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Abstract

In this paper, we develop a robust and efficient numerical method for shallow water
equations with moving bottom topography. The model consists of the Saint-Venant system
governing the water flow coupled with the Exner equation for the sediment transport. One
of the main difficulties in designing good numerical methods for such models is related
to the fact that the speed of water surface gravity waves are typically much faster than
the speed at which the changes in the bottom topography occur. This imposes a severe
stability restriction on the size of time steps, which, in turn, leads to excessive numerical
diffusion that affects the computed bottom structure. In order to overcome this difficulty,
we develop an operator splitting approach for the underlying coupled system, which allows
one to treat slow and fast waves in a different manner and using different time steps. Our
method is based on the application of a finite-volume central-upwind scheme introduced
in [A. Kurganov and G. Petrova, Commun. Math. Sci., 5 (2007), pp. 133–160], and
incorporates a staggered grid strategy needed for a proper approximation of the bottom
topography function. A number of one- and two-dimensional numerical examples are
presented to demonstrate the performance of the proposed method.

Key words: Saint Venant system of shallow water equations, moving bottom topography,
Exner equation, operator splitting method, semi-discrete central-upwind schemes.
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1 Introduction

Shallow water models are widely used as a mathematical framework to study water flows in
rivers and coastal areas as well as to investigate a variety of phenomena in atmospheric sciences
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and oceanography. One of the classical shallow water models is the Saint-Venant (SV) system
[11], which in the two-dimensional (2-D) case can be written in the following form:

ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 +

g

2
h2
)
x

+ (huv)y = −ghBx,

(hv)t + (huv)x +
(
hv2 +

g

2
h2
)
y

= −ghBy.

(1.1)

Here, h(x, y, t) is the fluid depth above the bottom, u(x, y, t) and v(x, y, t) are the x- and y-
velocities, g is the constant gravitational acceleration, and B(x, y) is the bottom topography
function. More realistic shallow water models may also include, among other things, Coriolis
and wind forces, friction terms, horizontal and vertical density variations, viscose, dispersive
and turbulent effects.

In this paper, we consider the case, which appears in many practical situations, when the
bottom topography B = B(x, y, t) is time-dependent due to erosion, sediment transport, dam
breaks, floods and submarine landslides; see, e.g., [20, 21, 39, 43, 44, 49, 50, 55, 56]. The simplest
way to model the bed load sediment transport was proposed in [14, 20]. According to this
approach the bottom topography function satisfies the following equation:

Bt + A
[
u(u2 + v2)(m−1)/2

]
x

+ A
[
v(u2 + v2)(m−1)/2

]
y

= 0, (1.2)

where A is a constant, which accounts for the porosity of the sediment layer and effects of
sediment grain size and kinematic viscosity, and m ∈ [1, 4] is a constant. The values of A and
m are often obtained from experimental data. If A is zero, there is no sediment transport, and
the system (1.1), (1.2) reduces to the classical SV system (1.1). The interaction between the
sediment and the water is weak when A is small and strong when A is large. One thing to note
about this model is that there is no threshold necessary to initiate motion and sediment bed
load transport will begin with the fluid motion.

The system (1.1), (1.2) is a system of hyperbolic balance laws, which admits nonsmooth
solutions. Therefore, a numerical method for (1.1), (1.2) should be based on a shock-capturing
scheme. In addition, a good numerical method should be capable of accurately capturing both
the steady states and their small perturbations (quasi-steady flows). This property ensures that
the scheme suppresses the appearance of unphysical waves of magnitude proportional to the
grid size, which are normally present when computing quasi-steady states. From a practical
point of view, one of its most important steady-state solutions of the system (1.1), (1.2) is a
“lake at rest” one:

u = v ≡ 0, h+B ≡ Const, B(x, y, t) = B(x, y, 0) ∀t.

The methods that exactly preserve such solutions are called well-balanced; see [1, 3, 27, 30, 31,
34,38,48,57] for some well-balanced methods for the SV system (1.1). Even though a rigorous
stability analysis of these schemes is usually out of reach, they typically produce highly accurate
approximations of quasi-steady solutions.

An additional difficulty may occur when dry (h = 0) or near dry (h ∼ 0) states are to
be captured. In these cases, due to numerical oscillations, h may become negative and the
numerical computations will simply break down since the eigenvalues of the Jacobians of (1.1),
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(1.2) contain
√
gh term. Therefore, another important property of a reliable scheme for (1.1),

(1.2) should possess is the positivity preserving property: All computed values of the fluid depth
h should be nonnegative; see, [1,3,30,34] for some well-balanced positivity preserving methods
for the SV system (1.1).

Another difficulty in solving the coupled system (1.1), (1.2) numerically is associated with
the fact that the speed of water surface gravity waves are typically much faster than the speed at
which the changes in the bottom topography occur. This imposes a severe stability restriction
on the size of time steps, which, in turn, leads to excessive numerical diffusion that affects the
computed bottom structure; see, e.g., [2, 5, 13,23,24].

In this paper, we overcome the latter difficulty by developing an operator splitting method
(see, e.g., [25, 41, 51, 53]) for the system (1.1), (1.2) and its one-dimensional (1-D) version. To
this end, we split the SV system (1.1) from the Exner equation (1.2). The size of splitting
time steps will be made inversely proportional to the amplitude of a smaller eigenvalue of the
Jacobians of the extended system (1.1), (1.2). We will then follow the approach that was utilized
in the framework of the fast explicit operator splitting method [8,9]: each SV splitting substep
will consist of several smaller time evolution steps. This way we will ensure the stability of the
SV substeps, while large Exner splitting substeps will prevent excessive numerical dissipation,
which may severely affect the resolution of the bottom topography, especially in the case when
B is discontinuous.

