk

)
− B

(
Mjk

))2

2
cos

(
θ jk

)
l jk

−
(
w̄ j − Bj

)
(wx) jk

]
. (26)

Similarly, we obtain the quadrature for the cell average S̄(3)
j

,:

¯(3)
j

= g∣∣Ej

∣∣ 4∑
k=1

[(
w

(
Mjk

)
− B

(
Mjk

))2

2
sin

(
θ jk

)
l jk

−μ jk

(
w̄ j − Bj

)
(wy) jk

]
. (27)

It should be noted that for the lake at rest with U ≡ (C, 0, 0)T, we

ave w ≡ C and wy ≡ wx ≡ 0, and the designed quadratures (26) and

27) satisfy (23).

. Positivity preserving property of the scheme

In this section, we prove the positivity preserving property of the

roposed scheme. The prove is valid either for the forward Euler or

ny higher-order SSP Runge–Kutta method used for time discretiza-

ion of the system of ODEs. For the sake of brevity, we formulate the

esult for the forward Euler method.

heorem 1. Consider the proposed central-upwind scheme (8), (9),

22), (26) and (27) for the system (3) –( 7 ). Assume that the forward

uler method is used for solving the system of ODEs (8) while wn
j
≥ B j

or all j at time t = tn. Then, wn+1
j

≥ B j for all j at t = tn+1, provided that

t ≤ 1

2a
min

j,k

{
djk

}
, (28)
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Fig. 3. Organized unstructured quadrilateral mesh.

Table 1

Example 1: L1- and L∞ -errors and numerical orders of accuracy.

Number of cells L1-error Order L∞-error Order

6 × 50 × 50 3.61 e − 04 – 7.45 e − 03 –

6 × 100 × 100 1.48 e − 04 1.29 3.09 e − 03 1.27

6 × 200 × 200 4.27 e − 05 1.80 9.38 e − 04 1.72
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B

here a = max
j,k

{ain
jk

, aout
jk

} and djk is the distance between the center of

ass of cell Ej and its kth side.

roof. Using the forward Euler time stepping method for the first

omponent of the system (8) we obtain

¯ n+1
j

= w̄n
j −

�t∣∣Ej

∣∣ 4∑
k=1

l jk cos
(
θ jk

)
ain

jk
+ aout

jk

[
ain

jk(hu) jk

(
Mjk

)
+ aout

jk (hu) j

(
Mjk

)
�t∣∣Ej

∣∣ 4∑
k=1

l jk sin
(
θ jk

)
ain

jk
+ aout

jk

[
ain

jk(hv) jk

(
Mjk

)
+ aout

jk (hv) j

(
Mjk

)]
�t∣∣Ej

∣∣ 4∑
k=1

ain
jk

aout
jk

ain
jk

+ aout
jk

[
wjk

(
Mjk

)
− wj

(
Mjk

)]
. (29

Since the piecewise linear interpolant B̃ of the bottom topography

s continuous, one has:

jk

(
Mjk

)
− wj

(
Mjk

)
= hjk

(
Mjk

)
− hj

(
Mjk

)
. (30)

In addition, (16), (17) and w̄n
j
=

4∑
k=1

μ jkw j(M jk) imply that

¯ n
j − Bj =

4∑
k=1

μ jkh j

(
Mjk

)
. (31)

From (30) and (31), replacing Bj from both sides of (31) and using

he notation (22), we write,

¯ n+1
j

= �t∣∣Ej

∣∣ 4∑
k=1

hjk

(
Mjk

) l jkain
jk

ain
jk

+ aout
jk

[
aout

jk − uθ
jk

(
Mjk

)]
+

4∑
k=1

hjk

(
Mjk

)(
μ jk − �t∣∣Ej

∣∣ l jkaout
jk

ain
jk

+ aout
jk

[
ain

jk + uθ
j

(
Mjk

)])
.

