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1 Introduction

Many microorganisms exhibit a special pattern formation at the presence of a
chemoattractant, food, light or areas with high oxygen concentration; see, e.g.
[51–53, 59, 73, 75, 81, 88–90]. Collective movement of cells and organisms in re-
sponse to chemical gradients, chemotaxis, has attracted a lot of attention due to its
critical role in a wide range of biological phenomena; see, e.g. [25], where detailed
comparison between different chemotactic mechanisms is provided.

The classical PDE chemotaxis model was introduced by Patlak in [73] and Keller
and Segel [51,52] and it is often referred to as the Patlak-Keller-Segel (PKS) model.
The PKS model is derived at the macroscopic level in terms of the cell density and
chemoattractant concentration and in the two-dimensional (2-D) case reads as{

ρt +∇∇∇ · (χρ∇c) = µ∆ρ,

τct = α∆c−βc+ γρ,
(1)

where the cell density ρ and chemoattractant concentration c are functions of the
spatial variables xxx = (x,y) ∈Ω ⊂ R2 and time t, µ > 0 and α > 0 are diffusion co-
efficients, χ > 0 is the chemotactic sensitivity constant, and the constants γ > 0 and
β > 0 stand for the production and degradation rate of the chemoattractant, respec-
tively. The constant τ determines the type of the system: It is parabolic-parabolic if
τ = 1 and parabolic-elliptic for τ = 0.
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The PKS model (1) can be generalized to better describe the reality by taking into
account several additional factors. For instance, one may consider a more realistic
chemotactic sensitivity function χ = χ(ρ,c) in the first equation of (1) as, e.g., in
[42,51,62,89,90]. Some other factors, such as growth and death of cells, production
and uptake of the chemoattractant by cells, presence of food and other chemicals in
the system, may also be incorporated into the chemotaxis model, see, e.g., [89, 90].
We also refer the reader to [13,21,43–45,55,75], where several other modifications
of the PKS system have been studied.

The most important phenomenon in chemotaxis is self-aggregation of cells (dra-
matic increase of ρ in a number of “centers”; see, e.g., [1,8,10,11,23,78,97]), which
may occur even when the cells are initially distributed almost evenly over Ω . We
note that the solution behavior depends on the value of the total mass, which under
the assumption that no-flux boundary conditions are imposed, is conserved:

M :=
∫
Ω

ρ(xxx, t)dxxx≡
∫
Ω

ρ(xxx,0)dxxx.

The behavior of the solutions of (1) also depends on the number of space dimen-
sions. In the one-dimensional (1-D) case, global solutions exist for all initial condi-
tions. In the 2-D case, the solution of (1) exists globally in time as long as the total
mass M is initially below a critical threshold Mc. Otherwise, the solution may blow
up in finite time; see, e.g., [12, 22, 36–39, 42, 44, 45, 49, 65, 75]. This blowup repre-
sents a mathematical description of the cell aggregation phenomenon that occurs in
real biological systems; see, e.g., [1,8,10,11,22,23,67,78]. In the parabolic-elliptic
case (τ = 0), the critical mass values Mc are explicitly available, while this is not
the case for the parabolic-parabolic system (τ = 1); see, e.g., [75]. The density ρ

of the blowing up solutions of (1) becomes a linear combination of several Dirac
δ -functions plus a regular part; see, e.g., [22, 40, 66].

While the blowup and the formation of the δ -function are not an unreasonable
modeling of the cell aggregation phenomenon, they create enormous and sometimes
unnecessary challenges to both numerics and analysis. As a result, a number of
regularizations of the PKS system (1) has been introduced in the literature. Many of
the regularized models admit bounded, global-in-time solutions that approach spiky
steady states as time increases. Most of the regularized chemotaxis models can be
put into the following form:{

ρt +∇∇∇ · (g(ρ)QQQ(χ∇c)) = µ∆ρ,

τct = α∆c−βc+ γρ,
(2)

where g > 0 and QQQ = (Q1,Q2) are smooth functions of their arguments; see, e.g.,
[21,43–45,55,62,69,76,80,95] and references therein. Some of the typical examples
include a chemotaxis model with a saturated chemotactic flux, logistic, signal- and
density-dependent sensitivity models, and others.

A model with saturated chemotactic flux was proposed in [21], where the follow-
ing functions g and QQQ were taken:
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g(ρ) = ρ, QQQ(χ∇c) =


χ∇c, if |∇c| ≤ s∗,(

χ|∇c|− s∗√
1+(χ|∇c|− s∗)2

+ s∗
)

∇c
|∇c|

, otherwise.
(3)

Here, s∗ is a switching parameter, which defines small gradient values, for which the
system (2), (3) reduces to the original PKS system (1) so that the effect of saturated
chemotactic flux function is felt at large gradient regimes only. This is expected to
result in solutions which are spiky but yet bounded for all times; see, e.g. [21, 55].

The signal- and density-dependent sensitivity models can be obtained, for in-
stance, by taking

g(ρ) = ρ and QQQ(χ∇c) = χ
∇c

(1+κc)2

or
g(ρ) =

ρ

1+κρ
and QQQ(χ∇c) = χ∇c,

respectively, where κ is a (small) regularization parameter and κ → 0 leads to the
original PKS system (1). A global classical solution exists for these models and the
regularization parameter κ allows one to conduct a detailed bifurcation analysis and
study pattern formation and properties of nonuniform solutions; see, e.g., [43,93,94]
and references therein.

Generalizations of the PKS system (1) to multi-component chemotaxis mod-
els are also widely discussed in the literature; see, e.g., [29–31, 96] and references
therein. In this case, a mathematical model for, say, two noncompetitive biological
species is governed by the following system of PDEs:

(ρ1)t +∇·(g1(ρ1)QQQ(χ1∇c)) = µ1∆ρ1,

(ρ2)t +∇·(g2(ρ2)SSS(χ2∇c) = µ2∆ρ2,

τct = α∆c−βc+ γ1ρ1 + γ2ρ2 = 0.
(4)

This model was proposed in [96] and then further studied both analytically [24,
29–33, 57] and numerically [16, 20, 55]. In (4), ρ1(xxx, t) and ρ2(xxx, t) denote the cell
densities of the first and second species, g1 > 0, g2 > 0, QQQ = (Q1,Q2) and SSS =
(S1,S2) are smooth functions of their arguments, χ2 > χ1 > 0 are the chemotactic
sensitivity constants, µ1 > 0 and µ2 > 0 are diffusion coefficients, and γ1 > 0 and
γ2 > 0 are the production rates for the first and second species, respectively.

Similarly to the one-species PKS model, solutions of (4) may either remain
smooth (with decaying maxima of both ρ1 and ρ2) or blow up in a finite time as
it was proven in [29, 31]. Moreover, in some cases only simultaneous blowup is
possible, while in others the theory fails to predict the behavior of the solution. In
addition, in the blowup regime ρ1 and ρ2 may develop different types of singulari-
ties depending on the choice of functions g1, g2, QQQ and SSS, values of χ1 and χ2 and
on the total mass of each species:
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M1 :=
∫
Ω

ρ1(xxx, t)dxdy and M2 :=
∫
Ω

ρ2(xxx, t)dxdy.

The classical PKS system (1) as well as the aforementioned related systems
model the chemotaxis phenomenon on a macroscopic level. In many cases, this
allows one to obtain a qualitatively accurate description of the chemotactic cell
movement in an efficient way by solving the studied PDE models numerically. How-
ever, in certain practically relevant situations, a more accurate description may be
required. Typically microscopic models are used, such as the Fokker-Planck equa-
tions, the Langevin equations or even some discrete particles models. We refer the
reader to an overview paper [98] on collective behavior of active matter that includes
swimming bacteria, chemotaxis effects, and many others; see also [6, 61, 74, 77].