Each of the splitting substeps will be carried out using a second-order well-balanced positiv-
ity preserving central-upwind (CU) scheme. High-resolution Godunov-type semi-discrete CU
schemes were originally developed in [32,33,35] as a universal method for general multidimen-
sional systems of hyperbolic conservation laws. CU schemes belong to a family of Riemann-
problem-solver-free non-oscillatory central schemes and thus can be applied as a “black-box”
solver to the Exner equation (1.2). The CU schemes have also been extended to systems of
balance laws and applied to the SV system (1.1) in series of works. In this paper, we will im-
plement the well-balanced positivity preserving CU scheme proposed in [34]. Since this scheme
uses a continuous piecewise linear (or bilinear) reconstruction of the bottom topography, the
Exner equation will be solved on a staggered grid so that the point values of B will be evolved
in time at every finite-volume cell interface, while the cell averages of h, hu and hv will be
evolved inside each cell.

The paper is organized as follows. The 1-D numerical scheme is presented in §2. First, in
§2.1, we describe the operator splitting approach. We then present the semi-discretizations of
the hydrodynamic (§2.2) and morphodynamic (§2.3) subsystems. Finally, we summarize the 1-D
algorithm in §2.4. The 2-D scheme is presented in §3 in a similar way: we introduce the operator
splitting method (§3.1), semi-discretizations of the hydrodynamic (§3.2) and morphodynamic
(§3.3) subsystems, and the general algorithm (§3.4). The proposed 1-D and 2-D schemes are
tested on six numerical examples in §4. Some concluding remarks can be found in §5.

2 One-Dimensional Numerical Scheme

We begin by considering a 1-D version of the SV system (1.1):ht + (hu)x = 0,

(hu)t +
(
hu2 +

g

2
h2
)
x

= −ghBx,
(2.1)
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coupled with the 1-D version of the Exner equation (1.2):

Bt + A(u3)x = 0, (2.2)

where we have taken m = 3 (this value of m will be used throughout the paper). Following
[31, 34], we rewrite the SV system (2.1) in terms of the equilibrium variables w := h + B and
q := hu: 

wt + (q + Au3)x = 0,

qt +

(
q2

w −B
+
g

2
(w −B)2

)
x

= −g(w −B)Bx.
(2.3)

The eigenvalues of the Jacobian of the system (2.3), (2.2) (or (2.1), (2.2)) are the three roots
of the following characteristic polynomial:

P (λ) = λ3 − 2uλ2 +
(
u2 − 3Agu2 − gh

)
λ+ 3Agu3. (2.4)

It can be shown (see, e.g., [46]) that the roots of (2.4) are real, distinct and given by

λ(`) = 2
√
−Q cos

(
1

3

[
arccos

(
R√
−Q3

)
+ 2π`

])
+

2

3
u, ` = 0, 1, 2, (2.5)

provided the polynomial determinant D = Q3 +R2 < 0, where

Q = −1

9

[
u2 + 3g(h+ 3Au2)

]
and R =

1

54

[
9gu(2h− 3Au2)− 2u3)

]
. (2.6)

A straightforward computation leads to the following formula for determinant D:

D = − g

108

[
4h(u2 − gh)2 + 108A3g3u6 + 9A2gu4(12gh+ u2) + 12Aghu2(36gh+ 5u2)

]
,

which clearly indicates that indeed D < 0 for any h > 0.
One may show that in (2.5), λ(2) is always between λ(0) and λ(1). As it was mentioned

above, the speed of water surface gravity waves are in many cases much faster than the speed
at which the bottom topography moves and as the result, λ(0) and λ(1) are typically of a much
larger magnitude than λ(2). For instance, in a subcritical case with a relatively small u, λ(0)

and λ(1) are typically close to u±
√
gh, while λ(2) is very small (in a supercritical case, λ(0) and

λ(1) are quite different from u ±
√
gh, and λ(2) is close to u). As a result, the CFL time step

restriction, which is based on max{|λ(0)|, |λ(1)|}, may results in excessive numerical diffusion
that would affect the computed (slowly moving) bottom structure. This naturally leads to the
idea of applying an operator splitting approach, in which the numerical methods for (2.3) and
(2.2) can be based on different local propagation speeds.

2.1 Operator Splitting

In this section, we describe the proposed operator splitting method. To this end, we consider
the following two subsystems: {

Ut + F (U , B)x = S(U , B),

Bt = 0
(2.7)
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with

U =

(
w

q

)
, F (U , B) =

 q + Au3

q2

w −B
+
g

2
(w −B)2

 , S(U , B) =

(
0

−g(w −B)Bx

)
, (2.8)

and {
Ut = 0,

Bt + A(u3)x = 0.
(2.9)

The subsystem (2.7)–(2.8) represents slightly modified shallow water equations with the time-
independent bottom topography, and it will be referred to as the hydrodynamic subsystem.
The subsystem (2.9) represents the Exner equation with the time-independent water depth and
velocity, and it will be referred to as the morphodynamic subsystem.

Assuming U(x, t) and B(x, t) are available at time t, let SH and SM denote the solution
operators for the subsystems (2.7)–(2.8) and (2.9), respectively. Then, an approximate solution
at the next time level t+∆t can be obtained by using the following second-order Strang operator
splitting method:(

U(x, t+ ∆t)

B(x, t+ ∆t)

)
≈ SH(∆t/2)SM(∆t)SH(∆t/2)

(
U(x, t)

B(x, t)

)
. (2.10)

For a practical implementation, one needs to choose a proper splitting time step ∆t and replace
the solution operators, SH and SM , in (2.10) with their finite-volume discretizations, which will
be described in detail in §2.2 and §2.3.