(32)

From the definitions of the local speeds (22) we obtain that aout
jk

≥
θ
jk
(M jk) and therefore, all terms in the first sum on the RHS of (32)

re nonnegative since the corrected reconstruction for w guarantees

hat hjk(Mjk) ≥ 0 for all j and k = 1, 2, 3, 4. We also obtain that

�t∣∣Ej

∣∣ l jkaout
jk

ain
jk

+ aout
jk

[
ain

jk + uθ
j

(
Mjk

)]
≤ �t∣∣Ej

∣∣ l jkaout
jk . (33)

Thus, the positivity of the second term on the RHS of (33) is guar-

nteed provided

t ≤
μ jk

∣∣Ej

∣∣
l jkaout

jk

. (34)

Recall that μk = A jk/|E j| and A jk = d jkl jk

2 , hence (34) becomes

t ≤ 1
2a min

j,k
{d jk}, and this completes the proof of the thoreme. �

emark. In all our numerical tests, adaptive time step is imple-

ented in all the numerical examples and it is selected to satisfy the

ondition (28).

. Numerical experiments

In this section, we apply our proposed central-upwind scheme on

nstructured quadrilateral grids to several test problems. We perform

he numerical experiments using the organized unstructured grids

hown in Fig. 3. However, we would like to point out that the pro-

osed method can be applied on any quadrilateral grids. In all exam-

les below, the gravitational constant is g = 1.
.1. Example 1 – Accuracy test

In the first example, we experimentally test the order of accuracy

f the proposed scheme. The scheme is applied to the following initial

ata and bottom topography:

(x, y, 0) = 1, u(x, y, 0) = 0.3, B(x, y)

= 0.5 exp
(
−25(x − 1)

2 − 50(y − 0.5)
2
)
. (35)

The computational domain is [0, 2] × [0, 1] and the transparency

onditions are imposed at all its boundaries. We use a fine grid with

× 400 × 400 cells and consider the obtained results as a reference

olution. The solution converges to the steady state by the time t =
.07. The L1- and L∞-errors are presented in Table 1.

Comparing the results with those reported in [23] shows that the

btained orders are higher. The water surface computed at t = 0.07

sing the mesh with 6 × 50 × 50 quadrilaterals is shown in Fig. 4.

lthough a relatively coarse mesh has been used, the water surface is

ell resolved by the scheme.

.2. Example 2 – Small perturbation over an exponential hump

In this numerical experiment, originally proposed in [40] and then

idely used in the literature [2,15,21,23], we investigate the capabil-

ty of the proposed scheme to accurately capture the propagation of

small perturbation of the "lake at rest" steady state. The computa-

ional domain is [0, 2] × [0, 1] and the bottom consists of an ellipti-

ally shaped hump:

(x, y) = 0.8 exp
(
−5(x − 0.9)

2 − 50(y − 0.5)
2
)
. (36)
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Fig. 4. Example 1: Contour plot (left) and 3D view (right) of w.
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The water initially is at rest and its surface is flat everywhere ex-

cept for 0.05 < x < 0.15:

w(x, y, 0) =
{

1 + ε, 0.05 < x < 0.15,

1, otherwise,
u(x, y, 0) ≡ v(x, y, 0) ≡ 0

(37)

where ɛ is the perturbation height. The transparency boundary condi-

tions are implemented at vertical boundaries of the domain while the

horizontal boundaries are periodic. First, in order to numerically ver-

ify the well-balanced property of the proposed scheme, a very small

ε = 10−12 is selected and the solution is computed using a coarse

mesh with 6 × 10 × 10 cells. Max (w − 1) as a function of t is plotted

in Fig. 5 and it can be clearly seen that no instabilities are developed

and the balance between the fluxes and the geometric source terms

is exactly preserved numerically.

Next, a larger perturbation height ε = 10−4, is selected. The 3D

view of water surface elevation computed using the mesh with 6 ×
100 × 100 cells at t = 0.6, 0.9, 1.2, 1.5 and 1.8 is shown in Fig. 6. It

can be seen that the water surface is well resolved and it is free of

noises and spurious waves.