In order to describe the chemotaxis at the cellular (microscopic) level, a class of
Boltzmann-type kinetic equations has also been developed. A stochastic approach
based on the velocity-jump process was introduced in [85] and was later used in the
framework of kinetic chemotaxis models in [2, 70, 82]. The velocity-jump process
characterizes the movement in two phases, namely, run and tumble. During the run
phase, the cells move (almost) linearly with constant speed and in the tumble phase,
they reorient their motion with a new velocity and direction. The resulting nondi-
mensionalized Boltzmann-type kinetic equation reads as (see, e.g., [15, 41, 71]):

ε ft + vvv ·∇xxx f =
1
ε

∫
V

(
T [c] f ′−T ∗[c] f

)
dvvv′,

τct = α∆c−βc+ γρ,

(5)

where f := fε(xxx, t,vvv) is the probability density function (pdf) of cells at the position
xxx with the velocity vvv= (u,v)∈V ⊂R2 at a given time t, and f ′ := fε(xxx, t,vvv′). In (5),
T [c] and T ∗[c] are the turning kernel operators, which describe the velocity change
at (xxx, t) from vvv′ to vvv and from vvv to vvv′, respectively, that is, T [c] := Tε [c](vvv,vvv′) and
T ∗[c] := Tε [c](vvv′,vvv), and ε is a nondimensional scaling parameter (mean-free path),
which provides the ratio of the mean running length between jumps to the typical
observation length scale. In this model, it is assumed that the tumble (the reorien-
tation) is a Poisson process with rate

∫
V T ∗[c]dvvv′ and that T ∗[c]/

∫
V T ∗[c]dvvv′ is the

probability density for a change in velocity from vvv to vvv′, given that a reorientation
occurs for a cell at position xxx, velocity vvv, and time t; see, e.g., [15]. Notice that the
microscopic pdf f is related to the macroscopic cell density ρ in the following way:

ρ(xxx, t) :=
∫
V

f (xxx, t,vvv)dvvv. (6)

The question of convergence (in the singular limit as ε→ 0) of the kinetic model
(5) to the PKS system (1) has been extensively studied. More precisely, the global in
time convergence was proven in the parabolic-elliptic case in [15]. In the parabolic-
parabolic case, only local convergence results were established; see [48]. We also
refer the reader to [71] for more results on the limiting process.
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Solutions of the kinetic chemotaxis system (5) exhibit a behavior similar to those
of the PKS system (1). They depend, however, not only on the value of the initial
mass M, but also on the specific kernel T , whose choice is crucial in the kinetic
chemotaxis modeling; see, e.g., [9,15]. At the same time, kinetic chemotaxis system
may provide a more detailed description of the underlying cell dynamics and thus
may be advantageous in a variety of applications.

While a large amount of effort has been expended on theoretical analysis of both
macroscopic PDE and kinetic chemotaxis models over the past decades, the choice
of numerical methods for these models is still rather limited. The main difficulty
in numerical simulations of chemotaxis and related phenomena is associated with
capturing blowing up or rapidly growing spiky solutions with high resolution and in
an efficient manner.

Finite-volume [34] and finite-element [64, 79] methods were proposed for the
PKS system (1) with the parabolic-elliptic (τ = 0) coupling. A fractional step nu-
merical method for fully time-dependent chemotaxis system from [90, 97] was pro-
posed in [91]. Such splitting approach may, however, not be applicable for the sys-
tem (1) since its convective part may loose hyperbolicity. As it has been demon-
strated in [18], the latter is a generic situation for the PKS model with parabolic-
parabolic (τ = 1) coupling. Several methods for the parabolic-parabolic PKS system
have been recently proposed: a family of high-order discontinuous Galerkin meth-
ods has been designed in [27, 28]; an implicit flux-corrected finite-element method
has been developed in [84]. These methods achieve high-order of accuracy, but their
high memory usage and computational costs are among their obvious drawbacks.
Simpler and more efficient finite-volume and finite-volume-finite-difference meth-
ods were derived for the PKS system [16, 18], two-species chemotaxis [16, 55] and
coupled chemotaxis-fluid models [17]. In [26], a modified version of the scheme
from [18] is extended to the PKS system in irregular geometry using the upwind-
difference potentials method. In [20], an adaptive moving mesh (AMM) finite-
volume semi-discrete upwind method was developed and applied to two-species
chemotaxis systems (4). Finally, several finite-volume methods have been recently
introduced in [14, 19, 35] for 1-D and 2-D kinetic-chemotaxis systems (5) with dif-
ferent turning kernels.

It should be observed that due to the lack of hyperbolicity of the convective part
in many chemotaxis systems, enforcing nonlinear stability of the designed numeri-
cal methods may be a very challenging task. Indeed, unlike many other models, in
which appearance of unphysical (small) negative values is numerically tolerable, in
the chemotaxis models negative, even small negative values of the cell density ρ ,
produced by a numerical method, will trigger the development of negative cell den-
sity spikes, which, in turn will make the computed solution completely irrelevant.
Therefore, preserving positivity of the computed solutions is an absolutely crucial
property a good numerical method as this is the only way to guarantee its nonlinear
stability. It is quite easy to design first-order positivity preserving schemes, but first-
order schemes are typically impractical due to low resolution and low efficiency.
Deriving high-order (high-resolution) schemes that posses this property is a signifi-
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cantly more complicated task, which was successfully achieved in a series of works
presented in [16–18, 20, 21, 55].

In the context of kinetic-chemotaxis system (5), additional difficulty in designing
an efficient and accurate numerical method is related to the fact that the underlying
system is stiff when 0 < ε << 1. If an explicit numerical discretization is used, one
may need to take both spatial and temporal discretization parameters to be propor-
tional to O(ε) or even O(ε2) due to severe stability restrictions, which may become
unaffordable for small ε . Implicit discretizations, which are often uniformly stable
for 0 < ε < 1, may, on the other hand, be inconsistent with the limit problem and
provide a wrong solution in the ε→ 0 limit. In order to overcome this difficulty, the
so-called asymptotic preserving (AP) schemes, which yield a consistent approxima-
tion of the limiting macroscopic PKS system as ε → 0 and are stable on a coarse
spatio-temporal grid with the mesh parameters being independent of ε have been
recently introduced in [14, 19].

The goal of this review paper is to survey some of the recent advances in de-
veloping of high-resolution finite-volume and finite-difference numerical methods
for chemotaxis-type systems that preserve positivity of the computed solutions and
provide a consistent and stable discretization in certain asymptotic regimes.

The paper is organized as follows. In §2, we review positivity preserving hybrid
finite-volume-finite-difference (FVFD) schemes. We begin in §2.1 with the second-
order scheme, whose advantages and limitations are discussed and numerically il-
lustrated in §2.1.1. The fourth-order FVFD scheme is presented in §2.2. Its advan-
tages and disadvantages as well as additional moving-mesh resolution enhancement
techniques are discussed in §2.2.1. In §3, we review the AP methods for kinetic-
chemotaxis systems. In order to construct the AP methods, we use the odd-even for-
mulation (§3.1), Strang operator splitting (§3.2), the exact ODE solver for the stiff
subsystem (§3.3.1) and second-order upwinding for the nonstiff subsystem (§3.3.2).
Finally, the AP property is proven in §3.4.

2 Positivity Preserving Finite-Volume-Finite-Difference Methods

In this section, we describe second- and fourth-order hybrid FVFD schemes, which
were originally proposed in [16] for the PKS model (1), but we adapt the description
to the more general system (2) (see also [17, 21, 55]). To this end, we introduce the
chemotactic velocities U := cx and V := cy and rewrite (2) in the equivalent form:{

ρt +(g(ρ)Q1(χU)−µρx)x +(g(ρ)Q2(χV )−µρy)y = 0,
τct = α∆c−βc+ γρ.

(7)

Note that in the particular case of linear functions g and QQQ = (Q1,Q2), that is, if

g(ρ) = ρ, Q1(χU) = χU and Q2(χV ) = χV, (8)
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the system (7) reduces to the PKS system (1).
Before proceeding with the presentation of the numerical schemes for (7), it

should be pointed out that preserving the positivity of the computed cell density
ρ is very important since appearance of negative values may trigger numerical in-
stabilities as it was demonstrated in [18]. Indeed, in near blowup regimes, the system
(7) becomes convection-dominated and its convective part may loose hypervelocity.
The latter can be illustrated by considering the parabolic-parabolic case (τ = 1) and
differentiating the second equation in (7) with respect to x and y and rewriting the
system in the equivalent vector form as follows:ρ

U
V


t

+

g(ρ)Q1(χU)
−γρ

0


x

+

g(ρ)Q2(χU)
0
−γρ


y

= ∆

µρ

αU
αV

−
 0

βU
βV

 . (9)

One may now compute the x- and y-Jacobians of the convective fluxes, whose eigen-
values are given by{

0,
g′(ρ)Q1(χU)±

√
(g′(ρ)Q1(χU))2−4γg(ρ)Q′1(χU)

2

}
,

and {
0,

g′(ρ)Q2(χV )±
√

(g′(ρ)Q2(χV ))2−4γg(ρ)Q′2(χV )

2

}
,

respectively. It is clear from the above calculations that the “purely” convective
version of the systems (9),ρ

U
V


t

+

g(ρ)Q1(χU)
−γρ

0


x

+

g(ρ)Q2(χU)
0
−γρ


y

= 000

is hyperbolic only if both

g′(ρ)Q1(χU))2 ≥ 4γg(ρ)Q′1(χU) and g′(ρ)Q2(χV ))2 ≥ 4γg(ρ)Q′2(χV );

otherwise, it is elliptic. Unfortunately, the ellipticity condition is satisfied in generic
cases, for example, when both g, Q1 and Q2 are linear functions (8), U =V = 0 and
ρ > 0. Obviously, the complete chemotaxis system (9) contains stabilizing diffusion
terms, but one has to be very careful since ellipticity of the convective part may still
cause instabilities (especially if a fractional step approach is being implemented
numerically).

