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a b s t r a c t 

We develop a new second-order two-dimensional central-upwind scheme on cell-vertex grids for ap- 

proximating solutions of the Saint-Venant system with source terms due to bottom topography. Central- 

upwind schemes are developed based on the information about the local speeds of wave propagation. 

Compared to the triangular central-upwind schemes, the proposed cell-vertex one has an advantage of 

using more cell interfaces which provide more information on the waves propagating in different direc- 

tions. We propose a new piecewise linear approximation of the bottom topography and a novel non- 

oscillatory reconstruction in which the gradient of each variable is computed using a modified minmod- 

type method to ensure the stability of the scheme. A new technique is proposed for the correction of the 

water surface elevation which guarantees the positivity of the water depth. The well-balanced property 

of the proposed central-upwind scheme is ensured using a special discretization for the cell averages 

of the topography source terms. The proposed scheme is tested on a number of numerical examples, 

among which we consider steady-state solutions with almost dry areas and their perturbations and solu- 

tions with rapidly varying flows over discontinuous bottom topography. Our numerical experiments con- 

firm stability, well-balanced, positivity preserving properties and second-order accuracy of the proposed 

method. This scheme can be applied to shallow water models when the bed topography is discontinuous 

and/or highly oscillatory, and on complicated domains where the use of unstructured grids is advanta- 

geous. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

This paper focuses on development of modern numerical meth-

ds for the two-dimensional (2D) Saint-Venant system of shallow

ater equations (SWEs): 
 

 

 

 

 

 

 

 

 

h t + (hu ) x + (h v ) y = 0 , 

(hu ) t + 

(
hu 

2 + 

g 

2 

h 

2 
)

x 
+ (hu v ) y = −ghB x , 

(h v ) t + (hu v ) x + 

(
h v 2 + 

g 

2 

h 

2 
)

y 
= −ghB y . 

(1) 

ere, h is the water depth, ( u, v ) T is the velocity field, the function

 ( x, y ) represents the bottom elevation, and g is the acceleration

ue to gravity. 

Many upwind (see, e.g., [1,2,5,9,10,18,22,31,33,37] ) and central

see, e.g., [6,8,15,23,28,40,41,45] ) schemes for the shallow water
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ystem (1) , which is a hyperbolic system of conservation (if B x ≡
 y ≡ 0) or balance (if B is not a constant) laws, have been pro-

osed in the past two decades. Roughly speaking, the main differ-

nce between upwind and central schemes is that upwind schemes

se characteristic information and utilize (approximate) Riemann

roblem solvers to determine nonlinear wave propagation, while

entral schemes are based on averaging over the waves without

sing their detailed structures. 

Riemann-problem-solver-free central schemes have become a 

ery popular tool for hyperbolic systems of conservation and

alance laws after the pioneer work of Nessyahu and Tadmor,

38] , where a second-order, shock-capturing, finite-volume cen-

ral scheme on a staggered grid was proposed. Since 1990, sev-

ral higher-order and multidimensional extensions and generaliza-

ions of staggered central schemes have been introduced (see, e.g.,

40] and references therein). However, staggered central schemes

ay not provide a satisfactory resolution when small time steps

re enforced by stability restrictions, which may occur, for exam-

le, in the application of these schemes to convection-diffusion

http://dx.doi.org/10.1016/j.compfluid.2016.06.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2016.06.005&domain=pdf
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http://dx.doi.org/10.1016/j.compfluid.2016.06.005
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problems as observed in Kurganov and Tadmor [30] . These dis-

advantages are caused by the accumulation of numerical dissipa-

tion. Staggered central schemes can be improved by using some

characteristic information on local speeds of propagation. This

leads to a class of central-upwind schemes developed by Kurganov

et al. in [25–27,30] . The central-upwind schemes are based on

(one-sided) local speeds which represent the extreme eigenval-

ues of the system. The use of these techniques makes the central-

upwind schemes less dissipative compared to the staggered cen-

tral schemes, and at the same time being Riemann-problem-solver-

free methods they retain the major advantage of central schemes-

simplicity. The central-upwind schemes have been successfully ap-

plied to a variety of problems including several shallow water

models [4,6,12,13,23,24,28,29,32] . 

SWEs and related models are of great interest for many atmo-

spheric and oceanic applications as well as for modeling flows in

the rivers and coastal areas. To be able to accurately model realistic

situations, one has to develop numerical methods on unstructured

grids due to their flexibility to represent irregular domains and

convenience of local mesh refinement. There are two main propri-

eties a good numerical method for SWEs should satisfy. The first

one is called a well-balanced property: the scheme should exactly

preserve “lake at rest” steady-state solutions. The second property

is positivity preserving: the method should guarantee positivity of

the computed values of the water depth in each point of the do-

main at all times. 

The main widely used unstructured finite-volume methods are

cell-centered (CCFVM) and cell-vertex (CVFVM) ones. The cell-vertex

methods are sometimes referred to as node-centered, mesh-vertex

or vertex-centered methods. For the CCFVM, the cells are the tri-

angles of the primary mesh. For CVFVM the cells are the dual of

the primary mesh as explained in the next section. For a detailed

discussion on the two methods we refer the reader to [3,34,36] . 

Diskin et al. [17] have compared the node-centered and cell-

centered schemes for finite-volume discretization of Poisson’s

equation as a model with viscous fluxes. They have tested struc-

tured and unstructured grids based on both triangular and quadri-

lateral computational cells with randomly perturbed grid points.

The authors found that the node-centered finite-volume methods

typically outperform the cell-centered ones in terms of accuracy

and convergence when the same number of degrees of freedom is

used. 

Nikolos and Delis [39] proposed a cell-vertex upwind scheme

for shallow water flows with wet/dry fronts over complex bot-

tom topography. The authors used the Roe method to compute

numerical fluxes and the time evolution of their scheme was car-

ried out by an explicit four-stage Runge-Kutta method. Delis et al.

[16] have recently performed an extensive comparison between

node-centered and cell-centered upwind finite-volume methods

for the 2D SWEs with different source terms on unstructured grids.

They studied the performance, robustness and defectiveness of the

two methods by comparing numerical results with both analyti-

cal solutions and experimental and field data. In the analyses, the

authors used different structures of computational grids and the

comparisons were performed for all conservative variables using

different norms. They found that the CVFVM leads to identical con-

vergence behavior for grids with various qualities (in terms of ori-

entation and distortion) while in the CCFVM, the results are in-

fluenced by the grid quality. The reason is that the cells in the

CVFVM are constructed in a way that leads to more spatial unifor-

mity than the CCFVM. The authors concluded in their analyses that

the CCFVM require more attention in order to obtain an appro-

priate correction in the construction of the extrapolated primitive

variables of the system. Without adequate correction, the points

where the numerical fluxes are evaluated do not correspond to the

flux vectors obtained by extrapolations. The quality of the results
f the CVFVM are less affected by the grid geometry. In addition to

he advantages already mentioned, the CVFVM present an advan-

age compared to the CCFVM for the treatment of the boundary

onditions since in the case of the CVFVM the control volume cen-

ers can be located on the boundary of the computational domain.