In order to show the importance of well-balanced property of the

scheme, we apply a non-well-balanced version of our scheme to the

initial-boundary value problem with ε = 10−4. To obtain the non-

well-balanced scheme, the proposed well-balanced quadratures (26)

and (27) are replaced with a straightforward midpoint rule discretiza-

tion:

S̄(2)
j

= −g
(
wj − Bj

)
Bx, S̄(3)

j
= −g

(
wj − Bj

)
By. (38)

The non-well-balanced solution (water surface) computed at

times t = 0.6, 0.9, 1.2, 1.5 and 1.8 on the same grid is shown in

Fig. 7 (right column) and compared with the results obtained from

the proposed well-balanced scheme (left column).
Fig. 5. Example 2: max(w − 1) as a
One can see that in this case, even with the larger value of ɛ, there

re spurious waves propagating in the domain and their magnitudes

re close to the magnitude of the perturbation. This can evidently

rove the advantage of the well-balanced proposed quadrature (28)

sed for source term discretization.

.3. Example 3 – Small perturbation over submerged flat plateau

In this numerical test, taken from [23], we study the case of a sub-

erged flat plateau as schematically shown in Fig. 8. Notice that in

his example, the plateau is very close to the water surface, and that

he initial water depth over the plateau is close to the perturbation

eight ε = 10−4. The computational domain is [0,1]×[0,1] and the

ottom topography is given by

(x, y) =
{

1 − 2ε, r ≤ 0.1,

10(1 − 2ε)(0.2 − r), 0.1 ≤ r ≤ 0.2,

0, otherwise,

(39)

here r =
√

(x − 0.5)2 + (y − 0.5)2
and the initial data are:

(x, y, 0)=
{

1 + ε, 0.1 ≤ x ≤ 0.2,

1, otherwise,
u(x, y, 0) ≡ v(x, y, 0) = 0.

(40)

The transparency boundary conditions are implemented at ver-

ical boundaries of the domain while the horizontal boundaries are

eriodic. The solution is computed by the proposed well-balanced

entral-upwind scheme using 6 × 100 × 100 quadrilateral cells and

he obtained water surface w is plotted in Fig. 9 (left column) at

= 0.2, 0.35, 0.5 and 0.65. As one can observe, the general structure

f the solution is well captured by the proposed method and there is

o spurious wave propagating in the domain.
function of t for ε = 10−12.
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Fig. 6. Example 2: 3D view of w computed using the mesh with 6 × 100 × 100 cells for ε = 10−4.
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The water surface w computed using the non well-balanced

cheme on the same grid with 6 × 100 × 100 cells is shown in Fig. 9

right column).

As Fig. 9 shows, the spurious waves generated around the plateau

ominate the solution. Comparing the results to those computed by

he proposed well-balanced scheme, instructively shows the advan-

age of the well-balanced scheme.

.4. Example 4 – Small perturbation bending around a round-shape

sland

In this example, we examine both well-balanced and positivity

reserving properties of the new scheme by testing its ability to han-

le a situation with a small perturbation of a "lake at rest" propagat-

ng around an island.

The bottom hump is above the water surface so that there is a

isk-shaped island at the origin,

(r) =
{

1.1, r ≤ 0.1,

11(0.2 − r), 0.1 < r < 0.2,

0, otherwise,

(41)

ee Fig. 10. The computational domain is [0,1] ×[0,1]and the initial

onditions are given by

(x, y, 0) =
{

1 + ε, 0.1 < x < 0.2,

max

{
1, B

(√
x2 + y2

)}
, otherwise,

,

u(x, y, 0) ≡ v(x, y, 0) = 0. (42)
3D-view of the water surface w computed at times t =
.2, 0.35, 0.5 and 0.65 using 6 × 100 × 100 cells with ε = 10−2 is

hown in Fig. 11 where the right-going disturbance bends around the

sland. Though there are dry and almost dry cells which are changing

heir wet/dry status repetitively, the solution obtained by the pro-

osed central-upwind scheme is non-oscillatory and well resolved.

n order to make the experiment more challenging, we set ε = 10−3.

he water surface w computed at times t = 0.2, 0.35, 0.5 and 0.65

sing − 6 × 100 × 100 cells is presented in Fig. 12 (left column). To

est the numerical convergence of the proposed method, we refine

he mesh and use 6 × 200 × 200 cells. The obtained results, plotted

n Fig. 12 (right column), demonstrate nice convergence property of

he developed central-upwind scheme.