2.2 Semi-Discretization of the Hydrodynamic Subsystem

We denote by Cj := [xj− 1
2
, xj+ 1

2
] the uniform cells of size ∆x centered at xj. The computed

solution, realized in terms of the cell averages U j(t) ≈ 1
∆x

∫
Cj

U(x, t) dx and point values

Bj+ 1
2
(t) ≈ B(xj+ 1

2
, t), is assumed to be known at a given time t (for the sake of brevity, we will

omit the time dependence of all of the indexed quantities in the rest of this paper). The cell
averages are evolved in time according to the well-balanced semi-discretization from [34] (note
that this can be done since B is time-independent in the system (2.7)–(2.8)):

d

dt
U j = −

Hj+ 1
2
−Hj− 1

2

∆x
+ Sj, (2.11)

where

Hj+ 1
2

=
a+
j+ 1

2

F
(
U−
j+ 1

2

, Bj+ 1
2

)
− a−

j+ 1
2

F
(
U+
j+ 1

2

, Bj+ 1
2

)
a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+
j+ 1

2

−U−
j+ 1

2

]
(2.12)

are the central-upwind numerical fluxes and

Sj =

(
0,−g

h−
j+ 1

2

+ h+
j− 1

2

2
·
Bj+ 1

2
−Bj− 1

2

∆x

)>
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are the approximated cell averages of the geometric source term S.
In (2.12),

U+
j+ 1

2

= U j+1 −
∆x

2
(Ux)j+1 and U−

j+ 1
2

= U j +
∆x

2
(Ux)j (2.13)

are the reconstructed right- and left-sided point values of U , which are monotonized using the
generalized minmod limiter (see, e.g., [40, 45,52,54]):

(Ux)j = minmod

(
θ
U j − U j−1

∆x
,
U j+1 − U j−1

2∆x
, θ

U j+1 − U j

∆x

)
, θ ∈ [1, 2], (2.14)

where the minmod function is defined by

minmod(z1, . . . , zj) :=


min
j
{zj}, if zj > 0 ∀j,

max
j
{zj}, if zj < 0 ∀j,

0, otherwise.

(2.15)

The parameter θ in (2.14) is used to control the amount of the numerical viscosity, with larger
θ values resulting in less dissipative, but slightly more oscillatory results.

Finally, the local one-sided speeds of propagation a+
j+ 1

2

and a−
j+ 1

2

in (2.12) are obtained from

the largest and smallest eigenvalues of the Jacobian of the original unsplit system (2.3), (2.2)
and are given by

a+
j+ 1

2

= max
{
λ

(0)+

j+ 1
2

, λ
(1)+

j+ 1
2

, λ
(0)−
j+ 1

2

, λ
(1)−
j+ 1

2

, 0
}
, a−

j+ 1
2

= min
{
λ

(0)+

j+ 1
2

, λ
(1)+

j+ 1
2

, λ
(0)−
j+ 1

2

, λ
(1)−
j+ 1

2

, 0
}
,

where λ
(0)±
j+ 1

2

and λ
(1)±
j+ 1

2

are computed using (2.5), (2.6) with h = h±
j+ 1

2

= w±
j+ 1

2

− Bj+ 1
2

and

u = q±
j+ 1

2

/h±
j+ 1

2

, respectively.

2.3 Semi-Discretization of the Morphodynamic Subsystem

In this section, we describe the semi-discrete central-upwind scheme for the system (2.9), which
is discretized on a staggered grid with Cj+ 1

2
= [xj, xj+1]. To this end, we first project the data,

{U j}, obtained at the hydrodynamic splitting step onto the staggered grid as it was done, for
example, in [26]:

U j+ 1
2

=
U j + U j+1

2
− ∆x

8

[
(Ux)j+1 − (Ux)j

]
,

where the slopes (Ux)j are computed using (2.14). Bj+ 1
2

are then evolved in time according to

the following semi-discretization (note that at this splitting stage u is time-independent):

d

dt
Bj+ 1

2
= −Hj+1 −Hj

∆x
, (2.16)

where

Hj = A
b+
j

(
u−j
)3 − b−j

(
u+
j

)3

b+
j − b−j

+
b+
j b
−
j

b+
j − b−j

[
B+
j −B−j

]
(2.17)
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are the central-upwind numerical fluxes.
In (2.17),

B+
j = Bj+ 1

2
− ∆x

2
(Bx)j+ 1

2
and B−j = Bj− 1

2
+

∆x

2
(Bx)j− 1

2

are the reconstructed right- and left-sided point values of B, which, as before, are computed
using the generalized minmod limiter:

(Bx)j+ 1
2

= minmod

(
θ
Bj+ 1

2
−Bj− 1

2

∆x
,
Bj+ 3

2
−Bj− 1

2

2∆x
, θ

Bj+ 3
2
−Bj+ 1

2

∆x

)
, θ ∈ [1, 2],

where the minmod function is defined by (2.15). The reconstructed point values w±j and q±j ,
obtained in a similar manner, are used to calculate u±j = q±j /(w

±
j −B±j ).

Finally, b+
j and b−j are local one-sided speeds of propagation, which are obtained using the

middle eigenvalue of the Jacobian of the original unsplit system (2.3), (2.2) and are given by

b+
j = max

{
λ

(2)+
j , λ

(2)−
j , 0

}
, b−j = min

{
λ

(2)+
j , λ

(2)−
j , 0

}
,

where λ
(2)±
j are computed using (2.5), (2.6) with h = w±j −B±j and u = u±j , respectively.

Remark 2.1 The ODE systems (2.11) and (2.16) are numerically solved using the three-stage
third-order strong-stability preserving (SSP) Runge-Kutta method (see, e.g., [18, 19]).

2.4 Summary of the Algorithm

In this section, we summarize one time step of the splitting method assuming that at a certain
time level t the computed quantities {wj}, {qj} and

{
Bj+ 1

2

}
are available.

Step 1. Compute w±
j+ 1

2

and q±
j+ 1

2

using (2.13)–(2.15).

Step 2. Compute

bmax := max
j

{
max

{∣∣λ(2)+

j+ 1
2

∣∣, ∣∣λ(2)−
j+ 1

2

∣∣}} ,
where λ

(2)±
j+ 1

2

are computed using (2.5), (2.6) with h = w±
j+ 1

2

−Bj+ 1
2

and u = q±
j+ 1

2

/(w±
j+ 1

2

−Bj+ 1
2
),

respectively.

Step 3. Choose the splitting time step ∆t based on the CFL-type condition for the morpho-
dynamic subsystem:

∆t = K ∆x

bmax

,

where K is a CFL constant, which according to the stability restriction of central-upwind
schemes is supposed to be smaller than 1/2; see, e.g., [29, 30].

Step 4. Evolve
{
U j

}
by numerically solving the ODE system (2.11) from time level t to

t+ ∆tM/2 with the time step ∆tH being constrained by the following CFL-like condition:

∆tH ≤ K
∆x

amax

, amax := max
j

{
max

{
a+
j+ 1

2

,−a−
j+ 1

2

}}
. (2.18)
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Denote the obtained solution by
{
U
∗
j

}
.