To the best of our knowledge, no cell-vertex central-upwind

cheme for shallow water flows or hyperbolic systems of conser-

ation laws have been proposed in the literature. Bryson et al.

6] have proposed a central-upwind scheme on triangular grids

or the Saint-Venant system of SWEs with possibly discontinuous

ottom topography. The authors have showed that their method

s well-balanced and positivity preserving, and demonstrated high

esolution and robustness of the method. In this paper, we in-

roduce a new well-balanced positivity preserving central-upwind

cheme on cell-vertex grids (described in Section 2.1 ) for the 2D

WEs with variable topography. 

The paper is organized as follows. In Section 2 , we present the

ew cell-vertex semi-discrete central-upwind scheme for the SWEs

1) . In Section 3 , we propose a positivity preserving reconstruc-

ion for water surface elevation. The well-balanced discretization

f the source term is developed in Section 4 . The positivity pre-

erving property of the proposed scheme is proved in Section 5 . In

ection 6 , we demonstrate the high resolution and robustness of

he proposed method by testing it on a variety of numerical ex-

eriments. The final Section 7 contains concluding remarks. 

. The cell-vertex central-upwind scheme 

In this section, we focus on the derivation of the proposed

ell-vertex central-upwind scheme. First the cell-vertex unstruc-

ured grid and the notations used in this paper are described in

ection 2.1 . Then, we develop the central-upwind method over

ell-vertex grids for the SWEs (1) , which can be rewritten using

he vector of variables U := ( w, p, q ) T as 

 t + F (U , B ) x + G(U , B ) y = S(U , B ) (2)

ith 

F (U , B ) = 

(
p, 

p 2 

w − B 

+ 

g 

2 

(w − B ) 2 , 
pq 

w − B 

)T 

, 

G(U , B ) = 

(
q, 

pq 

w − B 

, 
q 2 

w − B 

+ 

g 

2 

(w − B ) 2 
)T 

, 

S(U , B ) = 

(
0 , −g(w − B ) B x , −g(w − B ) B y 

)T 
, 

(3)

here w := h + B represents the water surface elevation and p :=
u and q := hv denote the discharges in the x - and y -directions,

espectively. 

.1. Cell-vertex grid and notations 

Unstructured cell-vertex grids are obtained using a triangular

iscretization of the global domain D: The finite-volume cells, de-

oted by M j , are centered around the vertices as shown in Fig. 1 .

here are various methods to define the dual grid. The control vol-

me around each node can be defined by connecting either the

arycenters [39] or centroids [21] of the surrounding triangles of

he node. These points can be connected either directly or with

he midpoints of the edges that meet the node. In this paper, the

oundary ∂M j of the cell M j around each internal triangulation ver-

ex P j is defined by connecting directly the centers of mass of the

urrounding triangles that have P j as a common vertex. The wa-

er surface elevation w and the discharges p and q are then repre-

ented by the corresponding cell averages over the cells M j of size

 M j | with the centers of mass denoted by G j ≡ ( x j , y j ). 

We assume that the discretization D = 

⋃ N 
j=1 M j consists of N

on-overlapping cells ( N is equal to the number of nodes of
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Fig. 1. Sample of the cell-vertex. Solid lines represent the primary triangular grids 

and the dashed lines show the computational polygonal cells. 
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he initial triangular grid). To obtain the proposed semi-discrete

cheme, we introduce the following notations for the cell M j and

ts neighboring cells (notice that these notations are not global).

or each cell M j we denote by m j the number of its cell sides and

y M j1 , M j2 , . . . , M jm j 
the neighboring cells that share with M j a

ommon side ( ∂ M j ) 1 , (∂ M j ) 2 , . . . , (∂ M j ) m j 
, respectively. The side

ength and the outward unit normal vectors of the cell-interfaces

re denoted by � jk and n jk := (cos θ jk , sin θ jk ) 
T , respectively, where

jk is the angle of the unit normal vector n jk with the x -axis. The

idpoint of the k th edge of M j is denoted by P jk and the end

oints of this edge are denoted by P jk s , where s = 1 , 2 . 

Note that the vertices of the cell M j may be denoted by P jk 1 ,

hich is the starting point of the interface k of this cell and for k

 m j , P jk 2 = P j(k +1) 1 
. An anticlockwise orientation is used to define

he start and end points of an interface. Similar indexing is used

or other variables. For example, w jk 1 
, h jk 1 and B jk 1 stand for the

ater surface elevation, water depth and the bottom elevation, re-

pectively, at the vertex P jk 1 . Finally, t n denotes the n th time level. 

emark 1. It should be pointed out that although the initial grid

s assumed to be triangular, the proposed cell-vertex method can

e based on a quadrilateral or another polygonal unstructured ini-

ial grid. This leads to more flexibility of the cell-vertex methods

ompared to schemes that are restricted to triangular grids only. 

.2. The semi-discrete form of the scheme 

The semi-discrete central-upwind scheme on cell-vertex grids

an be derived following the procedure developed in [27] and

6] for triangular grids. It can be shown that the resulting scheme

s 

d U j 

dt 
= − 1 

| M j | 
m j ∑ 

k =1 

� jk cos (θ jk ) 

a in 
jk 

+ a out 
jk 

[
a in jk F (U jk (P jk ) , B jk ) 

+ a out 
jk 

F (U j (P jk ) , B jk ) 
]

− 1 

| M j | 
m j ∑ 

k =1 

� jk sin (θ jk ) 

a in 
jk 

+ a out 
jk 

[
a in jk G(U jk (P jk ) , B jk ) 

+ a out 
jk 

G(U j (P jk ) , B jk ) 
]

+ 

1 

| M j | 
m j ∑ 

k =1 

� jk 

a in 
jk 

a out 
jk 

a in 
jk 

+ a out 
jk 

[
U jk (P jk ) − U j (P jk ) 

]
+ S j , 

(4) 

here U j ≈ 1 
| M j | 

∫ 
M j 

U (x, y, t) d xd y is the approximation of the

ell averages of the solution at time t , and the quantity S j 
s a discretization of the cell averages of the source term,

 j ≈ 1 
| M j | 

∫ 
M j 

S(U (x, y, t) , B (x, y )) d xd y, which will be discussed in

ection 4 . 

