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Abstract We study numerical methods for convection-dominated fluid dynamics
problems. In particular, we consider initial-boundary value problems for the Burg-
ers equation with small diffusion coefficients. Our goal is to investigate several
strategies, which can be used to monotonize numerical methods and to ensure non-
oscillatory and positivity-preserving properties of the computed solutions. We focus
on fully implicit finite-element methods constructed using the backward Euler time
discretization combined with high-order spatial approximations. We experimentally
study the following three monotonization approaches: mesh refinement, increasing
the time-step size and utilizing higher-order finite-element approximations. Feasi-
bility of these three strategies is demonstrated on a number of numerical examples
for both one- and two-dimensional Burgers equations.

1 Introduction

We study numerical methods for convection-dominated nonlinear convection-diffusion
equations; see, e.g., [2, 21, 25, 29].

In practice, it is often important to design numerical methods that produce mono-
tone, non-oscillatory and positivity-preserving computed solutions. This has been
done for both linear and nonlinear convective terms; see, e.g., [12,14,16] and refer-
ences therein.

A classical approach in enforcing monotonicity of computed solutions of hyper-
bolic and convection-dominated problems is by introducing artificial viscosity. The
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concept of artificial viscosity was first introduced back in 1950 in [28]. For modern
artificial viscosity methods we refer the reader to, e.g., [8, 9, 15]. Non-oscillatory
and positivity-preserving properties can be also ensured by using upwind approxi-
mations and nonlinear limiters; see, e.g., [7, 10, 13, 18] and references therein.

In this paper, we investigate several strategies, which can be used to suppress
spurious oscillations in the computed solutions of the initial-boundary value prob-
lems (IBVPs) for the Burgers equation without adding artificial viscosity or utilizing
any special approximations of the convection term.

We implement standard finite-element spatial approximations [6, 17], which are
widely used in computational fluid dynamics [5,30]. One of the key points in design-
ing a non-oscillatory numerical method is choosing an appropriate time discretiza-
tion. When numerically solving IBVPs for linear convection-diffusion equations,
two-level schemes (θ -method, schemes with weights) are traditionally widely used;
see, e.g., [3, 19]. For these methods, the monotonicity of the computed solution is
studied using the discrete maximum principle; see, e.g., [23, 24]. We would like
to point out that even in the simplest purely diffusive case, the only unconditionally
monotone scheme is the fully implicit backward Euler one. Other two-level schemes
are only conditionally monotone with the monotonicity restriction on the time-step
size τ being very strict, namely, τ = O(h2), where h is the spatial mesh size. We
therefore use only the fully implicit backward Euler method in the current study.
We implement the implicit scheme with the help of the classical iterative Newton’s
method [22], which is used to obtain the solution at the new time level. Alternative
approaches for the realization of the implicit schemes are discussed in [11].

The main goal of this paper is to investigate the following three monotonization
strategies. The first one is reducing the spatial mesh size. This approach would lead
to a monotone positivity-preserving numerical solution provided h is taken to be
proportional to the diffusion coefficient. Such restriction, however, may become im-
practical for multidimensional problems with small diffusion. The second strategy
is increasing the time-step size. By doing this we take advantage of the fact that
the use of the backward Euler temporal discretization introduces a numerical dif-
fusion proportional to τ . The numerical effect of this type of monotonization has
been recently demonstrated in [27], where a simple implicit finite-element method
for isentropic gas dynamics equations has been proposed. The third strategy is in-
creasing the order (p) of the spatial finite-element approximation. As it has been
demonstrated in [4], this helps to suppress the oscillations in computed solutions of
stationary convection-diffusion equations.

In this paper, we experimentally study the three aforementioned monotoniza-
tion strategies in the context of nonlinear convection-diffusion equations in the
convection-dominated regime. To this end, we vary the parameters h, τ and p and
verify that reducing the spatial mesh or time-step size or increasing the order of spa-
tial approximation help to obtain non-oscillatory, positivity-preserving numerical
solutions.

The paper is organized as follows. In §2, we formulate the studied IBVP for the
one-dimensional (1-D) Burgers equation and the family of implicit finite-element
methods for its numerical solution. In §3, we conduct the aforementioned experi-
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mental monotonization study for the 1-D IBVP. In §4, we extend our study to the
IBVP for the two-dimensional (2-D) Burgers equation. Some concluding remarks
on efficiency and accuracy of the resulting method are given in §5.