Step 5. Evolve
{
Bj+ 1

2

}
by numerically solving the ODE system (2.16) from time level t to

t+ ∆t.

Step 6. Evolve
{
U
∗
j

}
by numerically solving the ODE system (2.11) from time level t+ ∆t/2

to t+ ∆t with the time step ∆tH being constrained by (2.18).

Step 7. Set t = t+ ∆t and go to Step 1.

3 Two-Dimensional Numerical Scheme

We first take m = 3 and rewrite the system (1.1), (1.2) in terms of B and the equilibrium
variables w, q := hu and p := hv as follows:

wt +
(
q + Au(u2 + v2)

)
x

+
(
p+ Av(u2 + v2)

)
y

= 0,

qt +

(
q2

w −B
+
g

2
(w −B)2

)
x

+

(
qp

w −B

)
y

= −g(w −B)Bx,

pt +

(
qp

w −B

)
x

+

(
p2

w −B
+
g

2
(w −B)2

)
y

= −g(w −B)By,

Bt + A
(
u(u2 + v2)

)
x

+ A
(
v(u2 + v2)

)
y

= 0.

(3.1)

The eigenvalues of the Jacobian of the system (3.1) in the x-direction are u and the three roots
of the following characteristic polynomial:

P1(λ) = λ3 − 2uλ2 + [u2 − Ag(3u2 + v2)− gh]λ+ Ag(3u3 + uv2).

The eigenvalues of the Jacobian of the system (3.1) in the y-direction are v and the three roots
of the following characteristic polynomial:

P2(µ) = µ3 − 2vµ2 + [v2 − Ag(3v2 + u2)− gh]µ+ Ag(3v3 + vu2).

It can be shown that similarly to the 1-D case, the roots of both P1 and P2 are real, distinct
and given by

λ(`) = 2
√
−Qλ cos

(
1

3

[
arccos

(
Rλ√
−Q3

λ

)
+ 2π`

])
+

2

3
u, ` = 0, 1, 2, (3.2)

where

Qλ = −1

9

[
u2 + 3g(h+ A(3u2 + v2))

]
, Rλ =

1

54

[
18ghu− 2u3 − 9Agu(3u2 + v2))

]
, (3.3)

and

µ(`) = 2
√
−Qµ cos

(
1

3

[
arccos

(
Rµ√
−Q3

µ

)
+ 2π`

])
+

2

3
v, ` = 0, 1, 2, (3.4)

where

Qµ = −1

9

[
v2 + 3g(h+ A(u2 + 3v2))

]
, Rµ =

1

54

[
18ghv − 2v3 − 9Agv(u2 + 3v2))

]
, (3.5)
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respectively.
One may show that both u and λ(2) in (3.2) is always between λ(0) and λ(1) and both v

and µ(2) in (3.4) is always between µ(0) and µ(1). We therefore will select the operator splitting
time step based on the local speeds that correspond to the bottom topography propagation,
that is, on λ(2) and µ(2) to prevent excessive numerical diffusion to smear the computed (slowly
moving) bottom structure.

3.1 Operator Splitting

The 2-D operator splitting method is similar to the 1-D one. As before, we consider the
hydrodynamic, {

Ut + F (U , B)x + G(U , B)y = S(U , B),

Bt = 0
(3.6)

with

U =


w

q

p

 , F (U , B) =


q + Au(u2 + v2)

q2

w −B
+
g

2
(w −B)2

qp

w −B

 ,

G(U , B) =


p+ Av(u2 + v2)

qp

w −B
q2

w −B
+
g

2
(w −B)2

 , S(U , B) =


0

−g(w −B)Bx

−g(w −B)By

 ,

(3.7)

and morphodynamic, {
Ut = 0,

Bt + A
(
u(u2 + v2)

)
x

+ A
(
v(u2 + v2)

)
y

= 0.
(3.8)

subsystems. One step of the Strang operator splitting method is then still given by (2.10).

3.2 Semi-Discretization of the Hydrodynamic Subsystem

We denote by Cj,k := [xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
] the uniform Cartesian cells of size ∆x∆y

centered at xj and yk. The computed solution, realized in terms of the cell averages U j,k ≈
1

∆x∆y

∫∫
Cj,k

U (x, y, t) dx dy and point values Bj+ 1
2
,k+ 1

2
≈ B(xj+ 1

2
, yk+ 1

2
), is assumed to be known

at a given time t. The cell averages are evolved in time according to the well-balanced semi-
discretization from [34]:

d

dt
U j,k = −

Hx
j+ 1

2
,k
−Hx

j− 1
2
,k

∆x
−

Hy

j,k+ 1
2

−Hy

j,k− 1
2

∆y
+ Sj,k, (3.9)

where

Hx
j+ 1

2
,k

=
a+
j+ 1

2
,k
F E
j,k − a−j+ 1

2
,k
FW
j+1,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+
a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

[
UW
j+1,k −UE

j,k

]
(3.10)
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and

Hy

j,k+ 1
2

=
a+
j,k+ 1

2

GN
j,k − a−j,k+ 1

2

GS
j,k+1

a+
j,k+ 1

2

− a−
j,k+ 1

2

+
a+
j,k+ 1

2

a−
j,k+ 1

2

a+
j,k+ 1

2

− a−
j,k+ 1

2

[
US
j,k+1 −UN

j,k

]
(3.11)

are the central-upwind numerical fluxes in the x- and y-directions, respectively, and

Sj,k =


0

−g
hE
j,k + hW

j,k

2
·
Bj+ 1

2
,k+ 1

2
+Bj+ 1

2
,k− 1

2
−Bj− 1

2
,k+ 1

2
−Bj− 1

2
,k− 1

2

2∆x

−g
hN
j,k + hS

j,k

2
·
Bj+ 1

2
,k+ 1

2
+Bj− 1

2
,k+ 1

2
−Bj+ 1

2
,k− 1

2
−Bj− 1

2
,k− 1

2

2∆y


are the approximated cell averages of the geometric source term S.