The semi-discrete scheme (4) uses the bottom elevation B jk :=
 ( P jk ) at the midpoint P jk of the k th cell interface and the values
 j ( P jk ) and U jk ( P jk ) at time t on the two sides of this interface (in-

ide and outside of the cell M j , respectively), which are determined

sing the positivity preserving piecewise linear reconstructions in

he cell M j and its neighboring cell M jk , respectively; for details,

ee Sections 2.3, 2.4 and 3 . 

Finally, the one-sided local speeds of propagation at the k th in-

erface of the cell M j can be estimated using the smallest, λ1 [ V jk ],

nd largest, λ3 [ V jk ], eigenvalues of the Jacobian 

 jk = cos (θ jk ) 
∂F 

∂U 

+ sin (θ jk ) 
∂G 

∂U 

, 

s follows: 

a in jk = − min 

{
λ1 [ V jk (U j (P jk ))] , λ1 [ V jk (U jk (P jk ))] , 0 

}
, 

a out 
jk = max 

{
λ3 [ V jk (U j (P jk ))] , λ3 [ V jk (U jk (P jk ))] , 0 

}
. 

(5) 

emark 2. If the value of a in 
jk 

+ a out 
jk 

in Eq. (4) is zero or very close

o zero (smaller than 10 −10 in all of our numerical experiments),

e avoid division by zero or by a very small number using the

ollowing approximations: [
a in 

jk 
F (U jk (P jk ) , B jk ) + a out 

jk 
F (U j (P jk ) , B jk ) 

]
a in 

jk 
+ a out 

jk 

≈
[
F (U jk (P jk ) , B jk ) + F (U j (P jk ) , B jk ) 

]
2 

, [
a in 

jk 
G(U jk (P jk ) , B jk ) + a out 

jk 
G(U j (P jk ) , B jk ) 

]
a in 

jk 
+ a out 

jk 

≈
[
G(U jk (P jk ) , B jk ) + G(U j (P jk ) , B jk ) 

]
2 

, 

a in 
jk 

a out 
jk 

a in 
jk 

+ a out 
jk 

[
U jk (P jk ) − U j (P jk ) 

]
≈ 0 . 

These approximations are obtained by using similar extreme

alues of the directional local speeds of propagation of the waves

t the cell interface inward and outward the computational cell.

hese values are used to delimit different domains in which the

olution is still smooth and the domains in which the solution may

ot be smooth when it evolves from the time level t n to t n +1 . These

omains are used in the procedure to obtain the semi-discrete

orm of the scheme as explained in details in [27] for triangu-

ar grids. The stability condition of the proposed central-upwind

cheme using the semi-discrete form (4) and the approximations

n Remark 2 will be discussed in Remark 8 . 

emark 3. For very small values of the water depth h we com-

ute the velocity components at cell interfaces using the following

esingularization formula proposed in [28] : 

(u, v ) T = 

√ 

2 h √ 

h 

4 + max (h 

4 , ε ) 
(uh, v h ) T , 

here ε is a small positive number which is taken in our numeri-

al experiments equal to the square of the maximum of the com-

utational cells areas in the entire domain. For consistency, we re-

ompute the discharge values at cell interfaces using the obtained

elocity values by p := h · u and q := h · v , which are used in

q. (4) to evaluate the fluxes. 

emark 4. The semi-discretization (4) is a system of ODEs, which

as to be integrated in time using a sufficiently accurate and sta-

le ODE solver. In all of the numerical experiments reported in

ection 6 , we have used the three-stage third-order strong stability

reserving (SSP) Runge-Kutta method originally developed in [42] ;
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see also [19,20] for details on SSP ODE solvers. We note that one

step of the three-stage third-order SSP Runge-Kutta method is a

convex combination of three forward Euler steps: this property is

useful to ensure the positivity preserving property of the result-

ing finite-volume method. We also note that even though the de-

signed scheme is second-order accurate in space, we prefer to use

the third-order-rather than the second-order-SSP method thanks to

its larger stability domain and better nonlinear stability properties;

see, e.g., [19,20] . 

2.3. Continuous piecewise linear approximation of the bottom 

Let us assume that the bottom topography function B is a piece-

wise smooth function. In order to construct its continuous piece-

wise linear approximation, we first define the values of B at the

vertices P jk i = (x jk i , y jk i ) of the cell M j . We use the following for-

mula for the point value of the bottom topography at P jk i : 

B jk i 
: = 

1 

2 

[
lim 

ε→ 0 
max 
‖ ζ‖ = ε 

B (x jk i + ζx , y jk i + ζy ) 

+ lim 

ε→ 0 
min 

‖ ζ‖ = ε 
B (x jk i + ζx , y jk i + ζy ) 

]
, 

where ζ = (ζx , ζy ) T . Note that this formula reduces to B jk i :=
B (x jk i , y jk i ) if the function B is continuous at P jk i . 

We then obtain the approximate values of B at the midpoint

of the interface connecting the points P jk 1 and P jk 2 using a linear

approximation resulting in 

B jk = 

1 

2 

(
B jk 1 + B jk 2 

)
. 

Equipped with the approximate values of B at the midpoints of

each cell interface, we approximate the value of B at the center of

mass G j by 

B j = 

1 

| M j | 
∫ 

M j 

B (x, y ) d xd y ≈
m j ∑ 

k =1 

μk B jk , (6)

where μk = A jk / | M j | and A jk is the area of the triangle G j P jk 1 P jk 2 
(see Fig. 1 ). Given the values at the vertices, B j , B jk 1 and B jk 2 , we

obtain a linear approximation of B over this triangle. 

Finally, we obtain the continuous piecewise linear approxima-

tion of B at the cell M j by taking the union of m j planes over the

corresponding triangles connecting the two neighboring vertices of

M j and its center of mass. 

2.4. Piecewise linear reconstruction 

In order to obtain a piecewise linear reconstruction of w, p and

q , we need to approximate its gradients in each cell. The gradient

of the i th component U 

( i ) of the vector U in the cell M j , denoted

by ∇U 

(i ) 
j 

( i = 1 , 2 , 3 ), is computed by averaging it over M j using

the Green-Gauss theorem as follows: 

∇ U 

(i ) 
j 

= 

1 

| M j | 
∫ 

M j 

∇ U 

(i ) 
j 

(x, y ) d xd y = 

1 

| M j | 
m j ∑ 

s =1 

∫ 
(∂M j ) s 

˜ U 

(i ) 
js 

n js d �, 

(7)

where ˜ U 

(i ) 
js 

is the estimated value of U 

( i ) at the cell interface ( ∂M j ) s 

and d � denotes an infinitesimal boundary arc length. 