.5. Example 5 – Dam break over discontinuous bottom topography

In the final example, we not only verify the ability and robust-

ess of the proposed central-upwind scheme on the quadrilateral

rid, but also demonstrate an advantage of the proposed scheme

ver the triangular central-upwind scheme from [23]. The com-

utational domain is [−4, 4] × [−4, 4] and a cylindrical dam is as-

umed to be placed on a dry island with the following bottom

opography:

(x, y) =
{

1, |x| + |y| ≤ 2,

0, otherwise.
(43)
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Fig. 7. Example 2: w for ε = 10−4 computed using the well-balanced (left column) and non-well-balanced (right column) schemes.

Fig. 8. Example 3: 1D slice of bottom topography (39). The plot is not to scale.

×
u

c

The water is initially at rest (u(x, y, 0) ≡ v(x, y, 0) ≡ 0) and the

water level is given by

w(x, y, 0) =
{

9, x2 + y2 ≤ 1,

1, x2 + y2 > 1 and |x| + |y| ≤ 2,

0, otherwise.

(44)

The initial setting is shown in Fig. 13.

The dam is getting broken at time t = 0. The flow structure af-

ter the dam break is very complex. In order to make a proper com-

parison between the proposed scheme on the quadrilateral grid and

the triangular central-upwind scheme, we keep the number of cells

(cell areas) equal in both cases. In Fig. 14, we plot 1D cross sections

of the computed solutions at y = 0. The water surface w component

of the solution computed at t = 0.6 by the new scheme using 6 × 50
50 quadrilateral cells and by the triangular central-upwind scheme

sing 4 × 62 × 62 triangular cells are shown in Fig. 14 (left). One

an clearly see that the water surface structure is resolved more ac-
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Fig. 9. Example 3: w computed by the proposed well-balanced (left) and non-well-balanced (right) schemes.
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Fig. 10. Example 4: 1D slice of the bottom topography (41). The plot is not to scale.
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curately by the proposed quadrilateral central-upwind scheme. We

then refine the mesh and use 6 × 100 × 100 quadrilaterals versus

4 × 124 × 124 triangular cells. The finer results are presented in

Fig. 14 (right). Evidently, even with a finer mesh, the structure of so-

lution is better resolved by the proposed scheme.

The contour lines of the water surface w computed at t = 0.6 us-

ing the finer grids are presented in Fig. 15. One can clearly observe

that the proposed scheme on a quadrilateral grid has captured and

resolved the complex flow patterns, both over and around the island,

with a significantly higher resolution. In addition, some fluctuations

can be observed in the water surface computed by the triangular

scheme, while the one obtained by quadrilateral scheme is well re-

solved and free of fluctuations.

The velocity (u and v) components of the solution computed at

= 0.6 using both the coarser and finer grids are also presented in

Fig. 16. One can clearly observe that although u computed by both

schemes are quite close, the velocity computed by the proposed

method is smoother and the velocity spark over the island is much

lower (Fig. 16a). However, by refining the mesh the results become

closer (Fig. 16b). For the v component of the solution, one can see

that the results obtained using the triangular grid is noisy, while
Fig. 11. Example 4: 3D view of w for ε = 10−2 com
hose computed by the quadrilateral grid are completely smooth

nd free of oscillations and fluctuations (Fig. 16c). In addition, one

an see that even by refining the mesh, the results of the triangular

entral-upwind scheme keep fluctuating (Fig. 16d).