In (3.10) and (3.11),

F E
j,k := F

(
UE
j,k,

Bj+ 1
2
,k+ 1

2
+Bj+ 1

2
,k− 1

2

2

)
, FW

j,k := F
(
UW
j,k,

Bj− 1
2
,k+ 1

2
+Bj+ 1

2
,k− 1

2

2

)
,

GN
j,k := G

(
UN
j,k,

Bj+ 1
2
,k+ 1

2
+Bj− 1

2
,k+ 1

2

2

)
, GS

j,k := G
(
US
j,k,

Bj+ 1
2
,k− 1

2
+Bj− 1

2
,k− 1

2

2

)
,

where

UE
j,k = U j,k +

∆x

2
(Ux)j,k, UW

j,k = U j,k −
∆x

2
(Ux)j,k,

UN
j,k = U j,k +

∆y

2
(Uy)j,k, US

j,k = U j,k −
∆y

2
(Uy)j,k

(3.12)

are the one-sided point values of U reconstructed inside the cell Cj,k at the midpoints of the
corresponding cell interfaces. As in the 1-D case, the slopes in (3.12) are computed using the
generalized minmod limiter:

(Ux)j,k = minmod

(
θ
U j,k − U j−1,k

∆x
,
U j+1,k − U j−1,k

2∆x
, θ

U j+1,k − U j,k

∆x

)
,

(Uy)j,k = minmod

(
θ
U j,k − U j,k−1

∆y
,
U j,k+1 − U j,k+1

2∆y
, θ

U j,k+1 − U j,k

∆y

)
,

(3.13)

where θ ∈ [1, 2] and the minmod function is given by (2.15).
Finally, the local one-sided speeds of propagation in the x- and y-directions are obtained

using the largest and smallest eigenvalues of the Jacobians of the system (3.1) in the x- and
y-directions, respectively, and they are given by

a+
j+ 1

2
,k

= max
{
λ

(0),E
j,k , λ

(1),E
j,k , λ

(0),W
j+1,k , λ

(1),W
j+1,k , 0

}
,

a−
j+ 1

2
,k

= min
{
λ

(0),E
j,k , λ

(1),E
j,k , λ

(0),W
j+1,k , λ

(1),W
j+1,k , 0

}
,

a+
j,k+ 1

2

= max
{
µ

(0),N
j,k , µ

(1),N
j,k , µ

(0),S
j,k+1, µ

(1),S
j,k+1, 0

}
,

a−
j,k+ 1

2

= min
{
µ

(0),N
j,k , µ

(1),N
j,k , µ

(0),S
j,k+1, µ

(1),S
j,k+1, 0

}
.
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Here, λ
(0),E
j,k and λ

(1),E
j,k are computed using (3.2), (3.3) with

h = hE
j,k = wE

j,k −
Bj+ 1

2
,k+ 1

2
+Bj+ 1

2
,k− 1

2

2
, u =

qE
j,k

hE
j,k

, v =
pE
j,k

hE
j,k

, (3.14)

and λ
(0),W
j+1,k and λ

(1),W
j+1,k are computed using (3.2), (3.3) with

h = hW
j+1,k = wW

j+1,k −
Bj+ 1

2
,k+ 1

2
+Bj+ 1

2
,k− 1

2

2
, u =

qW
j+1,k

hW
j+1,k

, v =
pW
j+1,k

hW
j+1,k

. (3.15)

Similarly, µ
(0),N
j,k and µ

(1),N
j,k are computed using (3.4), (3.5) with

h = hN
j,k = wN

j,k −
Bj+ 1

2
,k+ 1

2
+Bj− 1

2
,k+ 1

2

2
, u =

qN
j,k

hN
j,k

, v =
pN
j,k

hN
j,k

, (3.16)

and µ
(0),S
j,k+1 and µ

(1),S
j,k+1 are computed using (3.4), (3.5) with

h = hS
j,k+1 = wS

j,k+1 −
Bj+ 1

2
,k+ 1

2
+Bj− 1

2
,k+ 1

2

2
, u =

qS
j,k+1

hS
j,k+1

, v =
pS
j,k+1

hS
j,k+1

. (3.17)

3.3 Semi-Discretization of the Morphodynamic Subsystem

In this section, we describe the semi-discrete central-upwind scheme for the system (3.8), which
is discretized on a staggered grid with Cj+ 1

2
,k+ 1

2
= [xj, xj+1]× [yk, yk+1]. As in the 1-D case, we

first project the data, {U j,k}, obtained at the hydrodynamic splitting step onto the staggered
grid:

U j+ 1
2
,k+ 1

2
=

U j,k + U j+1,k + U j,k+1 + U j+1,k+1

4

− ∆x

16

[
(Ux)j+1,k − (Ux)j,k + (Ux)j+1,k+1 − (Ux)j,k+1

]
,

− ∆y

16

[
(Uy)j,k+1 − (Uy)j,k + (Uy)j+1,k+1 − (Uy)j+1,k

]
,

where the slopes (Ux)j are computed using (3.13). Bj+ 1
2
,k+ 1

2
are then evolved in time according

to the following semi-discretization:

d

dt
Bj+ 1

2
,k+ 1

2
= −

Hx
j+1,k+ 1

2

−Hx
j,k+ 1

2

∆x
−
Hy

j+ 1
2
,k+1
−Hy

j+ 1
2
,k

∆y
, (3.18)

where

Hx
j,k+ 1

2
= A

b+
j,k+ 1

2

FE
j− 1

2
,k+ 1

2

− b−
j,k+ 1

2

FW
j+ 1

2
,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
BW
j+ 1

2
,k+ 1

2
−BE

j− 1
2
,k+ 1

2

]
(3.19)

and

Hy

j+ 1
2
,k

= A
b+
j+ 1

2
,k
GN
j+ 1

2
,k− 1

2

− b−
j+ 1

2
,k
GS
j+ 1

2
,k+ 1

2

b+
j+ 1

2
,k
− b−

j+ 1
2
,k

+
b+
j+ 1

2
,k
b−
j+ 1

2
,k

b+
j+ 1

2
,k
− b−

j+ 1
2
,k

[
BS
j+ 1

2
,k+ 1

2
−BN

j+ 1
2
,k− 1

2

]
(3.20)
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are the central-upwind numerical fluxes.
In (3.19) and (3.20), we have used the following notation:

FE
j− 1

2
,k+ 1

2
:= uE

j− 1
2
,k+ 1

2

[(
uE
j− 1

2
,k+ 1

2

)2

+
(
vE
j− 1

2
,k+ 1

2

)2
]
,

FW
j+ 1

2
,k+ 1

2
:= uW

j+ 1
2
,k+ 1

2

[(
uW
j+ 1

2
,k+ 1

2

)2

+
(
vW
j+ 1

2
,k+ 1

2

)2
]
,

GN
j− 1

2
,k+ 1

2
:= vN

j+ 1
2
,k− 1

2

[(
uN
j+ 1

2
,k− 1

2

)2

+
(
vN
j+ 1

2
,k− 1

2

)2
]
,

GS
j+ 1

2
,k+ 1

2
:= vS

j+ 1
2
,k+ 1

2

[(
uS
j+ 1

2
,k+ 1

2

)2

+
(
vS
j+ 1

2
,k+ 1

2

)2
]
.

(3.21)

The reconstructed point values of B in (3.19) and (3.20) are given by

BE
j+ 1

2
,k+ 1

2
= Bj+ 1

2
,k+ 1

2
+

∆x

2
(Bx)j+ 1

2
,k+ 1

2
, BW

j+ 1
2
,k+ 1

2
= Bj+ 1

2
,k+ 1

2
− ∆x

2
(Bx)j+ 1

2
,k+ 1

2
,

BN
j+ 1

2
,k+ 1

2
= Bj+ 1

2
,k+ 1

2
+

∆y

2
(By)j+ 1

2
,k+ 1

2
, BS

j+ 1
2
,k+ 1

2
= Bj+ 1

2
,k+ 1

2
− ∆y

2
(By)j+ 1

2
,k+ 1

2
,

where the slopes are, as before, computed using the generalized minmod limiter:

(Bx)j+ 1
2
,k+ 1

2
= minmod

(
θ
Bj+ 1

2
,k+ 1

2
−Bj− 1

2
,k+ 1

2

∆x
,
Bj+ 3

2
,k+ 1

2
−Bj− 1

2
,k+ 1

2

2∆x
,

θ
Bj+ 3

2
,k+ 1

2
−Bj+ 1

2
,k+ 1

2

∆x

)
,

(By)j+ 1
2
,k+ 1

2
= minmod

(
θ
Bj+ 1

2
,k+ 1

2
−Bj+ 1

2
,k− 1

2

∆y
,
Bj+ 1

2
,k+ 3

2
−Bj+ 1

2
,k− 1

2

2∆y
,

θ
Bj+ 1

2
,k+ 3

2
−Bj+ 1

2
,k+ 1

2

∆x

)
,

and the minmod function is defined by (2.15). The reconstructed point values wi
j+ 1

2
,k+ 1

2

and

qi
j+ 1

2
,k+ 1

2

, i ∈ {E,W,N, S} are obtained in a similar manner and then used to calculate the

corresponding values of the velocities, which are needed in (3.19)–(3.21):

ui
j+ 1

2
,k+ 1

2
=

qi
j+ 1

2
,k+ 1

2

wi
j+ 1

2
,k+ 1

2

−Bi
j+ 1

2
,k+ 1

2

, vi
j+ 1

2
,k+ 1

2
=

pi
j+ 1

2
,k+ 1

2

wi
j+ 1

2
,k+ 1

2

−Bi
j+ 1

2
,k+ 1

2

.

Finally, b±
j,k+ 1

2

and b±
j+ 1

2
,k

are local one-sided speeds of propagation in the x- and y-directions,

respectively, are given by

b+
j,k+ 1

2

= max
{
λ

(2),E

j− 1
2
,k+ 1

2

, λ
(2),W

j+ 1
2
,k+ 1

2

, 0
}
, b−

j,k+ 1
2

= min
{
λ

(2),E

j− 1
2
,k+ 1

2

, λ
(2),W

j+ 1
2
,k+ 1

2

, 0
}
,

b+
j+ 1

2
,k

= max
{
µ

(2),N

j+ 1
2
,k− 1

2

, µ
(2),S

j+ 1
2
,k+ 1

2

, 0
}
, b−

j+ 1
2
,k

= min
{
µ

(2),N

j+ 1
2
,k− 1

2

, µ
(2),S

j+ 1
2
,k+ 1

2

, 0
}
,
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Here, λ
(2),E

j− 1
2
,k+ 1

2

is computed using (3.2), (3.3) with

h = hE
j− 1

2
,k+ 1

2
= wE

j− 1
2
,k+ 1

2
−BE

j− 1
2
,k+ 1

2
, u =

qE
j− 1

2
,k+ 1

2

hE
j− 1

2
,k+ 1

2

, v =
pE
j− 1

2
,k+ 1

2

hE
j− 1

2
,k+ 1

2

,

and λ
(2),W

j+ 1
2
,k+ 1

2

is computed using (3.2), (3.3) with

h = hW
j+ 1

2
,k+ 1

2
= wW

j+ 1
2
,k+ 1

2
−BW

j+ 1
2
,k+ 1

2
, u =

qW
j+ 1

2
,k+ 1

2

hW
j+ 1

2
,k+ 1

2

, v =
pW
j+ 1

2
,k+ 1

2

hW
j+ 1

2
,k+ 1

2

.

Similarly, µ
(2),N

j+ 1
2
,k− 1

2

is computed using (3.4), (3.5) with

h = hN
j+ 1

2
,k− 1

2
= wN

j+ 1
2
,k− 1

2
−BN

j+ 1
2
,k− 1

2
, u =

qN
j+ 1

2
,k− 1

2

hN
j+ 1

2
,k− 1

2

, v =
pN
j+ 1

2
,k− 1

2

hN
j+ 1

2
,k− 1

2

,

and µ
(2),S

j+ 1
2
,k+ 1

2

is computed using (3.4), (3.5) with

h = hS
j+ 1

2
,k+ 1

2
= wS

j+ 1
2
,k+ 1

2
−BS

j+ 1
2
,k+ 1

2
, u =

qS
j+ 1

2
,k+ 1

2

hS
j+ 1

2
,k+ 1

2

, v =
pS
j+ 1

2
,k+ 1

2

hS
j+ 1

2
,k+ 1

2

.