To prevent oscillations, we propose a new minmod-type re-

construction which is more suitable for cell-vertex finite-volume

schemes. To this end, we compute m j gradients. The k th gradient

( k ∈ { 1 , . . . , m j } ) is calculated using Eq. (7) , where the estimated
alues ˜ U 

(i ) 
js 

on the cell interfaces ( ∂M j ) s are obtained using the fol-

owing three-step procedure: 

• First, we take ˜ U 

(i ) 
js 

= 

(
U 

(i ) 
j + U 

(i ) 
js 

)
/ 2 for i = 1 , 2 , 3 and for all s

except for s = k, 

• In the case s = k, we use ˜ U 

(i ) 
j,k 

= ( ̃  U 

(i ) 
j,k +1 

+ ̃

 U 

(i ) 
j,k −1 

) / 2 , i = 1 , 2 , 3 , 

where we set ˜ U 

(i ) 
j, 0 

:= ̃

 U 

(i ) 
j,m j 

and 

˜ U 

(i ) 
j,m j +1 

:= ̃

 U 

(i ) 
j, 1 

, 

• Then, the obtained values of ˜ U 

(1) 
js 

= 

˜ w js are corrected: If ˜ w js <

B js , that is, if the estimated value of w is below the bottom

elevation at the midpoint of the s th cell interface, we raise that

value to ˜ w js := B js . 

Finally, for each variable w, hu and hv , out of the m j gradient

alues we select the one that has the smallest magnitude and use

he obtained numerical gradients ∇U j = ((U x ) j , (U y ) j ) 
T to build

he corresponding linear pieces in the cell M j : 

 j (x, y ) := U j + (U x ) j (x − x j ) + (U y ) j (y − y j ) . (8)

he values U j ( P jk ) required in (4), (5) are then obtained by substi-

uting the coordinates of P jk into (8) . 

emark 5. Note that the reconstruction (8) satisfies the relation-

hip similar to (6) , established for the continuous piecewise lin-

ar reconstruction of the bottom topography in Section 2.3 . In par-

icular, for the water surface elevation w and the water depth

 := w − B we have 

m j ∑ 

k =1 

μk w (P jk ) = w j , 

m j ∑ 

k =1 

μk h (P jk ) = h j , (9)

hich will be used in the proof of positivity preserving property

f the scheme presented in Section 5 . 

We would like to point out that the piecewise linear recon-

truction procedure for w presented in this section does not guar-

ntee positivity of the reconstructed values of h . Therefore, this re-

onstruction has to be corrected to preserve the positivity of h . 

. Positivity preserving reconstruction for water surface 

levation 

In this section, we propose an algorithm for the positivity

reserving reconstruction of w . We say that the reconstruction is

ositivity preserving if it leads to nonnegative computed values of

ater depth at all of the cell vertices. The obtained reconstruction

an be viewed as a correction of the basic piecewise linear recon-

truction 

 j (x, y ) : = w j + (w x ) j (x − x j ) + (w y ) j (y − y j ) 

= w j + ∇w j · (x − x j , y − y j ) 
T , 

here the gradient ∇w j = ((w x ) j , (w y ) j ) 
T is calculated using the

odified minmod-type limiter described in Section 2.4 . 

We will distinguish between the three cases depending on the

mount of water present in the cell M j and on the local properties

f the piecewise linear bottom approximation. 

ase 1 (Wet Cells). We first consider the cells in which the water

urface elevation w j is greater than or equal to the bed elevation at

ll of the vertices of the cell M j , that is, w j ≥ B jk 1 for all k ∈ [1, m j ].

n this case, it is possible to construct a single-plane reconstruction

ver the entire cell M j . The reconstruction will take the form 

 j (x, y ) := w j + α∇w j · (x − x j , y − y j ) 
T , (10)
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(  
here a proper selection of the parameter α ∈ [0, 1] will help to

espect positivity of the water depth. 

To obtain the values of water surface elevation and water depth

t the cell vertices (denoted by P jk 1 ) we use 

 jk 1 = w j + α∇w j ·
−−−→ 

G j P jk 1 , (11)

nd 

 jk 1 = w jk 1 − B jk 1 = w j − B jk 1 + α∇w j ·
−−−→ 

G j P jk 1 . (12)

The condition that the water surface elevation is greater than

r equal to the bed elevation at all of the vertices of the cell M j 

mplies that the set of parameters α ∈ [0, 1] which guarantee the

ositivity of h jk 1 at all of the cell vertices, is not empty since it

ontains α = 0 . We then consider the largest α in this set denoted

y αmax and we use the single-plane reconstruction based on the

radient αmax ∇w j . The parameter αmax can be easily obtained by

equiring h jk 1 ≥ 0 in (12) for all k 1 . 

ase 2 (Partially Wet Cells with the Possibility of Single-Plane Recon-

truction (10) ). The second possible case corresponds to the situa-

ion, in which there are some cell vertices P jk 1 for which w j < B jk 1 .

e split the vertices P jk 1 , k = 1 , . . . , m j into two separate sets: wet

ertices where w j ≥ B jk 1 , and dry vertices where w j < B jk 1 . Due to

9) and since w j ≥ B j , the set of wet vertices is not empty. 

Similar to Case 1, we consider the parameter αmax such that

or all α ∈ [0, αmax ] the values of the water depth obtained us-

ng Eq. (12) are nonnegative for all wet vertices. If h is also non-

egative for α = αmax at all of the dry vertices, we use α = αmax 

or the single-plane reconstruction (11), (12) . Otherwise, no single-

lane positivity preserving reconstruction is possible and we build

 reconstruction consisting of m j planes defined over the cell M j . 

ase 3 (Partially Wet Cells Not Included in Case 2). In this case, we

ropose a reconstruction with the minimal deviation from the di-

ection of the initial gradient ∇w j . 

Case 3a: We first consider partially wet cells with only one dry

ertex P jk 1 (that is, w j < B jk 1 ). In the reconstruction, we set zero

ater depth at this point (that is, we set w (P jk 1 ) := B jk 1 ) and since

he linear reconstruction should also satisfy w (G j ) = w j , we only

eed a third point to complete the reconstruction. To this end,

e consider m j − 1 planes passing through these two points and

he point (P jk ′ 
1 
, B jk ′ 

1 
) for k ′ 1 � = k 1 and we compute their gradients

∇w k ′ 
1 
} . We then consider only those gradients that lead to pos-

tive reconstructions and out of them select the gradient which

as the minimal deviation from the direction of the initial gradient

w j by computing the angles between ∇w j and ∇w k ′ 
1 
. If none of

he gradients ∇w k ′ 
1 

guarantees a positive reconstruction, we pro-

eed with Case 3b. 