Finally, in Fig. 17, the time evolution of the v component of

he solution computed on the finer grids is illustrated at t =
.2, 0.3, 0.4, 0.5 for both schemes. It clearly shows that the proposed

cheme has a better performance in predicting the velocity. The re-

ults of time evolution of v component of the solution (not shown

ere) also confirm that the velocity field computed by the trian-

ular central-upwind scheme is noisy, while the one computed by

he developed scheme on the quadrilateral grid is quite smooth and

scillation-free.

.6. Example 6 – Steady flow over a bump

In order to demonstrate the performance of the proposed method

n modeling steady flows, we consider a steady flow over a bump test

hich has been widely used in the literature; see e.g., [2,41]. We con-

ider a flume with the following topography:

(x, y) =
{

0.2 − 0.05(x − 10)
2
, 8 < x < 12,

0, otherwise.

In order to have a Transcritical flow with a shock, fixed bound-

ry conditions for the water depth h = 0.33 m and discharge uh =
.18 m2

s are imposed at the downstream (x = 22 m) and upstream

x = 0) boundaries, respectively. The analytical solution of this prob-

em is given in [42]. The water surface w and discharge uh computed

y the proposed scheme using 6 × 8 × 88 quadrilateral cells are com-

ared with the exact solutions in Fig. 18. As one can see, the com-

uted solution is in good agreements with the analytical one except

or some small numerical oscillations. It should be pointed out that
puted using 6 × 100 × 100 quadrilaterals.
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Fig. 12. Example 4: w with ε = 10−3 computed using the grids with 6 × 100 × 100 (left column) and 6 × 200 × 200 (right columns) cells.
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imilar oscillations have been also reported in most existing numeri-

al models; see e.g., [2,41,43,44].

.7. Example 7 – 2D dam break simulation

In this example, we examine the performance of the pro-

osed model in simulating a 2D dam break with complex ge-

metry. The laboratory measurements for this experiments were

eported in [45]. The dam break was carried out in a 21.2 m

ong flume with slope of 0.01. The plan view of the flume
an be seen in Fig. 19, where the fully unstructured quadrilat-

ral mesh is also shown. As one can see, a converging-diverging

ormation creates 2D effects. The manning roughness coefficient

f the flume is n = 0.012 and we estimate the bed friction in

− and y−directions using gn2(
√

2h√
h4+max(h4,ε)

)
7
3

√
(hu)2 + (hv)2(hu)

nd gn2(
√

2h√
h4+max(h4,ε)

)
7
3

√
(hu)2 + (hv)2(hv), respectively. Note that

ere the 1/h term is approximated using the same desingularization

rocedure used for velocity calculation in (20).With the water depth

f 0.15 m at the dam, the computed water depth profiles at times
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Fig. 13. Example 5: 3D view of the bottom topography (43) and initial water surface

(44).
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= 2.0 s, t = 6.0 s and t = 20.0 s are compared to the measure-

ments in Fig. 20.

As one can see, the water surface profile is strongly affected by

the 2D shape of the flume and the wave speed increases due to the
Fig. 14. Example 5: 1D slices of w computed using the proposed quadrilateral and t

Fig. 15. Example 5: Contour plots of w at t = 0.6 using the proposed qu
loping bed. For an initially dry bed, the proposed scheme performs

ell and the predicted water surface profiles are satisfactory.

.8. Example 8 – Dam break and advance over a triangular obstacle

In this test case, we examine the performance of the proposed

cheme with a dam break wave over a triangular obstacle at the

ownstream of the dam. The reservoir, channel and triangular obsta-

le geometry along with the location of the measurement gauges are

resented in Fig. 21. The reservoir with initial water depth of 0.75 m

s connected to a rectangular channel with a symmetric triangular ob-

tacle located downstream of the dam. The Manning roughness coef-

cient is n = 0.0125 for the bed. The boundaries are solid walls except

or the free outlet at the end of the channel.

The experimental data are reported in [46] for the gauge points

1, G2, G3, G4, and G5 which are located at 4 m, 10 m, 11 m, 13 m and

0 m downstream of the reservoir, respectively.