It should also be emphasized that designing a positivity preserving second- and
higher-order schemes is, in general, a nontrivial task and, to the best of our knowl-
edge, the FVFD methods derived in [16] and presented below are among the first
ones to achieve this goal for the chemotaxis system (7). In what follows we proceed
with presenting these methods.
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We consider the system (7) in a rectangular domain Ω ⊂R2, where we introduce
a Cartesian mesh consisting of the cells I j,k := [x j− 1

2
,x j+ 1

2
]× [yk− 1

2
,yk+ 1

2
], which,

for the sake of simplicity, are assumed to be of the uniform size |I j,k|= ∆x∆y, that
is, x j+ 1

2
− x j− 1

2
≡ ∆x for all j and yk+ 1

2
− yk− 1

2
≡ ∆y for all k. We assume that

computed cell averages of ρ ,

ρ j,k(t) :=
1
|I j,k|

∫∫
I j,k

ρ(x,y, t)dxdy,

and point values of the chemoattractant concentration, c j,k(t)≈ c(x j,yk, t) are avail-
able at a certain time level t (we will suppress the dependence of the indexed quan-
tities on t in the subsequent text for the brevity of presentation unless it is required
for clarity). These computed quantities are evolved in time according to a general
semi-discrete hybrid FVFD scheme, which has the following form:

dρ j,k

d t
=−

F j+ 1
2 ,k
−F j− 1

2 ,k

∆x
−

G j,k+ 1
2
−G j,k− 1

2

∆y
,

τ
dc j,k

d t
= α∆ j,kc−βc j,k + γρ j,k.

(10)

Here, F j+ 1
2 ,k

and G j,k+ 1
2

are the numerical fluxes in the x- and y-directions, respec-
tively, ∆ j,k is a discrete Laplacian, and ρ j,k is an approximation of the point value of
ρ(x j,yk, t).

In the next sections, we will first provide the reader with a detailed description
of both the second- and fourth-order versions of the FVFD scheme (10), includ-
ing proofs of their positivity preserving property, and then present an AMM finite-
volume method. These numerical schemes are obtained by different approximations
of the numerical fluxes and discrete Laplacians in (10) and we will denote them
by F II

j+ 1
2 ,k

, G II
j,k+ 1

2
, ∆ II

j,k and F IV
j+ 1

2 ,k
, G IV

j,k+ 1
2
,∆ IV

j,k for the second- and fourth-order

methods, respectively.

2.1 Second-Order Scheme

We approximate second-order numerical fluxes in (10),

F II
j+ 1

2 ,k
= (gQ1)

II
j+ 1

2 ,k
−µ(ρx)

II
j+ 1

2 ,k
and G II

j,k+ 1
2
= (gQ1)

II
j+ 1

2 ,k
−µ(ρy)

II
j,k+ 1

2
, (11)

using the central differences for the density derivatives:

(ρx)
II
j+ 1

2 ,k
=

ρ j+1,k− ρ j,k

∆x
, (ρy)

II
j,k+ 1

2
=

ρ j,k+1− ρ j,k

∆y
, (12)

and an upwind differencing scheme for the chemotactic fluxes:
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(gQ1)
II
j+ 1

2 ,k
=

g(ρE
j,k)Q1

(
χU II

j+ 1
2 ,k

)
, if Q1

(
χU II

j+ 1
2 ,k

)
> 0,

g(ρW
j+1,k)Q1

(
χU II

j+ 1
2 ,k

)
, otherwise,

(gQ2)
II
j,k+ 1

2
=

g(ρN
j,k)Q2

(
χV II

j,k+ 1
2

)
, if Q2

(
χV II

j,k+ 1
2

)
> 0,

g(ρS
j,k+1)Q2

(
χV II

j,k+ 1
2

)
, otherwise.

(13)

In (13), the point values of the velocities are obtained by the central differences:

U II
j+ 1

2 ,k
=

c j+1,k− c j,k

∆x
, V II

j,k+ 1
2
=

c j,k+1− c j,k

∆y
,

and the one-sided point values at the cell interfaces, ρE
j,k, ρW

j+1,k, ρN
j,k and ρS

j,k+1, are
calculated from a second-order piecewise linear reconstruction

ρ̃(x,y) = ρ j,k +(ρx) j,k(x− x j)+(ρy) j,k(y− yk), (x,y) ∈ I j,k, (14)

as follows:
ρ

E
j,k = ρ̃(x j+ 1

2
−0,yk) = ρ j,k +

∆x
2
(ρx)

II
j,k,

ρ
W
j,k = ρ̃(x j− 1

2
+0,yk) = ρ j,k−

∆x
2
(ρx)

II
j,k,

ρ
N
j,k = ρ̃(x j,yk+ 1

2
−0) = ρ j,k +

∆y
2
(ρy)

II
j,k,

ρ
S
j,k = ρ̃(x j,yk− 1

2
+0) = ρ j,k−

∆y
2
(ρy)

II
j,k.

(15)

It is important to guarantee nonnegativity of these reconstructed point values of
ρ provided the computed cell averages ρ j,k are nonnegative. One of the ways to
achieve this goal is to use the following adaptive algorithm for computing the dis-
crete slopes (ρx)

II
j,k and (ρy)

II
j,k in (15):

• Use central differences

(ρx)
II
j,k =

ρ j+1,k− ρ j−1,k

2∆x
, (ρy)

II
j,k =

ρ j,k+1− ρ j,k−1

2∆y

to obtain the point values ρ
E,W,N,S
j,k in (15).

If either ρE
j,k < 0 or ρW

j,k < 0, then
Recompute these values by approximating the discrete derivative (ρx)

II
j,k in

cell I j,k with the help of a positivity preserving nonlinear limiter. For in-
stance, one can use the generalized minmod limiter [58, 60, 68, 86]:

(ρx)
II
j,k = minmod

(
2

ρ j+1,k− ρ j,k

∆x
,

ρ j+1,k− ρ j−1,k

2∆x
, 2

ρ j,k− ρ j−1,k

∆x

)
,
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where

minmod(z1,z2, . . .) :=


min(z1,z2, . . .), if zi > 0 ∀i,
max(z1,z2, . . .), if zi < 0 ∀i,
0, otherwise.

If either ρN
j,k < 0 or ρS

j,k < 0, then
Recompute these values by approximating the discrete derivatives (ρy)

II
j,k

in cell I j,k with the help of a positivity preserving nonlinear limiter. Once
again, one can use, for example, the generalized minmod limiter:

(ρy)
II
j,k = minmod

(
2

ρ j,k+1−ρ j,k

∆y
,

ρ j,k+1−ρ j,k−1

2∆y
, 2

ρ j,k−ρ j,k−1

∆y

)
.

This way, the positivity of reconstructed point values ρ
E,W,N,S
j,k will be guaranteed

by the positivity preserving property of the chosen limiter. Besides the generalized
minmod limiter, other positivity preserving limiters is are available in the literature;
see, e.g., [58, 60, 68, 86].

Finally, the Laplace operator in (10) is approximated using the standard five-point
stencil:

∆
II
j,kc =

c j+1,k−2c j,k + c j−1,k

(∆x)2 +
c j,k+1−2c j,k + c j,k−1

(∆y)2 ,

the point values ρ j,k are approximated by the corresponding cell averages, and then
the resulting second-order semi-discrete hybrid FVFD scheme reads as

dρ j,k

d t
=−

F II
j+ 1

2 ,k
−F II

j− 1
2 ,k

∆x
−

G II
j,k+ 1

2
−G II

j,k− 1
2

∆y
,

τ
dc j,k

d t
= α∆

II
j,kc−βc j,k + γ ρ j,k.

(16)

The following theorems, proven in [16] for the PKS system (1), establish the pos-
itivity preserving property of the described numerical method in both the parabolic-
parabolic (τ = 1) and parabolic-elliptic (τ = 0) cases. For the sake of completeness,
we repeat the proof from [16] for a more general system (7).

Theorem 1. Assume that the system of ODEs (16) with τ = 1 is integrated using the
forward Euler method:

ρ j,k(t +∆ t) = ρ j,k(t)−λ
(
F II

j+ 1
2 ,k

(t)−F II
j− 1

2 ,k
(t)
)

−σ
(
G II

j,k+ 1
2
(t)−G II

j,k− 1
2
(t)
)
, (17)

c j,k(t +∆ t) = (1−β∆ t)c j,k(t)+α∆ t∆ II
j,kc j,k(t)+ γ∆ t ρ j,k(t), (18)

where λ := ∆ t/∆x and σ := ∆ t/∆y. Then, the evolved cell densities ρ j,k(t +∆ t)
and chemoattractant concentrations c j,k(t +∆ t) will be nonnegative for all j,k pro-
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vided ρ j,k(t) and c j,k(t) are nonnegative for all j,k and the following CFL-like
condition is satisfied:

∆ t ≤min
{

∆x
8a

,
∆y
8b

,
∆x∆y
4Kµ

,
1

max{K1,δ}

}
, (19)

where

a := max
j,k
|Q1(χU II

j+ 1
2 ,k

)| ·max
j,k

{
g(ρE

j,k)

ρE
j,k

,
g(ρW

j,k)

ρW
j,k

}
,

b := max
j,k
|Q2(χV II

j,k+ 1
2
)| ·max

j,k

{
g(ρN

j,k)

ρN
j,k

,
g(ρS

j,k)

ρS
j,k

}
,

K :=
∆x
∆y

+
∆y
∆x

, K1 := max
j,k

(
β +

2Kα

∆x∆y
− γ ρ j,k

)
,

(20)

and δ > 0 is a small parameter.