3.4 Summary of the Algorithm

In this section, we summarize one time step of the 2-D splitting method assuming that at a
certain time level t the computed quantities {wj,k}, {qj,k}, {pj,k} and

{
Bj+ 1

2
,k+ 1

2

}
are available.

Step 1. Compute wij,k, q
i
j,k and pij,k, i ∈ {E,W,N, S} using (3.12), (3.13).

Step 2. Compute

bxmax := max
j,k

{
max

{∣∣λ(2),E
j,k

∣∣, ∣∣λ(2),W
j+1,k

∣∣}} and bymax := max
j,k

{
max

{∣∣µ(2),N
j,k

∣∣, ∣∣µ(2),S
j,k+1

∣∣}} ,
where λ

(2),E
j,k are computed using (3.2), (3.3) with h, u and v given by (3.14), λ

(2),W
j+1,k are computed

using (3.2), (3.3) with h, u and v given by (3.15), µ
(2),N
j,k are computed using (3.4), (3.5) with

h, u and v given by (3.16), and µ
(2),S
j,k+1 are computed using (3.4), (3.5) with h, u and v given by

(3.17).

Step 3. Choose the splitting time step ∆t based on the CFL-type condition for the morpho-
dynamic subsystem:

∆t = Kmin

{
∆x

bxmax

,
∆y

bymax

}
,

where K is, as before, a CFL constant.
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Step 4. Evolve
{
U j,k

}
by numerically solving the ODE system (3.9) from time level t to

t+ ∆tM/2 using the three-stage third-order SSP Runge-Kutta method with the time step ∆tH
being constrained by the following CFL-like condition:

∆tH ≤ Kmin

{
∆x

axmax

,
∆y

aymax

}
, (3.22)

where

axmax := max
j,k

{
max

{
a+
j+ 1

2
,k
,−a−

j+ 1
2
,k

}}
and aymax := max

j,k

{
max

{
a+
j,k+ 1

2

,−a−
j,k+ 1

2

}}
. (3.23)

Denote the obtained solution by
{
U
∗
j,k

}
.

Step 5. Evolve
{
Bj+ 1

2
,k+ 1

2

}
by numerically solving the ODE system (3.18) from time level t

to t+ ∆t using the three-stage third-order SSP Runge-Kutta method.

Step 6. Evolve
{
U
∗
j,k

}
by numerically solving the ODE system (3.9) from time level t+ ∆t/2

to t+ ∆t with the time step ∆tH being constrained by (3.22), (3.23).

Step 7. Set t = t+ ∆t and go to Step 1.

4 Numerical Examples

In this section, we present six numerical examples. In all of the examples, the water-sediment
interaction model was considered with the gravitational acceleration g = 9.8 and free flow
boundary conditions on all sides of the computational domain. The minmod limiter was com-
puted with θ = 1.3 and the CFL constant was taken K = 0.475.

Example 1 — Accuracy Test

In this example, taken from [4], we consider a 1-D channel on the interval [−10, 10], with
A = 0.5 in (2.2), the final time t = 0.2, and initial conditions given by:

h(x, 0) = 2− 0.1e−x
2

, q(x, 0) ≡ 0, B(x, 0) = 0.1− 0.01e−x
2

.

Since the exact solution is unknown, we compare the computed solutions with a reference one
obtained using a very fine mesh consisting of N = 6400 uniform cells. The solutions computed
using N = 50, 100, 200 and 400 uniform cells are plotted in Figure 4.1. The L1- and L2-
errors together with the corresponding experimental convergence rates for both h, q and B are
presented in Table 4.1 and 4.2. As one can see, the proposed scheme achieves the expected
second order of convergence.

Example 2 — Weak Water-Sediment Interaction

In this problem taken from [10], the interaction between the water and moving bottom topog-
raphy is weak. This is modeled by taking the constant A in the Exner equation (2.2) to be
relatively small, namely, A = 0.005. The initial data,

q(x, 0) ≡ 0.5, B(x, 0) = 0.1(1 + e−(x−5)2),
q2(x, 0)

2h2(x, 0)
+ g [h(x, 0) +B(x, 0)] ≡ 6.386, (4.1)
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Figure 4.1: Example 1: Solution (h, q and B) computed on four different grids.

N Error in h rate Error in q rate Error in B rate

50 9.20E-3 – 5.91E-2 – 5.86E-4 –

100 2.20E-3 2.06 1.29E-2 2.19 1.65E-4 1.82

200 5.45E-4 2.16 2.74E-3 2.24 4.35E-5 1.92

400 1.36E-4 2.01 6.06E-4 2.17 1.07E-5 2.02

Table 4.1: Example 1: L1-errors and corresponding experimental convergence rates.

N Error in h rate Error in q rate Error in B rate

50 4.98E-3 – 3.27E-2 – 3.62E-4 –

100 1.00E-3 2.31 6.89E-2 2.24 9.83E-5 1.88

200 2.52E-4 1.99 1.35E-3 2.35 2.53E-5 1.96

400 6.48E-4 1.95 2.96E-4 2.19 6.27E-6 2.01

Table 4.2: Example 1: L2-errors and corresponding experimental convergence rates.

correspond to a subcritical moving-water steady state for the SV system (2.7), (2.8). We note
that h(x, 0) can be obtained by solving the third equation in (4.1), which is a cubic equation
and details on its exact solution can be found in [37]; also see [28].

We compute the solution until the final time t = 10 in the interval [0, 10] using 400 uniform
cells. The obtained results, presented in Figure 4.2 (left), are in good agreement with the results
reported in [10]. This demonstrates that our splitting method is capable of handling cases with
weak water-sediment interactions.