Case 3b: Finally, we consider partially wet cells not covered by

ase 3a. We now use a union of m j planes defined over the cell M j .

irst, we set zero depth at the cell vertices at which the condition

 j < B jk 1 is satisfied. There are many possibilities for the recon-

truction, but in order to avoid oscillations we consider the con-

tant depth denoted by ̂ h j at the other vertices where w j ≥ B jk 1 .

he value of ̂ h j can be obtained using the conservation require-

ent (9) as follows: 

 

 j = 

h j ∑ m j 

k =1 
μk ε k 

, 

where ε k = 

⎧ ⎨ ⎩ 

1 , if w j ≥ B jk 1 and w j ≥ B jk 2 , 

0 , if w j < B jk 1 and w j < B jk 2 , 

1 / 2 , otherwise . 

a

emark 6. In all of the cases considered above, the values of wa-

er surface elevation and water depth at the midpoints P jk are ob-

ained from the values at the cell vertices by 

w (P jk ) = 

w (P jk 1 ) + w (P jk 2 ) 

2 

, h ( P jk ) = 

h ( P jk 1 ) + h (P jk 2 ) 

2 

. 

herefore, if the reconstructed water depth is nonnegative at all of

he cell vertices, it will be also nonnegative over the entire cell,

nd in particular, at the midpoints of its interfaces. The positivity

f the water depth at the midpoints of the interfaces will be crucial

n the proof of the positivity preserving property of the scheme

resented in Section 5 . 

. Well-balanced discretization of the source term 

The proposed semi-discrete central-upwind scheme (4) includes

he cell average of the source term S j ≡
(
0 , S 

(2) 
j , S 

(3) 
j 

)T 
. To design

 well-balanced scheme, that is, a scheme that exactly preserves

lake at rest” steady-state solutions satisfying w ≡ C , u ≡ v ≡ 0,

here C is a constant, a special quadrature has to be designed. 

Note that for a given “lake at rest” solution, U j (P jk ) = U jk (P jk ) =
(C, 0 , 0) T , and the two momentum equations of the semi-discrete

cheme (4) reduce to 

− g 

2 | M j | 
m j ∑ 

k =1 

� jk cos (θ jk )(C − B jk ) 
2 + S 

(2) 

j = 0 , 

− g 

2 | M j | 
m j ∑ 

k =1 

� jk sin (θ jk )(C − B jk ) 
2 + S 

(3) 

j = 0 . 

(13) 

n the remaining part of the section, we derive a quadrature that

atisfies the well-balancing conditions (13) . 

First, the source term S 
(2) 
j can be rewritten in the following

orm using the divergence theorem: 

 

(2) 

j = − g 

| M j | 
∫ 

M j 

(w − B ) B x d xd y 

= 

g 

2 | M j | 
∫ 

M j 

((w − B ) 2 ) x d xd y − g 

| M j | 
∫ 

M j 

(w − B ) w x d xd y 

= 

g 

2 | M j | 
m j ∑ 

k =1 

∫ 
(∂M j ) k 

(w − B ) 2 cos (θ jk ) ds 

− g 

| M j | 
∫ 

M j 

(w − B ) w x d xd y. (14) 

e then apply the midpoint rule to approximate the integrals

n the right-hand side (RHS) of (14) to obtain the well-balanced

uadrature for S 
(2) 
j : 

 

(2) 

j = 

g 

2 | M j | 
m j ∑ 

k =1 

� jk (w j (P jk ) − B jk ) 
2 cos (θ jk ) − g(w x ) j ( w j − B j ) . 

(15) 

imilarly, the well-balanced quadrature for the source term S 
(3) 
j is

 

(3) 

j = 

g 

2 | M j | 
m j ∑ 

k =1 

� jk (w j (P jk ) − B jk ) 
2 sin (θ jk ) − g(w y ) j ( w j − B j ) . 

(16) 

Indeed, the quadratures (15) and (16) are well-balanced since

he terms on the RHS of (15) and (16) containing the derivatives

 w x ) j and ( w y ) j vanish for the “lake at rest” solution U ≡ ( C , 0, 0) T ,

nd the well-balancing conditions (13) are satisfied. 
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5. Positivity preserving property of the scheme 

In this section, we prove the positivity preserving property of

the proposed central-upwind scheme. 

Theorem 1. Consider the semi-discrete central-upwind scheme (4) for

the Saint-Venant system (2) , (3) . Let the ODE system (4) is integrated

using the forward Euler method. We assume that at time t = t n the

computed water depth is nonnegative, that is, w 

n 
j ≥ B j for all j and

that the time step size is restricted by 


t ≤ 1 

2 a 
min 

j,k 
{ d jk } , (17)

where a = max { a in 
jk 

, a out 
jk 

} and d jk is the distance between the center

of mass G j of the cell M j and its kth interface P jk 1 P jk 2 . 

Then w 

n +1 
j ≥ B j for all j at time t = t n +1 . 

Proof. Applying the forward Euler temporal discretization to the

first equation in (4) yields 

w 

n +1 
j = w 

n 
j −


t 

| M j | 
m j ∑ 

k =1 

� jk cos (θ jk ) 

a in 
jk 

+ a out 
jk 

[
a in jk (hu ) jk (P jk ) + a out 

jk (hu ) j (P jk )

− 
t 

| M j | 
m j ∑ 

k =1 

� jk sin (θ jk ) 

a in 
jk 

+ a out 
jk 

[
a in jk (h v ) jk (P jk ) + a out 

jk (h v ) j (P jk ) 
]

+ 


t 

| M j | 
m j ∑ 

k =1 

� jk 

a in 
jk 

a out 
jk 

a in 
jk 

+ a out 
jk 

[
w jk (P jk ) − w j (P jk ) 

]
. 

(18)

Recall that the reconstruction proposed in Sections 2.4 and

3 guarantees that the water surface elevation and the water depth

satisfy the following equalities at time level t = t n : 

w 

n 
j = 

m j ∑ 

k =1 

μk w j (P jk ) , h 

n 

j = 

m j ∑ 

k =1 

μk h j (P jk ) , (19)

and the inequalities h j ( P jk ) ≥ 0 and h jk ( P jk ) ≥ 0. 