Proof. We follow the lines of the positivity proof in [16, 18] and begin with the
cell density equation (17). Recall that the positivity preserving property of the inter-
polant (14) will guarantee that the reconstructed point values ρE

j,k,ρ
W
j,k,ρ

N
j,k and ρS

j,k
will be nonnegative provided ρ j,k(t)≥ 0, ∀ j,k. We then use (11)–(13) and the con-
servation property for the cell densities, ρ j,k =

1
8 (ρ

E
j,k +ρW

j,k +ρS
j,k +ρN

j,k)+
1
2 ρ j,k,

to regroup the terms in (17) as follows:

ρ j,k(t+∆ t) =
[

1
8

ρ
W
j,k−

λ

2

(
|Q1(χU II

j− 1
2 ,k

)|−Q1(χU II
j− 1

2 ,k
)
)

g(ρW
j,k)

]
+

[
1
8

ρ
E
j,k−

λ

2

(
|Q1(χU II

j+ 1
2 ,k

)|+Q1(χU II
j+ 1

2 ,k
)
)

g(ρE
j,k)

]
+

λ

2

[
|Q1(χU II

j+ 1
2 ,k

)|−Q1(χU II
j+ 1

2 ,k
)
]
g(ρW

j+1,k)

+
λ

2

[
|Q1(χU II

j− 1
2 ,k

)|+Q1(χU II
j− 1

2 ,k
)
]
g(ρE

j−1,k)

+

[
1
8

ρ
S
j,k−

σ

2

(
|Q2(χV II

j,k− 1
2
)|−Q2(χV II

j,k− 1
2
)
)

g(ρS
j,k)

]
+

[
1
8

ρ
N
j,k−

σ

2

(
|Q2(χV II

j,k+ 1
2
)|+Q2(χV II

j,k+ 1
2
)
)

g(ρN
j,k)

]
+

σ

2

[
|Q2(χV II

j,k+ 1
2
)|−Q2(χV II

j,k+ 1
2
)
]
g(ρS

j,k+1)

+
σ

2

[
|Q2(χV II

j,k− 1
2
)|+Q2(χV II

j,k− 1
2
)
]
g(ρN

j,k−1)+

[
1
2
− 2Kµ∆ t

∆x∆y

]
ρ j,k(t)

+µ∆ t
[

ρ j+1,k(t)+ ρ j−1,k(t)

(∆x)2 +
ρ j,k+1(t)+ ρ j,k−1(t)

(∆y)2

]
.

(21)
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As one can see from (21), ρ j,k(t +∆ t) is a linear combination of the five cell aver-
ages ρ j,k(t), ρ j±1,k(t), ρ j,k±1(t) and eight point values g(ρW

j,k), g(ρE
j,k), g(ρW

j+1,k),
g(ρE

j−1,k), g(ρS
j,k), g(ρN

j,k), g(ρS
j,k+1), g(ρN

j,k−1), which are all nonnegative since
g > 0 by assumption. The coefficients of this linear combination are also nonnega-
tive under the CFL-like condition (19), which guarantees that ρ j,k(t +∆ t) ≥ 0 for
all j,k.

Finally, the CFL-like condition (19) ensures that all of the terms on the right-
hand side (RHS) of (18) are nonnegative and thus c j,k(t +∆ t)≥ 0 for all j,k, which
completes the proof of the theorem. ut

A similar theorem can be proven for the system of differential-algebraic equa-
tions (16) with τ = 0.

Theorem 2. Assume that the first equation of the system of (16) with τ = 0 is inte-
grated using the forward Euler method resulting in equation (17), while the system
of linear algebraic equations for c j,k is solved exactly. Then, the evolved cell den-
sities, ρ j,k(t +∆ t), and chemoattractant concentrations, c j,k(t +∆ t), will be non-
negative for all j,k provided ρ j,k(t) and c j,k(t) are nonnegative for all j,k and the
following CFL-like condition is satisfied:

∆ t ≤min
{

∆x
8a

,
∆y
8b

,
∆x∆y
4Kµ

}
, (22)

where a, b and K are given by (20).

Proof. The proof of this theorem follows the lines of the proof of Theorem 1 and
the positivity of ρ is enforced the same way as in the parabolic-parabolic case, but
with a different CFL-like condition as stated in the theorem. The difference in the
CFL conditions is due to the fact that for τ = 0 the equation for the chemoattractant
c reduces to a system of linear algebraic equations for c j,k, which is to be solved by
an accurate and efficient linear solver. It should be observed that the matrix of this
linear system is diagonally dominant, which guarantees the positivity of c and no
extra term is necessary in the CFL-like condition (22) compared to (19). ut
Remark 1. Theorems 1 and 2 are also valid if the forward Euler method is replaced
by a higher-order strong-stability preserving (SSP) ODE solver, since a time step in
such solver can be written as a convex combination of several forward Euler steps.

Remark 2. It is instructive to point out that the upper bounds on the time step in
(19) and (22) are minima of either four or three terms: the first two terms are re-
lated to the chemotactic fluxes, while the third and fourth ones are due to the diffu-
sion and source terms there. In the (near) blowup regime, the system is convection-
dominated, that is, the quantities a and b in (20) are large and thus the first two terms
in (19) and (22) determine the size of time steps, in which case explicit methods are
sufficiently efficient. However, when a and b are small, the third and fourth terms
in (19) and (22) dominate and the efficiency of explicit methods is reduced. One of
the ways to overcome this difficulty is to use implicit-explicit (IMEX) SSP methods
(see, e.g., [4, 5, 47, 72]) as long as a and b remain relatively small. This does not
affect the positivity preserving property of described method as was proven in [18].
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2.1.1 Why Higher Resolution May Be Needed

In this section, we discuss advantages and limitations of the second-order hybrid
FVFD scheme described in §2.1 and also demonstrate why higher-order/higher-
resolution methods may be required to accurately compute solutions of chemotaxis
systems. To this end, we will consider several numerical examples.

Example 1. We start by considering the PKS system (1) with

τ = 0, χ = 20, µ = α = β = γ = 1

and subject to the no-flux boundary conditions on Ω = [−3,3]× [−3,3] and follow-
ing initial condition:

ρ(x,y,0) = 100e−100(x2+y2).

According to the analytical results (see, e.g., [12,22,36–39,42,44,45,49,65,75]), the
initial mass is above the critical one and therefore the solution is expected to blow
up in finite time. In order to illustrate the blowup phenomenon, we compute the
solution until the final time t = 0.0038 on a 101×101 uniform mesh. The obtained
cell density is shown in Figure 1 (left). As one can see,

‖ρ101(·, ·,0.0038)‖∞ ≈ 559�‖ρ(·, ·,0)‖∞ = 100,

which suggests that the solution may have already blown up by the final computa-
tional time. In order to verify this, we refine the mesh to 201×201 and observe that
the maximum of the computed cell density shown in Figure 1 (right) is now

‖ρ201(·, ·,0.0038)‖∞ ≈ 2248≈ 4×‖ρ101(·, ·,0.0038)‖∞.

This implies that the solution contains a δ -function, whose discrete maximum is
supposed to be proportional to 1/(∆x∆y).

Fig. 1 Example 1: Cell density ρ computed using 101× 101 (left) and 201× 201 (right)
meshes.
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Comparing numerical solutions and its maximum norm on various meshes may
allow one not only to confirm the solution blowup but also numerically predict the
blowup time; see, e.g., [16]. The latter is an important piece of information, which
may be required to be computed with a high precision and thus one may need to
use a higher-order scheme and/or a certain adaptive strategy as an alternative to
further mesh refinement study, which may become computationally unaffordable;
see, e.g., [16, 20].

We would like to point out that even though using a higher-order or adaptive
method in the initial-boundary value problem (IBVP) considered in Example 1 may
enhance the achieved resolution, the second-order hybrid FVFD method seems to
be sufficient to qualitatively understand the solution behavior (blowup). This may,
however, not be the case in other situations like the one that will be considered in
the second numerical example.

Example 2. We now consider the two-species chemotaxis system (4) with linear
functions g(ρ) = ρ, QQQ(χ1∇c) = χ1∇c and QQQ(χ2∇c) = χ2∇c, that is,

τ = 0, χ1 = 1 < χ2 = 20, µ1 = µ2 = α = β = γ1 = γ2 = 1,

and subject to the no-flux boundary conditions on Ω = [−3,3]× [−3,3] and follow-
ing initial conditions:

ρ1(x,y,0) = ρ2(x,y,0) = 50e−100(x2+y2).

Although the scheme in §2.1 was described for the one-species system (2), it can
be straightforwardly extended to the two-species system (4) since the equations for
ρ1 and ρ2 are only coupled through the c-equation. We note that a detailed descrip-
tion of the second-order hybrid FVFD scheme for the two-species model can be
found in [55].