We compute the solution using a quadrilateral mesh with the

omputed evolutions of water depths using a quadrilateral mesh grid

ith 6 × 100 × 8 cells. In Fig. 22, we present the time evolution of

he computed water depths at the gauge points and compare the ob-

ained results with the measured values. For the Gauges G1, G2 and

3 which are located before the obstacle vertex, the water depth and

he arrival time of the wave are well predicted. In addition, for Gauge

4 with a crucial location at the obstacle vertex, the wet/dry con-

ersion is correctly predicted. At the Gauge G5, however, where the
riangular central-upwind schemes using coarser (left) and finer (right) grids.

adrilateral (left) and triangular (right) central-upwind schemes.
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Fig. 16. Example 5: 1D slices of u computed using (a) the coarser grids with 6 × 50 × 50 quadrilateral cells (4 × 62 × 62 triangular cells); (b) finer grids with 6 × 100 × 100

quadrilateral cells (4 × 124 × 124 triangular cells); and v computed using (c) the coarser and (d) finer grids.

Fig. 17. Example 5: Comparison of u (1D slices along y = 0) computed using the finer grids at (a) t = 0.2, (b) t = 0.3, (c) t = 0.4 and (d) t = 0.5.
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Fig. 18. Example 6: Steady transcritical flow over a bump with a shock: water surface

elevation (top) and discharge (bottom).

Fig. 19. Example 7: Plan view of the flume together with the unstructured quadrilat-

eral mesh.
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Fig. 20. Example 7: Comparison between computed and measured w

Fig. 21. Example 8: Schematic side view of the exp
mount of water is not considerable a little disagreement is observed.

t may result from vertical non-hydrostatic motions which are not

onsidered in SWEs. The same feature is also reported in [41,46,47].

. Conclusion

A new second-order central-upwind scheme for shallow water

quations on the unstructured quadrilateral grids has been devel-

ped. To this end, we have proposed a new technique for bottom

opography approximation over quadrilateral cells as well as an ef-

cient water surface correction procedure. Moreover, we have de-

igned a new quadrature for discretization of the source term. The

roposed scheme guarantees the positivity of the computed fluid

epth and exactly preserves “lake at rest” steady states. The proposed

cheme on unstructured quadrilateral grids has several advantages

ver the triangular central-upwind scheme from [23]. For instance,

uch grid uses more information from the neighboring cells in time

volution of the cell average values. We applied the proposed scheme

o various numerical tests which exhibit complex flow patterns. The

umerical tests include "lake at rest" steady state with very small

erturbations as well as completely dry and almost dry areas. The

btained results confirm the capability of the scheme to preserve

he positivity of h and demonstrate that no instabilities are devel-

ped at the (almost) dry states. In the other numerical test, the re-

ults computed by the new scheme have been compared with those

omputed by the triangular central-upwind scheme. When the new
ater surface profiles at (a) t = 2 s, (b) t = 6 s and (c) t = 20 s.

erimental model and gauge point locations.
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Fig. 22. Example 8: Comparison of the computed water depth with the corresponding measured values at the gauge points during the first 40 s.
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cheme was used, the water surface component of the solution was

esolved with higher resolution and was free of fluctuations. The ve-

ocity fields computed by the new scheme were also smooth while

hose computed by the triangular scheme were noisy.

We have also tested the proposed scheme on a problem with a

ranscritical flow over a bump. The computed water surface eleva-

ion and discharge were compared to the analytical ones. The results

howed that the proposed central-upwind scheme is capable of quite

ccurately simulating such flows. In the next test, we have simulated

2D dam break on a sloping flume with friction. The water surface

alues computed using a fully unstructured grids were compared to

he experimental measurements and showed the ability of the de-

eloped scheme to take into account both complex domain geome-

ry and a friction term. In the final numerical example, a dam break

ver a triangular obstacle was simulated and once again the obtained
esults were compared to the experimental measurements. This test

elped us to confirm the ability of our quadrilateral central-upwind

cheme to accurately predict the wetting and drying features of the

ow. In summary, our numerical results confirmed robustness and

igh accuracy of the new scheme and also demonstrated its potential

dvantages over the triangular central-upwind scheme.
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