Since the piecewise linear reconstruction of the bottom topog-

raphy is continuous we have w jk (P jk ) − w j (P jk ) = h jk (P jk ) − h j (P jk )

for each k ∈ [0, m j ]. We then use this equality together with (19) to

rewrite Eq. (18) in the following form: 

h 

n +1 

j = 


t 

| M j | 
m j ∑ 

k =1 

h jk (P jk ) 
� jk a 

in 
jk 

a in 
jk 

+ a out 
jk 

[
a out 

jk − u 

θ
jk (P jk ) 

]
+ 

m j ∑ 

k =1 

h j (P jk ) 
(
μk −


t 

| M j | ·
� jk a 

out 
jk 

a in 
jk 

+ a out 
jk 

[
a in jk + u 

θ
j (P jk ) 

])
, 

(20)

where 

u 

θ
jk (P jk ) : = cos (θ jk ) u jk (P jk ) + sin (θ jk ) v jk (P jk ) , u 

θ
j (P jk ) : 

= cos (θ jk ) u j (P jk ) + sin (θ jk ) v j (P jk ) . 

Since a out 
jk 

≥ u θ
jk 
(P jk ) and h jk ( P jk ) ≥ 0, the first term on the RHS

of (20) is nonnegative. Since 


t 

| M j | ·
� jk a 

out 
jk 

a in 
jk 

+ a out 
jk 

[
a in jk + u 

θ
j (P jk ) 

]
≤ 
t 

| M j | � jk a 
out 
jk and h j (P jk ) ≥ 0 , 

the second term on the RHS of (20) is positive provided that 


t ≤ μk | M j | 
� jk a 

out 
jk 

. (21)

This condition is valid and can be verified using the time step re-

striction (17) , μk = A jk / | M j | and A jk = d jk � jk / 2 . �
emark 7. The proof of Theorem 1 is still valid if the forward Eu-

er temporal discretization is replaced with a high-order SSP ODE

olver, since one step of any SSP method consists of a convex com-

ination of several forward Euler steps. 

emark 8. We note that the condition (17) only ensures the pos-

tivity preserving property of the designed scheme, but does not

-priori guarantees its stability. Similar to the stability require-

ent of the central-upwind scheme on the triangular meshes

 [6,27] ), we can formulate the CFL condition for the proposed cell-

ertex central-upwind scheme: No nonlinear (possibly discontinu-

us) waves generated at the cell interfaces should reach the center

f mass of the computational cell over a time step 
t . This leads

o the following time step restriction: 

t < 

1 

a 
min 

j,k 
{ d jk } , 

hich is less restrictive than (17) . Therefore, the condition (17) is

xpected to ensure both the stability and positivity. Note that if the

pproximation given in Remark 2 for the proposed semi-discrete

cheme is used, the condition (21) required for positivity is satis-

ed since in this case the value of the directional local speed a out 
jk 

s very small. 

. Numerical examples 

In this section, we demonstrate the performance of the pro-

osed central-upwind scheme on a variety of benchmarks. In all

f the numerical experiments, we take g = 1 except for Example 4 ,

here we set g = 9 . 812 . In Examples 1 –3 , the proposed scheme

s employed to compute small perturbations of the “lake at rest”

teady states in different contexts. In Example 4 , we simulate a

apidly varying flow arising in modeling dam breaking over dis-

ontinuous bottom topography. In Example 5 , the exact solution

or parabolic waves proposed in [43] is used for assessing the pro-

osed method. We have used this analytical solution to test the

ccuracy and positivity of the proposed scheme. 

xample 1. Small perturbation over an exponential hump 

In the first example, we consider the benchmark originally pro-

osed in [31] and then widely used in the literature (see, e.g.,

7,23] ), as well as its more challenging version ( [6] ), in which

 very small perturbation of the water surface elevation is con-

idered. We study the ability of the cell-vertex central-upwind

cheme to accurately capture the propagation of a small pertur-

ation of the “lake at rest” steady state over an exponential hump

escribed by 

 (x, y ) = 0 . 8 exp (−5(x − 0 . 9) 2 − 50 y 2 ) . 

he computational domain is [0 , 2] × [ −0 . 5 , 0 . 5] , and the water

urface is initially at rest everywhere except for the stripe 0.05 <

 < 0.15, where a small perturbation is initially located: 

 (x, y, 0) = 

{
1 + ε, 0 . 05 < x < 0 . 15 , 

1 , otherwise , 
u (x, y, 0) ≡ v (x, y, 0) ≡ 0

First, we take a relatively large perturbation ε = 0 . 01 and com-

ute the solution using the grid with an average cell area | M j | =
 . 24 · 10 −5 . The evolution (at times t = 0 . 6 , 0.9, 1.2, 1.5 and 1.8) of

he right-going portion of the water surface perturbation is shown

n the left column of Fig. 2 . As one can see, the obtained solu-

ion is oscillation-free and the achieved resolution is comparable

o the resolution achieved in [6,23,31] . To further verify the ro-

ustness of the proposed method, we take smaller perturbation

alues ε = 10 −3 and ε = 10 −4 and compute the solution at the

ame time moments t = 0 . 6 , 0.9, 1.2, 1.5 and 1.8 using the grids
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Fig. 2. Example 1 : Solution ( w ) computed by the well-balanced cell-vertex central-upwind scheme for ε = 10 −2 (left) and ε = 10 −3 (right). 
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Fig. 3. Example 1 : Top (left) and three-dimensional (3D) (right) views of the solution ( w ) computed by the well-balanced cell-vertex central-upwind scheme for ε = 10 −4 . 
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with average cell areas | M j | = 1 . 25 · 10 −5 and | M j | = 7 . 78 · 10 −6 ,

respectively. The obtained results are shown in the right column

of Fig. 2 and in Fig. 3 . It should be observed that the computed

solutions are still oscillation-free and highly resolved. This demon-

strates the ability of the scheme to accurately capture quasi-steady

states. 

S  
Next, we demonstrate the importance of the proposed well-

alanced discretization of the source term. To this end, we design

 non well-balanced cell-vertex central-upwind scheme by replac-

ng the well-balanced quadratures (15) and (16) with the midpoint

ule: 

 

(2) 

j = −g( w j − B j )(B x ) j , S 
(3) 

j = −g( w j − B j )(B y ) j , (22)
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Fig. 4. Example 1 : Solutions ( w ) computed by the non well-balanced cell-vertex central-upwind scheme using the fine (left) and coarse (middle) grids and by the well- 

balanced cell-vertex central-upwind scheme using the coarse grid (right). Here, ε = 10 −4 . 

2ε

ε ε

Fig. 5. Examples 2 and 3: One-dimensional slices of the bottom topographies (24) , left, and (25) , right. These plots are not to scale. 