We compute the solution of the studied IBVP on a 201× 201 uniform mesh.
The cell densities ρ1 and ρ2 computed at time t = 0.0038 are presented in Figure
2 (left column). As in Example 1, one can observe that the second-order FVFD
scheme captures the spiky structure of the solution. However, one can clearly see
the difference between the maximum values of ρ1 and ρ2:

‖ρ201
1 (·, ·,0.0038)‖∞ ≈ 30.26 < ‖ρ1(·, ·,0)‖∞ = 50,

‖ρ201
2 (·, ·,0.0038)‖∞ ≈ 646�‖ρ2(·, ·,0)‖∞ = 50,

which suggests that ρ2 had blown up, while ρ1 remained bounded as its magnitude,
in fact, had decreased. One may want to verify this conjecture by refining the mesh.
The results computed on a 401× 401 uniform mesh are shown in Figure 2 (right
column). The corresponding maximum values are now

‖ρ401
1 (·, ·,0.0038)‖∞ ≈ 34.05 < ‖ρ1(·, ·,0)‖∞ = 50,

‖ρ401
2 (·, ·,0.0038)‖∞ ≈ 2365≈ 4×‖ρ2(·, ·,0.0038)‖∞.
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These computations seem to confirm the above conjecture. However, the analytical
results proven in [29, 31] state that only simultaneous blowup is possible, which
means that ρ1 should also have blown up by t = 0.0038 though at a much slower rate
than ρ2. This means that the above conjecture, which was made solely based on the
above second-order numerical results was wrong. Therefore, one would definitely
need a higher-resolution method to obtain qualitatively more accurate results in this
example.

Fig. 2 Example 2: ρ1 (top row) and ρ2 (bottom row) computed using the second-order
hybrid FVFD scheme on the 201×201 (left column) and 401×401 (right column) uniform
meshes.

2.2 Fourth-Order Scheme

In this section, we describe the fourth-order hybrid FVFD scheme, which is a
slightly improved version of the scheme that was derived in [16]. As it was men-
tioned above, we denote the fourth-order fluxes by

F IV
j+ 1

2 ,k
= (gQ1)

IV
j+ 1

2 ,k
−µ(ρx)

IV
j+ 1

2 ,k
and G IV

j,k+ 1
2
= (gQ2)

IV
j,k+ 1

2
−µ(ρy)

IV
j,k+ 1

2
, (23)
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and approximate the density derivatives (ρx)
IV
j+ 1

2 ,k
and (ρy)

IV
j,k+ 1

2
in (23) using the

fourth-order central differences:

(ρx)
IV
j+ 1

2 ,k
=

ρ j−1,k−15ρ j,k +15ρ j+1,k− ρ j+2,k

12∆x
,

(ρy)
IV
j,k+ 1

2
=

ρ j,k−1−15ρ j,k +15ρ j,k+1− ρ j,k+2

12∆y
.

As in the second-order case, the chemotactic flux terms are computed in an upwind
manner as follows:

(gQ1)
IV
j+ 1

2 ,k
=



1
6

[
g(ρNE

j,k )Q1(χU IV
j+ 1

2 ,k+
1
2
)+4g(ρE

j,k)Q1(χU IV
j+ 1

2 ,k
)

+g(ρSE
j,k )Q1(χU IV

j+ 1
2 ,k−

1
2
)
]
, if Q1(χU IV

j+ 1
2 ,k

)> 0,

1
6

[
g(ρNW

j+1,k)Q1(χU IV
j+ 1

2 ,k+
1
2
)+4g(ρW

j+1,k)Q1(χU IV
j+ 1

2 ,k
)

+g(ρSW
j+1,k)Q1(χU IV

j+ 1
2 ,k−

1
2
)
]
, otherwise,

(gQ2)
IV
j,k+ 1

2
=



1
6

[
g(ρNW

j,k )Q2(χV IV
j− 1

2 ,k+
1
2
)+4g(ρN

j,k)Q2(χV IV
j,k+ 1

2
)

+g(ρNE
j,k )Q2(χV IV

j+ 1
2 ,k+

1
2
)
]
, if Q2(χV IV

j,k+ 1
2
)> 0,

1
6

[
g(ρSW

j,k+1)Q2(χV IV
j− 1

2 ,k+
1
2
)+4g(ρS

j,k+1)Q2(χV IV
j,k+ 1

2
)

+g(ρSE
j,k+1)Q2(χV IV

j+ 1
2 ,k+

1
2
)
]
, otherwise,

(24)

where the velocities at the cell interfaces are obtained using the fourth-order central
differences:

U IV
j+ 1

2 ,k
=

c j−1,k−27c j,k +27c j+1,k− c j+2,k

24∆x
,

V IV
j,k+ 1

2
=

c j,k−1−27c j,k +27c j,k+1− c j,k+2

24∆y
,

(25)

and the velocities at the cell vertices are obtained using the fourth-order averaging
of the cell interface velocities (25), which results in

U IV
j+ 1

2 ,k+
1
2
=
−U IV

j+ 1
2 ,k−1

+9U IV
j+ 1

2 ,k
+9U IV

j+ 1
2 ,k+1

−U IV
j+ 1

2 ,k+2

16
,

V IV
j+ 1

2 ,k+
1
2
=
−V IV

j−1,k+ 1
2
+9V IV

j,k+ 1
2
+9V IV

j+1,k+ 1
2
−V IV

j+2,k+ 1
2

16
.

(26)



High-Resolution Numerical Methods for Chemotaxis Models 17

Remark 3. We note that in [16], the velocities U IV
j+ 1

2 ,k+
1
2

and V IV
j+ 1

2 ,k+
1
2

were com-

puted in a different manner. However, the formulae in (2.19) in [16] are not fully
fourth-order and also computationally more expensive than (26).

In (24), the density point values along the cell interfaces, ρE
j,k, ρW

j,k, ρN
j,k, ρS

j,k, ρNE
j,k ,

ρNW
j,k , ρSE

j,k and ρSW
j,k , are calculated using a conservative piecewise polynomial re-

construction

P j,k(x,y) = ρ j,k +(ρx) j,k(x− x j)+(ρy) j,k(y− yk)

1
2
(ρxx) j,k(x− x j)

2 +(ρxy) j,k(x− x j)(y− yk)+
1
2
(ρyy) j,k(y− yk)

2

1
6
(ρxxx) j,k(x− x j)

3 +
1
2
(ρxxy) j,k(x− x j)

2(y− yk)

1
2
(ρxyy) j,k(x− x j)(y− yk)

2 +
1
6
(ρyyy) j,k(y− yk)

3

1
24

(ρxxxx) j,k(x− x j)
4 +

1
4
(ρxxyy) j,k(x− x j)

2(y− yk)
2

1
24

(ρyyyy) j,k(y− yk)
4, (x,y) ∈ I j,k,

which is almost fourth-order accurate provided its coefficients are obtained from the
conservation requirements (see [54, Appendix B] for details):

1
∆x∆y

∫∫
I j+m,k+`

P j,k(x,y)dxdy = ρ j+m,k+`, {m, ` ∈ Z : |m|+ |`| ≤ 2}.

The corresponding density point values are computed by (see [16] for detailed for-
mulae and [54, Appendix B] for the algorithm of their efficient implementation)

ρ
E
j,k = max{P j,k(x j+ 1

2
,yk), 0}, ρ

W
j,k = max{P j,k(x j− 1

2
,yk), 0},

ρ
N
j,k = max{P j,k(x j,yk+ 1

2
), 0}, ρ

S
j,k = max{P j,k(x j,yk− 1

2
), 0},

ρ
NE
j,k = max{P j,k(x j+ 1

2
,yk+ 1

2
), 0}, ρ

NW
j,k = max{P j,k(x j− 1

2
,yk+ 1

2
), 0},

ρ
SE
j,k = max{P j,k(x j+ 1

2
,yk− 1

2
), 0}, ρ

SW
j,k = max{P j,k(x j− 1

2
,yk− 1

2
), 0},

whose nonnegativity is enforced in the most straightforward way.
Equipped with the above quantities, we obtain the following (almost) fourth-

order semi-discrete hybrid FVFD scheme:
dρ j,k

d t
=−

F IV
j+ 1

2 ,k
−F IV

j− 1
2 ,k

∆x
−

G IV
j,k+ 1

2
−G IV

j,k− 1
2

∆y
,

τ
dc j,k

d t
= α∆

IV
j,kc−βc j,k + γρ j,k,

(27)
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where a nine-point stencil is used to compute a fourth-order approximate Laplace
operator,

∆
IV
j,kc =

−c j−2,k +16c j−1,k−30c j,k +16c j+1,k− c j+2,k

12(∆x)2

+
−c j,k−2 +16c j,k−1−30c j,k +16c j,k+1− c j,k+2

12(∆y)2 ,

(28)

and ρ j,k = max{P j,k(x j,yk), 0} are point values of ρ at the centers of cells I j,k.
As in the case of the second-order method, the fourth-order FVFD scheme (27)

is either a system of ODEs (τ = 1) or differential-algebraic equations (τ = 0) and
should be integrated in time by a sufficiently accurate and stable ODE solver. We re-
call that the positivity preserving property of the second-order method was enforced
by both the positivity of the reconstructed point values of the density and a proper
choice of the ODE solver and its time step. Unfortunately, this is not the case here:
even if one uses an SSP ODE solver, positivity of ρ and c cannot be guaranteed.