2 One-Dimensional Problem

We consider the 1-D Burgers equation,

ut +
(u2

2

)
x
= νuxx, x ∈Ω = (−1,1), t ∈ (0,T ], (1)

where ν > 0 is a constant diffusion coefficient, subject to the following initial and
boundary conditions:

u(x,0) = u0(x), x ∈Ω , (2)
ux(−1, t) = ux(1, t) = 0, t ∈ (0,T ]. (3)

We design the numerical method for the IBVP (1)–(3) based on the finite-element
spatial approximations; see, e.g., [26]. For the sake of simplicity, we will use a
uniform grid with the nodes x j = jh, j = 0, . . . ,M, Mh = |Ω |= 2.

We define the finite-element space V h ⊂ H1(Ω) and approximate the solution
on each finite element using polynomials of degree p. The approximate solution
ψ ∈V h is then obtained from the following two integral equations:∫

Ω

ψtvdx+
∫
Ω

(
ψ2

2

)
x
vdx+ν

∫
Ω

ψxvx dx = 0, t ∈ (0,T ], (4)

∫
Ω

ψ(x,0)v(x)dx =
∫
Ω

u0(x)v(x)dx, (5)

which should be satisfied for all v ∈V h.
Let τ be a uniform time-step size and denote by ψn(x) := ψ(x, tn), where tn :=

nτ, n = 0, . . . ,N, Nτ = T . In order to numerically solve the problem (4), (5), we
use fully implicit scheme, which results in the following integral equation:∫
Ω

ψn+1−ψn

τ
vdx+

∫
Ω

( (ψn+1)2

2

)
x
vdx+ν

∫
Ω

ψ
n+1
x vx dx = 0, n = 0, . . . ,N−1,

(6)
subject to the corresponding initial condition:∫

Ω

ψ
0vdx =

∫
Ω

u0vdx. (7)
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In order to solve the nonlinear variational problem (6), (7), the iterative Newton
method is applied [22]. The computational implementation is based on the FEn-
iCS platform for solving partial differential equations [1, 20]. A standard conver-
gence/stopping criterion has been used for the iterative process. Calculations fin-
ished when both the absolute and relative (with respect to the initial value) residuals
become smaller than the prescribed tolerances. In the numerical experiments re-
ported below, we take the tolerances 10−9 for the absolute residual and 10−8 for the
relative one.

3 Numerical Monotonization

We consider a particular example of the 1-D Burgers equation (1) with different
values of ν subject to the following initial condition:

u0(x) =
{

1+ cos(2π(x+0.5)), −1≤ x < 0,
0, 0≤ x≤ 1. (8)

We note that the exact solution of the IBVP (1), (8), (3) is bounded and

0≤ u(x, t)≤ umax, umax := max
−1≤x≤1

u0(x) = 2.

We will compare the computed solutions below with the corresponding refer-
ence solutions, which are obtained on a very fine mesh with M = 50000 using the
piecewise-linear finite elements (p = 1) and the time-step size τ selected based on
the CFL condition with the CFL number equal to 1, namely:

τ = τ0 :=
h

umax
=

1
M
. (9)

The reference solutions at the final time T = 1 are plotted in Figure 1 (left) for
ν = 10−2, 10−3, 10−4 and 10−5. Zoom at the shock area is shown in Figure 1 (right).

We now turn to the study of the three aforementioned monotonization strategies.

3.1 Spatial Mesh Refinement

We compute the solutions of the IBVP (1), (8), (3) with ν = 10−2, 10−3, 10−4

and 10−5 and present the obtained results in Figure 2 for three different meshes
with M = 100, 400 and 1600 and the time-step size selected based on the CFL
condition (9). As one can clearly see, when ν = 10−2, all of the three computed
solutions are monotone and non-negative. This is, however, not true for ν = 10−3,
for which mesh refinement is required since the solution computed on the coarse
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Fig. 1 Reference solutions for different values of ν (left) and zoom at the shock area
(right).

grid with M = 100 is oscillatory. For the smaller values of ν = 10−4 and 10−5, all
of the three computed solutions are oscillatory and one needs to further refine the
mesh to suppress these oscillations. One can, however, observe that the area where
the oscillations are spread shrinks as M increases. We also note that in the case of
ν = 10−4, the amplitude of oscillations reduces when the mesh is refined.