Fig. 6. Example 2 : Solution ( w ) computed by the well-balanced cell-vertex central-upwind scheme. 
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here the components of ∇B are obtained using the divergence

heorem: 

(B x ) j = 

1 

| M j | 
m j ∑ 

k =1 

� jk B jk cos (θ jk ) , (B y ) j = 

1 

| M j | 
m j ∑ 

k =1 

� jk B jk sin (θ jk ) .

(23) 

The non well-balanced solution computed for ε = 10 −4 at time

 = 0 . 6 on the same grid as before (with average cell areas | M j | =
 . 78 · 10 −6 ) is shown in Fig. 4 . As one can see, the use of the

on well-balanced scheme leads to spurious modes appearing at

he plateau area which deform the solution. When we take a

oarser mesh with average cell areas | M j | = 2 . 24 · 10 −5 , the non

ell-balanced solution is severely deformed and is completely in-
orrect, see Fig. 4 (middle). The well-balanced scheme applied on

he same coarse mesh leads, on the contrary, to oscillation-free re-

ults as it is shown in Fig. 4 (right). This clearly demonstrates a

rucial role of a well-balanced source term quadrature. 

xample 2. Small perturbation over submerged flat plateau 

In this example, we consider a submerged flat plateau as

hown in Fig. 5 (left). To further verify well-balanced and positiv-

ty preserving features of the proposed cell-vertex central-upwind

cheme, we consider a slight modification of the test problem from

6] , in which a small perturbation of the “lake at rest” steady state

ropagates over a submerged flat plateau located very close to the

ater surface. 
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Fig. 7. Example 2 : Solution ( w ) computed by the non well-balanced cell-vertex central-upwind scheme. 

Fig. 8. Example 3 : Solution ( w ) computed by the well-balanced cell-vertex central-upwind scheme. The circle in the center of the computational domain represents the part 

of the bottom that is above the water surface. 
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The computational domain is [0 , 1] × [ −0 . 5 , 0 . 5] and the bottom

topography is given by 

B (x, y ) 

= 

{ 

1 − 2 ε, r ≤ 0 . 1 , 

10(1 − 2 ε)(0 . 2 − r) , 0 . 1 ≤ r ≤ 0 . 2 , 

0 , otherwise , 
r := 

√ 

(x − 0 . 5) 2 + y 2 .

(24)

The outflow boundary conditions are used in the x -direction, while

the wall boundary conditions are imposed in the y -direction. As in

Example 1 , the initial conditions correspond to a small perturba-

tion of the “lake at rest” steady state: 

w (x, y, 0) = 

{
1 + ε, 0 . 1 < x < 0 . 2 , 

1 , otherwise , 
u (x, y, 0) ≡ v (x, y, 0) ≡ 0 .

The value of the desingularization parameter ε = 0 . 01 is used here.

The solution is computed using the proposed cell-vertex

central-upwind scheme with average cell areas | M j | = 2 . 24 × 10 −5 .

Fig. 6 shows w computed at times t = 0 . 2 , 0.35 and 0.65. As one

can see, no oscillations are observed and the positivity of the

water depth is preserved. We then compute the solution on the

same grid at the same times, but using the non well-balanced

central-upwind scheme described in Example 1 . The obtained re-

sults are presented in Fig. 7 , where spurious deformations are

clearly observed. These deformations lead to numerical oscillations

and widely increase if a coarser mesh is used. 

Example 3. Small perturbation bending around a round-shape is-

land 
This example, which is also a slight modification of the problem

rom [6] , is designed to examine both well-balanced and positivity

reserving properties of the studied scheme by testing its ability

o handle a situation with a small perturbation of a “lake at rest”

tate propagating around an island. The round-shape island (see

ig. 5 , right) is represented by the following bottom topography

unction: 

 (x, y ) = 

⎧ ⎨ ⎩ 

1 . 1 , r ≤ 0 . 1 , 

11(0 . 2 − r) , 0 . 1 < r < 0 . 2 , 

0 , otherwise , 

r := 

√ 

x 2 + y 2 , 

(25)

hich is located in the center of the computational domain

 −0 . 5 , 0 . 5] × [ −0 . 5 , 0 . 5] . The initial condition given by 

 (x, y, 0) 

 

{
1 + ε, −0 . 4 < x < −0 . 3 , 

max (1 , B (x, y )) , otherwise , 
u (x, y, 0) ≡ v (x, y, 0) ≡ 0 .

s in Example 2 , the outflow boundary conditions are used in the

 -direction, while the wall boundary conditions are imposed in the

 -direction. 

The solution computed at times t = 0 . 35 , 0.50 and 0.65 for ε =
 . 01 using the proposed cell-vertex central-upwind scheme with

verage cell areas | M j | = 1 . 25 × 10 −5 is shown in Fig. 8 . The flow

round the dry parts of the island is of a special interest. As one

an see, the wave bends around the island without any oscillations.

n the contrary, the results obtained using a non well-balanced
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Fig. 9. The same as Fig. 8 , but the solution ( w ) is computed by the non well-balanced cell-vertex central-upwind scheme. 

Fig. 10. Example 4 : Solution at time t = 15 computed by the proposed cell-vertex central-upwind scheme. In the left and middle graphs, a 1D slice of the solution along 

the line y = 0 is shown. There, w 2 and w 1 are the water surface elevations computed using average cell areas | M j | = 0 . 50 and | M j | = 2 . 30 , respectively, w 0 is the initial 

condition. The bottom topography B is plotted at the left. The 3D view of the computed water surface is on the right. 

Fig. 11. The same as Fig. 10 , but at a later time t = 55 . 
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iscretization of the source terms contain large artificial waves,

hich develop completely different solution structure, see Fig. 9 . 

xample 4. Dam break over discontinuous topography 

In this example, we test the ability of the proposed cell-vertex

entral-upwind scheme to accurately resolve rapidly varying flows.

e consider a 1D dam break problem from [44] , see also [11] ,

hich we solve using the 2D code with outflow boundary condi-

ions. In this problem, the bottom topography is given by 

 (x, y ) = 

{
8 , | x − 750 | ≤ 187 . 5 , 

0 , otherwise , 
nd the initial conditions are 

 (x, y, 0) = 

{
20 , x < 750 , 

15 , otherwise , 
u (x, y, 0) ≡ v (x, y, 0) ≡ 0 . 

In Fig. 10 , we show the solutions computed using the cell-

ertex central-upwind scheme at time t = 15 using the grid shown

n Fig. 12 (left) with average cell areas M j = 2 . 30 and M j = 0 . 50 .

he shock and rarefaction waves reach the discontinuities in the

ottom topography at about t ≈ 17. We then compute the solu-

ions on the same two grids at time t = 55 , at which the developed

ave structure is much more complicated than at time t = 15 .

he obtained results are shown in Fig. 11 . The solutions computed
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Fig. 12. Grids used in Examples 4 (left) and 5 (right). Solid lines represent the primary triangular grids, while the dashed lines show the computational cell-vertex grids. 