One of the ways to ensure that the computed solution will remain nonnegative at
all times is to adapt the so-called “draining” time step strategy, which was originally
proposed in [7] in the context of the Saint-Venant system of shallow water equations.
This approach, which is described below for the forward Euler time discretization,
is based on the idea of locally limiting the outgoing fluxes at cells where negative
solution values appear.

We start by considering the parabolic-parabolic case (τ = 1) and reformulate the
fourth-order Laplacian in (28) in terms of diffusion fluxes as follows:

α∆
IV
j,kc =−

H IV
j+ 1

2 ,k
−H IV

j− 1
2 ,k

∆x
−

L IV
j,k+ 1

2
−L IV

j,k− 1
2

∆y

where

H IV
j+ 1

2 ,k
= α
−c j−1,k +15c j,k−15c j+1,k + c j+2,k

12∆x
,

L IV
j,k+ 1

2
= α
−c j,k−1 +15c j,k−15c j,k+1 + c j,k+2

12∆y
.

We then rewrite the fourth-order semi-discrete hybrid FVFD scheme (27) in the
following flux form:

dρ j,k

d t
=−

F IV
j+ 1

2 ,k
−F IV

j− 1
2 ,k

∆x
−

G IV
j,k+ 1

2
−G IV

j,k− 1
2

∆y
,

dc j,k

d t
=−

H IV
j+ 1

2 ,k
−H IV

j− 1
2 ,k

∆x
−

L IV
j,k+ 1

2
−L IV

j,k− 1
2

∆y
−βc j,k + γρ j,k,

(29)

and evolve the numerical solution in time using the forward Euler discretization of
(29):
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ρ j,k(t +∆ t) = ρ j,k(t)−λ
(
F̂ IV

j+ 1
2 ,k

(t)− F̂ IV
j− 1

2 ,k
(t)
)
−σ

(
Ĝ IV

j,k+ 1
2
(t)− Ĝ IV

j,k− 1
2
(t)
)
,

(30)

c j,k(t +∆ t) = (1−β∆ t)c j,k(t)+ γ∆ tρ j,k(t)

−λ
(
Ĥ IV

j+ 1
2 ,k

(t)−Ĥ IV
j− 1

2 ,k
(t)
)
−σ

(
L̂ IV

j,k+ 1
2
(t)− L̂ IV

j,k− 1
2
(t)
)
, (31)

where λ := ∆ t/∆x, σ := ∆ t/∆y and F̂ IV
j+ 1

2 ,k
, Ĝ IV

j,k+ 1
2
, Ĥ IV

j+ 1
2 ,k

and L̂ IV
j,k+ 1

2
are mod-

ified numerical fluxes defined as follows:

F̂ IV
j+ 1

2 ,k
=

∆ tρ

j+ 1
2 ,k

∆ t
F IV

j+ 1
2 ,k

, Ĝ IV
j,k+ 1

2
=

∆ tρ

j,k+ 1
2

∆ t
G IV

j,k+ 1
2

Ĥ IV
j+ 1

2 ,k
=

∆ tc
j+ 1

2 ,k

∆ t
H IV

j+ 1
2 ,k

, L̂ IV
j,k+ 1

2
=

∆ tc
j,k+ 1

2

∆ t
L IV

j,k+ 1
2
.

(32)

The time step ∆ t and the coefficients in front of the numerical fluxes in (32) are
obtained according to following algorithm:

• Compute ∆ t according to the CFL-like condition (19).
• Compute “draining” time steps:

∆ tρ

j,k :=
∆x∆yρ j,k(t)

f ρ

j,k∆y+gρ

j,k∆x
,

∆ tc
j,k :=

∆x∆y[(1−β∆ t)c j,k(t)+ γ∆ tρ j,k(t)]
f c

j,k∆y+gc
j,k∆x

,

(33)

where
f ρ

j,k := max(F IV
j+ 1

2 ,k
,0)+max(−F IV

j− 1
2 ,k

,0),

gρ

j,k := max(G IV
j,k+ 1

2
,0)+max(−G IV

j,k− 1
2
,0),

f c
j,k := max(H IV

j+ 1
2 ,k

,0)+max(−H IV
j− 1

2 ,k
,0),

gc
j,k := max(L IV

j,k+ 1
2
,0)+max(−L IV

j,k− 1
2
,0).

(34)

• Use the computed values of ∆ t and “draining” time steps to obtain

∆ tρ

j+ 1
2 ,k

:= min(∆ t,∆ tρ

m,k), m = j+
1
2
−

sgn(F IV
j+ 1

2 ,k
)

2
,

∆ tρ

j,k+ 1
2

:= min(∆ t,∆ tρ

j,`), `= k+
1
2
−

sgn(G IV
j,k+ 1

2
)

2
,

∆ tc
j+ 1

2 ,k
:= min(∆ t,∆ tc

p,k), p = j+
1
2
−

sgn(H IV
j+ 1

2 ,k
)

2
,

∆ tc
j,k+ 1

2
:= min(∆ t,∆ tc

j,q), q = k+
1
2
−

sgn(L IV
j,k+ 1

2
)

2
.

(35)
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In the parabolic-elliptic (τ = 0) case, the second equation in (27) reduces to a
system of linear (time-independent) algebraic equations for c j,k, which, as in the
second-order method, is to be solved by an accurate and efficient linear algebra
solver. However, the matrix of this linear system is no longer diagonally dominant,
and thus the positivity of c cannot not be in general guaranteed. On the other hand,
the following theorem from [16] establishes the nonnegativity of the computed ρ

and c at all times in the parabolic-parabolic (τ = 1) case and we repeat its proof
here for the sake of completeness.

Theorem 3. Assume that the system of ODEs (29) is integrated using the forward
Euler method (30)–(35). Then, the evolved cell densities ρ j,k(t +∆ t) and chemoat-
tractant concentrations c j,k(t+∆ t) remain nonnegative for all j,k as long as ρ j,k(t)
and c j,k(t) are nonnegative for all j,k.

Proof. In order to prove the nonnegativity of ρ , one needs to consider different cases
depending on the sign of the fluxes F IV

j+ 1
2 ,k

and G IV
j,k+ 1

2
given by (23). We will only

consider one of these cases, namely, assuming that

F IV
j+ 1

2 ,k
> 0, F IV

j− 1
2 ,k

> 0 and G IV
j,k+ 1

2
< 0, G IV

j,k− 1
2
< 0. (36)

in the cell I j,k. All of the other cases can be analyzed in a similar way.
First, we use the definitions in (34) to obtain

f ρ

j,k = F IV
j+ 1

2 ,k
, gρ

j,k =−G IV
j,k− 1

2
, (37)

and then substituting (37) into (33) results in

∆ tρ

j,k =
∆x∆yρ j,k(t)

F IV
j+ 1

2 ,k
∆y−G IV

j,k− 1
2
∆x

> 0. (38)

It also follows from (36) and (35) that

∆ tρ

j+ 1
2 ,k

= min(∆ t,∆ tρ

j,k), ∆ tρ

j− 1
2 ,k

= min(∆ t,∆ tρ

j−1,k),

∆ tρ

j,k+ 1
2
= min(∆ t,∆ tρ

j,k+1), ∆ tρ

j,k− 1
2
= min(∆ t,∆ tρ

j,k).

We now rewrite equation (30) as

ρ j,k(t +∆ t) = ρ j,k(t)+
∆ tρ

j− 1
2 ,k

∆x
F IV

j− 1
2 ,k
−

∆ tρ

j,k+ 1
2

∆y
G IV

j,k+ 1
2

+
∆ tρ

j,k− 1
2

∆y
G IV

j,k− 1
2
−

∆ tρ

j+ 1
2 ,k

∆x
F IV

j+ 1
2 ,k

,

(39)
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and show that the RHS of (39) is nonnegative. To this end, we first note that (36)
implies

∆ tρ

j− 1
2 ,k

∆x
F IV

j− 1
2 ,k
−

∆ tρ

j,k+ 1
2

∆y
G IV

j,k+ 1
2
> 0. (40)

We then note that ∆ tρ

j+ 1
2 ,k

= ∆ tρ

j,k− 1
2
≤ ∆ tρ

j,k, and therefore using (38), (39) and (40),

we conclude with

ρ j,k(t +∆ t)> ρ j,k(t)+
∆ tρ

j,k− 1
2

∆y
G IV

j,k− 1
2
−

∆ tρ

j+ 1
2 ,k

∆x
F IV

j+ 1
2 ,k

≥ ρ j,k(t)+
∆xρ j,k(t)

F IV
j+ 1

2 ,k
∆y−G IV

j,k− 1
2
∆x

G IV
j,k− 1

2
−

∆yρ j,k(t)

F IV
j+ 1

2 ,k
∆y−G IV

j,k− 1
2
∆x

F IV
j+ 1

2 ,k
= 0,

which shows that ρ j,k(t +∆ t)≥ 0 for all j,k, provided that ρ j,k(∆ t)≥ 0 for all j,k.
The nonnegativity proof for the c component of the solution can be obtained

similarly, and the proof of the theorem will be completed. ut

Remark 4. Note that the positivity preserving property of the second-order scheme
can be also enforced using the “draining” time step technique instead of the adaptive
reconstruction approach implemented in §2.1.