It is instructive to compare the values of a± with the largest/smallest eigenvalues of the SV
system (2.7), (2.8), that is, u ±

√
gh. As the water-sediment interaction is quite weak in this

example, one expects these quantities to be close to each other. Indeed, this is true as one can
see from Figure 4.2 (right). We also plot there the value of λ(2), which is, as expected, very
small in this case.
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Figure 4.2: Example 2: Computed water surface w and bottom topography B (left) and the local
speeds of both the coupled SV-Exner system (2.3), (2.2) and classical SV system (2.7), (2.8).

Example 3 — Strong Water-Sediment Interaction

In this problem, also taken from [10], we consider system (2.3), (2.2) subject to the same
initial condition (4.1) as in Example 2, but with stronger sediment-water interaction modeled
by choosing larger A = 0.07.

We implement the proposed splitting approach and compute the numerical solution until
the final time t = 2.1 in the interval [0, 10] using 400 uniform cells. The obtained results,
plotted in Figure 4.3 (left), agree well those reported in [10] and clearly demonstrate that our
method is capable of handling strong water-sediment interactions without producing spurious
oscillations.
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Figure 4.3: Example 3: Computed water surface w and bottom topography B (left) and the local
speeds of both the coupled SV-Exner system (2.3), (2.2) and classical SV system (2.7), (2.8).

The main difference between the experiments with A = 0.005 (Example 2) and A = 0.07 is
that in the latter case, the local speeds of propagation a± are far from the eigenvalues of the of
the SV system (2.7), (2.8), that is, u±

√
gh, as illustrated in Figure 4.3 (right). Therefore, using

the correct bounds for the local propagation speeds is essential for obtaining highly accurate
and stable results since in the stronger interaction case, the numerical solution is more likely
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to produce oscillations; see [10, 22] for details.

Example 4 — Sediment Mound with Weak Water-Sediment Interaction

In this problem, taken from [22,23], we numerically solve the system (2.3), (2.2) with A = 1/600
in the computational domain [0, 1000] and subject to the initial data given by

w(x, 0) ≡ 10, q(x, 0) ≡ 10, B(x, 0) =

 sin2
(π(x− 300)

200

)
, 300 ≤ x ≤ 500,

0, otherwise.

We compute the numerical solution until the final time t = 238079 seconds on a series of
uniform grids with N = 100, 200 and 400 cells and compare the obtained results with the
reference solution calculated analytically using the method of characteristics in [22]. As shown
in Figure 4.4, the computed B converges to the reference one as N increases.

400 450 500 550 600 650
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0.2

0.4

0.6

0.8

1

Figure 4.4: Example 4: Bottom topography B computed on a series of grids.

Example 5 — Discontinuous Bottom Topography

In this example, taken from [22], we consider the same setting as in Example 4 with the only
difference in the description of the bottom topography, which now contains a jump:

B(x, 0) =

{
1, x ≤ 300,

0, otherwise.

This discontinuity propagates down the channel and in Figure 4.5, we plot B computed on a
uniform mesh with 200 cells at the final time t = 250 hours (900000 seconds). As one can
observe, the propagating wave is sharply resolved and the proposed numerical method clearly
outperforms the ones studied in [22].

Example 6 — Evolution of Conical Dune

In the last example, we test the proposed 2-D scheme on a conical sand dune problem, which
is a slightly modified version of the problems studied in [2, 5, 12, 22, 24]. We numerically solve
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Figure 4.5: Example 5: Bottom topography B at two different times.

the system (3.1) with A = 1/600 in the computational domain [0, 1000]× [0, 1000] and subject
to the initial data given by

w(x, y, 0) ≡ 10, q(x, y, 0) ≡ 10, p(x, y, 0) ≡ 0,

B(x, y, 0) =

 sin2
(π(x− 300)

200

)
sin2

(π(y − 400)

200

)
, (x, y) ∈ [300, 500]× [400, 600],

0, otherwise.

We compute the numerical solution until the final time t = 100 hours (360000 seconds) on a
uniform mesh with 100× 100 cells. As time is evolved, the conical dune gradually spreads out
into a star shaped pattern as demonstrated in Figure 4.6, where we plot the bottom topography
B at times t = 0, 25, 50 and 100 hours. According to the analysis in [12], the angle of spread
has to be approximately 21.79 degrees from the line of symmetry y = 500. In Figure 4.7, we
plot the level curves at the base of the dune at times t = 0, 25, 50 and 100 hours. The angles
between the dashed lines are 21.79 degrees and one can see that the spread is mostly contained
between the lines, and the results are similar to those reported in [2, 5, 22,24].

5 Conclusion

In this paper, we have studied the shallow water system with time-dependent bottom topogra-
phy. We have considered the simplest case, in which the shallow water waves are modeled by
the Saint-Venant system and the bottom topography movement is governed by the Exner equa-
tion. The resulting system is hyperbolic and its Jacobian matrices typically contain both large
and small eigenvalues. The largest eigenvalues determine the speed of the fast surface waves,
while the smallest eigenvalue reflects the (slow) speed of the bottom topography propagation.
Therefore, if the entire system is solved using an explicit finite-volume method, the time steps,
which are inversely proportional to the maximum of the spectral radius of the Jacobians over
the entire computational domain, would be too small. This may prevent high resolution of the
bottom topography waves, especially when they contain sharp (discontinuous) fronts. In order
to tackle this difficulty, we have developed an operator splitting approach, which allows one to
take large time steps in the bottom evolution stages, while keeping the small CFL-controlled
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Figure 4.6: Example 6: Bottom topography B at four different times.
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Figure 4.7: Example 6: Estimation of the spreading angle.

time steps in the hydrodynamics stages. The time evolution within each of the stages is carried
out using the central-upwind scheme, which naturally leads to the following staggered approach:
while the hydrodynamics quantities are sampled at the centers of each computational cell, the
bottom topography data are prescribed at the corners.

We have demonstrated high accuracy and robustness of the proposed numerical method on
a number of numerical experiments. In the future works, we plan to extend our method to
more realistic water-sediment interaction models, for example, to those proposed and studied
in [6, 7, 15–17,36,42,47].
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