Fig. 13. Example 5 : Solution ( w ) computed at (a): t = 0 (initial condition), (b): t = 0 . 5 T, (c): t = T, (d): t = 15 T . 
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Table 1 

Example 5 : Verification of the second-order accuracy of the 

scheme. 

Number of cells Average cell area L 1 -error Rate 

5101 7 . 06 e − 03 2 . 00 e − 03 –

9941 3 . 62 e − 03 1 . 34 e − 03 1 .20 

16381 2 . 20 e − 03 8 . 51 e − 04 1 .83 

21841 1 . 65 e − 03 6 . 43 e − 04 1 .95 
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Fig. 14. Example 5 : Evolution of the L 1 -error in the log-log scale for w at t = T us- 

ing the proposed scheme with a very small constant time step (
t = 10 −3 ) , where 

xm stands for the square root of the average cell areas. 
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n  
y the proposed central-upwind scheme are in a good agreement

ith the solutions reported in [11,44] , they are oscillation-free, and

he achieved resolution is very high. 

xample 5. Thacker’s time-dependent solution using a parabolic

ood wave 

In the last example, the proposed cell-vertex central-upwind

cheme is tested using a time-dependent exact solution proposed

y Thacker [43] . 

For the flat bottom topography ( B ≡ 0) and a time reference

alue T , this solution can be written as follows: 

h (x, y, t) = η

[ 

T 2 

t 2 + T 2 
− x 2 + y 2 

R 

2 
0 

(
T 2 

t 2 + T 2 

)2 
] 

, 

u (x, y, t ) = 

xt 

t 2 + T 2 
, v (x, y, t ) = 

yt 

t 2 + T 2 
, 

(26) 

here η is the initial height at the peak of the water surface and

he parameter R 0 is the radius of the spreading mound which is

iven by 

 0 = T 
√ 

2 gη. 

his test problem is challenging since for large t , the water depth

ecomes very small. 

We take η = 2 and R 0 = 9 and the following initial conditions:

 (x, y, 0) = η

(
1 − x 2 + y 2 

R 

2 
0 

)
, u (x, y, 0) ≡ v (x, y, 0) ≡ 0 , (27)

n the [ −3 , 3] × [ −3 , 3] computational domain. The analytical so-

ution (26) is used to calculate the boundary conditions. In Fig. 13 ,

e present the solution computed at t = 0 . 5 T , T and 15 T using the

nstructured mesh-vertex grid shown in Fig. 12 (right) with 9941

ells. These results demonstrate that the proposed central-upwind

cheme is stable, it preserves the symmetry of the solution and the

ositivity of the water depth even at large t = 15 T . 

We also test the experimental order of convergence and present

he obtained results in Table 1 , where the L 1 -errors for w at time

 = T and the corresponding convergence rates are shown. Other

umerical tests are performed for the spatial order of the pro-

osed method, where a very small time step is used in order to

ender the temporal errors negligible. Different sizes of the com-

utational cells are used to obtain the errors due to the spatial

iscretization. Fig. 14 shows the evolution of the L 1 -error in the

og-log scale, where we observe that for small sizes of the compu-

ational cells the spatial convergence rate is approximately equal to

. These results confirm the second-order of accuracy of the pro-

osed method. 

In order to compare the proposed scheme and the second-order

riangular central-upwind scheme in terms of accuracy, the L 1 -

rror is computed for the solution of parabolic flood wave at time

 = T using both schemes. For the CFL number 0.5, the solution

t time t = T computed by the proposed scheme using a mesh-

ertex computational grid with average cell areas | M j | = 1 . 837 ·
0 −3 has the L 1 -error e = 7 . 140 · 10 −4 , while the L 1 -error for the
1 
econd-order triangular central-upwind scheme using a computa-

ional grid with the same average cell areas is e 2 = 1 . 922 · 10 −3 ,

hich is more than twice larger than e 1 . 

. Conclusions 

In this paper, we have introduced a new second-order well-

alanced positivity preserving central-upwind scheme on unstruc-

ured cell-vertex grids for the Saint-Venant system of shallow wa-

er equations with variable bottom topography. Cell-vertex finite-

olume methods take an advantage of using more cell interfaces.

his is important, especially in the case of central-upwind schemes

hich are developed based on the use of local speeds of prop-

gation at cell interfaces. To develop cell-vertex central-upwind

chemes, we have proposed a new piecewise linear approximation

f the bottom topography. To ensure the stability of the scheme,

e have developed a new non-oscillatory piecewise linear recon-

truction in which the gradient of each of the conservative vari-

bles is computed using a modified minmod-type limiter. The wa-

er surface reconstruction has been corrected to guarantee the pos-

tivity of the water depth over the entire computational cell. The

ell-balanced property of the proposed method has been ensured

sing a special quadrature for the discretization of the cell averages

f the source terms due to bottom topography. We have proved

he positivity preserving property of the proposed well-balanced

ell-vertex central-upwind scheme in the case when the time dis-

retization is carried out using an SSP ODE solver. The third-order

SP Runge-Kutta method has been used in all of our numerical ex-

eriments. 

The performance of the proposed scheme has been tested on

 number of numerical examples. We have used the scheme to

ompute small perturbations of “lake at rest” steady-state solu-

ions over several different bottom topographies, including a case

ith almost dry areas and “islands”. The scheme has been also val-

dated in the case of a rapidly varying flow over discontinuous bot-

om topography. In the last numerical example, the accuracy of the

roposed scheme has been experimentally tested on a problem for

hich the exact time-dependent solution is available. The obtained

umerical results confirm the well-balanced, positivity preserving
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and non-oscillatory properties as well as the second order of ac-

curacy of the developed cell-vertex central-upwind scheme. Even

though an unstructured triangulation was used as a primary grid,

an extension to more general polygon-type primary grids can be

made in a straightforward manner. 

The proposed central-upwind scheme can be extended to mul-

tidimensional coupled models, for which the eigenvalues and

eigenvectors of the matrix of the system are not known analyt-

ically, and thus the solution of the Riemann problem or its nu-

merical approximation may be hard to obtain. In these cases, the

use of the proposed Riemann-problem-solver-free central-upwind

scheme may be especially advantageous since the estimates on the

one-sided local speeds a in 
jk 

and a out 
jk 

may be obtained using the La-

grange theorem [35] as it was done, for example, in [14,29,32] . 
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