Remark 5. As an alternative way of achieving the positivity preserving property
of fourth- and higher-order methods, one cam implement a maximum-principle-
satisfying approach developed in [99] in the context of scalar conservation laws.

2.2.1 What Can Be Achieved with Higher-Resolution Methods

As it was mentioned in §2.1.1, capturing fast growing and/or singular solutions of
chemotaxis systems is a challenging task. Example 2 as well as studies conducted in
a series of works, [14,16,20,55] clearly illustrate that in some cases under-resolved
numerical simulations may lead to very misleading results in terms of determining
blowup regimes of the computed solutions. In many of such cases, including the
two-spices chemotaxis models like (4), where different blowup time scales are ex-
hibited by the two variables, a very fine mesh (often practically unaffordable) would
typically be required to make a blowup conjecture based on the numerical results
even if the aforementioned fourth-order FVFD method is implemented as demon-
strated in the following example; see also [16, 20, 55].

Example 3. We now consider the same IBVP for two-species chemotaxis system as
in Example 2 and numerically solve it using the hybrid fourth-order FVFD scheme
described in §2.2, which, similarly to its second-order counterpart, can be straight-
forwardly extended to the two-species system.

As in Example 2, we first compute the solution of the studied IBVP on a 201×
201 uniform mesh. The cell densities ρ1 and ρ2 computed at time t = 0.0038 are
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presented in Figure 3 (left column). Once again, we observe that the maximum
values of the computed ρ1 and ρ2,

‖ρ201
1 (·, ·,0.0038)‖∞ ≈ 36.18 < ‖ρ1(·, ·,0)‖∞ = 50,

‖ρ201
2 (·, ·,0.0038)‖∞ ≈ 2104�‖ρ2(·, ·,0)‖∞ = 50,

clearly indicate that ρ2 blows up. In fact, its maximum is substantially larger than
the one obtained by the second-order scheme in Example 2. However, it is hard (or
even impossible) to draw a blowup conclusion about ρ1, whose maximum is still
below the initial one though it is larger than the maximum of ρ1 computed using
the 401× 401 uniform meshes reported in Example 2. We then refine the mesh.
The results computed on a 401× 401 uniform mesh are shown in Figure 3 (right
column). The corresponding maximum values are now

‖ρ401
1 (·, ·,0.0038)‖∞ ≈ 42.25 < ‖ρ1(·, ·,0)‖∞ = 50,

‖ρ401
2 (·, ·,0.0038)‖∞ ≈ 8284≈ 4×‖ρ2(·, ·,0.0038)‖∞.

Fig. 3 Example 3: ρ1 (top row) and ρ2 (bottom row) computed using the fourth-order hybrid
FVFD scheme on the 201×201 (left column) and 401×401 (right column) uniform meshes.
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These computations demonstrate that the required resolution has not been achieved
yet. One therefore may want to further increase the order of the numerical method.
This, however, may be quite cumbersome and also computationally expensive. In
addition, implementing higher-order boundary conditions may also be challenging.

As an alternative approach of enhancing the resolution of spiky solutions in the
concentration/blowup regions, one may use an adaptive technique. For example,
an adaptive moving mesh (AMM) method was proposed in [20] for the two-spices
parabolic-elliptic chemotaxis system (4) with τ = 0 by combining the second-order
positivity preserving finite-volume method with the AMM technique from [56]. A
general algorithm of the AMM approach consists of the evolution, mesh adaptation
and projection steps. In particular, the solution is first evolved to the new time level
on a given structured quadrilateral mesh. The mesh is then adapted to reflect the
structure of the evolved solution and finally, the solution is projected onto the new
mesh in a conservative manner. For more information about the AMM approach we
refer the reader to [3, 46, 56, 87] and references therein.

In order to illustrate the performance of the AMM method, we apply it to the
aforementioned IBVP using 101×101 adaptively moving cells. The obtained results
are reported in Figure 4 and the maximum values of ρ1 and ρ2 are 62.38 and 622178.
As one can see, the maximum value of ρ2 is now much larger even than the one
computed using the fourth-order FVFD scheme on the 401× 401 uniform mesh.
The maximum value of ρ1 is now larger than the maximum if the initial datum,
which suggests that ρ1 may develop a sharp spiky structure even though one still
cannot draw a definite conclusion whether the computed ρ1 had blown up.

Fig. 4 Example 3: ρ1 (left) and ρ2 (right) computed using the second-order AMM finite-
volume method 101×101 adaptively moving cells.



24 Alina Chertock and Alexander Kurganov

3 Asymptotic Preserving Methods

In this section, we consider the kinetic chemotaxis models (5) and describe how
consistent and stable methods, whose properties are independent of ε can be derived.

As it was mentioned above, the choice of the turning kernel T in (5) plays a
crucial role in chemotaxis modeling and we start by assuming that the turning kernel
has an asymptotic expansion of the form (see, e.g., [14, 15, 35, 41, 71]):

T [c] = T0[c]+ εT1[c]+O(ε2). (41)

Here, the leading term T0[c] = F(vvv) > 0 is the bounded velocity distribution at the
equilibrium, which satisfies the following assumptions:∫

V

F(vvv)dvvv = 1 and F(vvv) = F(|vvv|). (42)

The coefficient of the second term in (41), T1[c], describes the new favorable direc-
tion of the cells and following [14, 15] we assume that T1[c](vvv,vvv′) = T1[c](vvv) and
consider the positive taxis towards the chemoattractant. We then substitute (6), (41)
and (42) into the first equation of (5) and neglect O(ε2) terms to obtain the following
kinetic chemotaxis system:ε ft + vvv ·∇xxx f = 1+

1
ε
[(F(vvv)+ εT1)ρ− (1+T1) f ] ,

τct = α∆c−βc+ γρ,
(43)

where
T1(xxx, t) :=

∫
V

εT1[c](vvv)dvvv. (44)

Specific models for turning kernels can be found in the literature. For instance, a
group of so-called local models, considered in [15, 71], suggests that T1[c] depends
on point values of c and ∇c and thus (41) takes the form (up to high-order terms):

T [c](vvv) = F(vvv)+ ε max(vvv ·∇c,0). (45)

Other examples include nonlocal models, where the turning kernel is given by (see,
e.g., [14, 15])

T [c](vvv) = α+ψ(c(xxx, t),c(xxx+ εvvv, t))+α−ψ(c(xxx, t),c(xxx− εvvv, t)), (46)

where ψ is a smooth, positive, nondecreasing function (in the second argument)
defined on R+×R+ and such that 0 < ψmin ≤ ψ(c, c̃)≤ α1c̃+α2 with α+,α−,α1
and α2 being some positive constants. This model implies that the cell is able to
measure the chemoattractant concentration up to a distance εvvvmax away from its
position, where vvvmax is the maximal speed in V . A simplified version of (46) with
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α+ = 1,α− = 0 and ψ(c, c̃) = max(c̃− c,0) was considered in [14] and reads as

T [c](vvv) = F(vvv)+max(c(xxx+ εvvv, t)− c(xxx, t),0) . (47)

In both models (45) and (47), the turning probability is higher for a change to a
favorable direction and away from an unfavorable direction.

In what follows we describe an AP method for the system (43) following the idea
of an odd-even formulation, which was first presented in [50] and further developed
in [14,19]. Such formulation allows one to efficiently implement the Strang splitting
approach [83], by separating stiff and nonstiff parts of the system. In this setup,
the nonstiff subsystem reduces to a system of linear transport equations, which can
be solved by a second-order upwind method, and the stiff subsystem may either
be solved exactly or by an implicit (uniformly stable in ε) method. The resulting
numerical method becomes AP in the sense that it yields an accurate and uniformly
stable in ε discretization, which stays consistent with the limiting system as ε → 0.

3.1 Odd-Even Formulation

We restrict our attention to spherically symmetric sets V := {vvv, |vvv|= v0} as a typi-
cal example and denote by V + := {vvv = (u,v) ∈ V |u > 0,v > 0}. From now on, we
consider vvv ∈ V + only and introduce new variables r1, j1, r2 and j2:

r1(u,v) = R1[ f ] :=
1
2
[ f (u,−v)+ f (−u,v)],

r2(u,v) = R2[ f ] :=
1
2
[ f (u,v)+ f (−u,−v)],

j1(u,v) = J1[ f ] :=
1

2ε
[ f (u,−v)− f (−u,v)],

j2(u,v) = J2[ f ] :=
1

2ε
[ f (u,v)− f (−u,−v)],

(48)

with a one-to-one correspondence between them and f :

f (u,v) =


r2 + ε j2, u > 0, v > 0,
r2− ε j2, u < 0, v < 0,
r1 + ε j1, u > 0, v < 0,
r1− ε j1, u < 0, v > 0.