Fig. 2 Computed (with M = 100, 400 and 1600) and reference solutions for ν = 10−2 (top
left), ν = 10−3 (top right), ν = 10−4 (bottom left) and ν = 10−5 (bottom right).
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3.2 Enlarging Time-Step Size

Once again, we compute the solutions of the IBVP (1), (8), (3) with ν = 10−2, 10−3,
10−4 and 10−5. We now fix M = 400 and set τ = γτ0 with three different values of
γ = 1, 2 and 4. The obtained results are presented in Figure 3, where one can clearly
see the smoothing effect of time-step enlargement. In particular, we emphasize that
even for smaller diffusion coefficients ν = 10−4 and 10−5, the solutions computed
with the largest time-step size, that is, with γ = 4 are oscillation-free and positive.

Fig. 3 Computed (with M = 400 and τ = γτ0 with γ = 1, 2 and 4) and reference solutions
for ν = 10−2 (top left), ν = 10−3 (top right), ν = 10−4 (bottom left) and ν = 10−5 (bottom
right).

3.3 Increasing the Order of Spatial Approximation

Finally, we compute the solutions of the IBVP (1), (8), (3) with ν = 10−2, 10−3,
10−4 and 10−5 using the Lagrangian finite elements of orders p = 1, 2 and 4 on the
fixed mesh with M = 200 and τ determined by the CFL condition (9). The obtained
results are plotted in Figure 4. As one can observe, in the case of large diffusion
coefficient ν = 10−2, the computed solutions are almost identical; when ν = 10−3,
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the solution obtained with p = 1 is oscillatory, while the solutions computed with
p = 2 and 4, which are very close to each other, are non-oscillatory and positive;
when ν = 10−4 and 10−5, the oscillations are still suppressed by the use of higher-
order finite elements and the solution computed with p = 4 is clearly sharper than
the one obtained with p = 2.

Fig. 4 Computed (with M = 200, τ = τ0 and p = 1, 2 and 4) and reference solutions for
ν = 10−2 (top left), ν = 10−3 (top right), ν = 10−4 (bottom left) and ν = 10−5 (bottom right).

4 Two-Dimensional Problem

In this section, we consider the 2-D Burgers equation,

ut +
(u2

2

)
x
+
(u2

2

)
y
= ν(uxx +uyy), (x,y) ∈Ω = (−1,1)× (−1,1), t ∈ (0,T ],

(10)
where ν > 0 is, as before, a constant diffusion coefficient. The initial and boundary
conditions are
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u(x,y,0) = u0(x,y), (x,y) ∈Ω , (11)
ux(−1,y, t) = ux(1,y, t) = uy(x,−1, t) = uy(x,1, t) = 0, t ∈ (0,T ]. (12)

We consider a particular example of the 2-D Burgers equation (1) with ν = 10−4

subject to the following initial condition:

u0(x,y) = 2e−10((x+0.5)2+(y+0.5)2). (13)

We note that as in the 1-D example studied in §3, the exact solution of the IBVP
(10)–(13) is bounded and 0≤ u(x,y, t)≤ umax := max(x,y)∈Ω u0(x,y) = 2.

We numerically solve the IBVP (10)–(13) using a family of implicit finite-
element methods with p = 1, 2 and 4 on a uniform M×M Cartesian mesh with
M = 200 and the time-step size taken according to the CFL condition with the CFL
number equal to 1, namely: τ = (2/M)/umax = 1/M. The solutions computed at the
final time T = 1 are shown in Figure 5. As one can see, when p = 1 is used, the
obtained solution is quite oscillatory. The oscillations are, however, substantially
decreased by using p = 2 and almost eliminated when p = 4.

5 Concluding Remarks

In this paper, we have experimentally studied three monotonization strategies in the
context of nonlinear convection-diffusion equations in the convection-dominated
regime. We have varied the spatial mesh size (h), time-step (τ) and spatial formal
order of the method (p) and verified that reducing h, increasing τ or increasing
p helps to obtain non-oscillatory, positivity-preserving numerical solutions. Obvi-
ously, when h is reduced or p is increased, the CPU time will increase, which may
affect the efficiency of the method. On the other hand, whet τ is increased, the
accuracy of the method is affected. We therefore suggest the author to mix the stud-
ied strategies in order to obtain an accurate, non-oscillatory and efficient resulting
method. Details of the optimal strategy depends on problem at hand and also on the
computational resources available.
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