It is instructive to point out that the macroscopic cell density ρ can be obtained from
(6) and (48) in terms of the new variables r1 and r2:

ρ(xxx, t) = 2
∫

V +

[r1(xxx, t,vvv)+ r2(xxx, t,vvv)] dvvv. (49)
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Using for simplicity the notation f (±u,±v) instead of f (xxx, t,±u,±v) and T1(±u,±v)
instead of T1[c](xxx, t,±u,±v) and taking into account that

ε ft(u,v)+u fx(u,v)+ v fy(u,v)

=
ρ

ε
[F(u,v)+ εT1(u,v)]−

1
ε
(1+T1) f (u,v),

ε ft(−u,−v)−u fx(−u,−v)− v fy(−u,−v)

=
ρ

ε
[F(−u,−v)+ εT1(−u,−v)]− 1

ε
(1+T1) f (−u,−v),

ε ft(u,−v)+u fx(u,−v)− v fy(u,−v)

=
ρ

ε
[F(u,−v)+ εT1(u,−v)]− 1

ε
(1+T1) f (u,−v),

ε ft(−u,v)−u fx(−u,v)+ v fy(−u,v)

=
ρ

ε
[F(−u,v)+ εT1(−u,v)]− 1

ε
(1+T1) f (−u,v),

we rewrite the first equation in (43) as a system of the following four coupled equa-
tions for r1, j1, r2 and j2:

(r1)t +u( j1)x− v( j1)x =
ρ

ε2 (F(u,v)+ εR1[T1])−
1
ε2 (1+T1)r1,

( j1)t +
1
ε2 u(r1)x−

1
ε2 v(r1)y =

ρ

ε
J1[T1]−

1
ε2 (1+T1) j1,

(r2)t +u( j2)x + v( j2)y =
ρ

ε2 (F(u,v)+ εR2[T1])−
1
ε2 (1+T1)r2,

( j2)t +
1
ε2 u(r2)x +

1
ε2 v(r2)y =

ρ

ε
J2[T1]−

1
ε2 (1+T1) j2.

(50)

Since the left-hand sides of the second and fourth equations in (50) include stiff

terms with the
1
ε2 coefficients, we add and subtract u(r1)x− v(r1)y and u(r2)x +

v(r2)y from the second and fourth equations, respectively, so that we finally replace
the system (43) with the following system for r1, j1,r2, j2 and c:
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(r1)t +u( j1)x− v( j1)x =
ρ

ε2 (F(u,v)+ εR1[T1])−
1
ε2 (1+T1)r1,

( j1)t +u(r1)x− v(r1)y =
ρ

ε
J1[T1]

− 1
ε2

[
(1+T1) j1 +(1− ε

2)u(r1)x− (1− ε
2)v(r1)y

]
,

(r2)t +u( j2)x + v( j2)y =
ρ

ε2 (F(u,v)+ εR2[T1])−
1
ε2 (1+T1)r2,

( j2)t +u(r2)x + v(r2)y =
ρ

ε
J2[T1]

− 1
ε2

[
(1+T1) j2 +(1− ε

2)u(r2)x +(1− ε
2)v(r2)y

]
,

τct = α∆c−βc+ γρ.

(51)

Notice that all of the stiff terms in the first four equations in (51) are moved to the
RHS.

3.2 Strang Operator Splitting

The idea behind the operating splitting approach is to treat the stiff and nonstiff
parts of the system (51) separately. To this end, we first introduce the vector WWW :=
(r1, j1,r2, j2)T and rewrite the system (51) in the following form:{

WWW t +A1WWW x +A2WWW y = R,

τct = α∆c−βc+ γρ,

where

A1 =


0 u 0 0
u 0 0 0
0 0 0 u
0 0 u 0

 , A2 =


0 −v 0 0
−v 0 0 0
0 0 0 v
0 0 v 0

 ,

and

R =


ρ

ε2 (F(u,v)+ εR1[T1])− 1
ε2 (1+T1)r1

ρ

ε
J1[T1]− 1

ε2

[
(1+T1) j1 +(1− ε2)u(r1)x− (1− ε2)v(r1)y

]
ρ

ε2 (F(u,v)+ εR2[T1])− 1
ε2 (1+T1)r2

ρ

ε
J2[T1]− 1

ε2

[
(1+T1) j2 +(1− ε2)u(r2)x +(1− ε2)v(r2)y

]

 . (52)

We then implement the splitting approach by considering the following two subsys-
tems: {

WWW t = R,

τct = 0,
(53)
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and {
WWW t +A1WWW x +A2WWW y = 000,
τct = α∆c−βc+ γρ.

(54)

We note that in the subsystem (53), only the WWW variable is evolved in time while
c remains unchanged there. It is also instructive to point out that not only c, but
also the macroscopic cell density ρ does not change in time in the subsystem (53).
Indeed, it follows from (42), (49), (52) and (53) that

ρt = 2
∫

V +

[r1 + r2]t dvvv =
ρ

ε2

[ ∫
V +

4F(vvv)dvvv

+ ε

∫
V +

{
T1(u,−v)+T1(−u,v)+T1(u,v)+T1(−u,−v)

}
dvvv
]

− 2
ε2 (1+T1)

∫
V +

[r1 + r2]dvvv = 0.

(55)

Assuming that the solution at time t is available, we evolve it to the next time
level using an operator splitting algorithm, [63, 83, 92], of either the first,(

WWW (xxx, t +∆ t,vvv)
c(xxx, t +∆ t)

)
≈L2(∆ t)L1(∆ t)

(
WWW (xxx, t,vvv)

c(xxx, t)

)
, (56)

or second,(
WWW (xxx, t +∆ t,vvv)

c(xxx, t +∆ t)

)
≈L1(∆ t/2)L2(∆ t)L1(∆ t/2)

(
WWW (xxx, t,vvv)

c(xxx, t)

)
, (57)

order. Here, L1 and L2 stand for numerical solution operators for the stiff and
nonstiff subsystems (53) and (54), respectively.

Remark 6. It should be observed that the order of the operators in (56) and (57) is
interchangeable.

3.3 Time and Space Discretizations

We now proceed with the description of numerical methods for the subsystems (53)
and (54). We consider a computational domain, Ω ×V +, where the spatial domain
Ω is assumed, as before, to be rectangular and partitioned into uniform Cartesian
cells I j,k := [x j− 1

2
,x j+ 1

2
]× [yk− 1

2
,yk+ 1

2
] of size ∆x∆y with the cell centers (x j,yk).

We also introduce a uniform grid of size ∆θ in the velocity domain V +:

vvvi = (v0 cosθi,v0 sinθi), θi = (i−1/2)∆θ , (58)
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denote by Fi := F(vvvi), ρ j,k(t) ≈ ρ(xk,yk, t), c j,k(t) ≈ c(x j,yk, t) and WWW j,k,i(t) ≈
WWW (x j,yk, t,vvvi), and assume that the solution ρn

j,k = ρ j,k(tn), cn
j,k = c j,k(tn) and

WWW n
j,k,i = WWW j,k(tn) is available at time level t = tn. For simplicity, we will omit the

dependence of all of the indexed quantities on time t in the rest of the text, unless it
is required for clarity.

3.3.1 L1: Numerical Solution of the Stiff Subsystem (53)

We start by solving the equations for r1 and r2,

(r1)t =
ρ

ε2 (F(u,v)+ εR1[T1])−
1
ε2 (1+T1)r1,

(r2)t =
ρ

ε2 (F(u,v)+ εR2[T1])−
1
ε2 (1+T1)r2,

keeping in mind that both the chemoattractant concentration c and macroscopic den-
sity ρ do not change in time during this splitting step as shown in (55). The latter
implies that R1[T1] and T1 are also constants in time (as they depend on c and vvv
only) and thus, the semi-discrete approximations for (r1) j,k,i and (r2) j,k,i,

d
d t

(r1) j,k,i +
1
ε2

(
1+(T1) j,k

)
(r1) j,k,i =

ρ j,k

ε2 (Fi + εR1[T1] j,k,i),

d
d t

(r2) j,k,i +
1
ε2

(
1+(T1) j,k

)
(r2) j,k,i =

ρ j,k

ε2 (Fi + εR2[T1] j,k,i),

(59)

reduce to the system of linear ODEs, which can be solved exactly. The new point
values of r1 and r2 are then used to solve the equations for j1 and j2:

( j1)t =
ρ

ε
J1[T1]−

1
ε2

[
(1+T1) j1 +(1− ε

2)u(r1)x− (1− ε
2)v(r1)y

]
,

( j2)t =
ρ

ε
J2[T1]−

1
ε2

[
(1+T1) j2 +(1− ε

2)u(r2)x +(1− ε
2)v(r2)y

]
.

To this end, we use the central differences

((rm)x) j,k,i =
(rm) j+1,k,i− (rm) j−1,k,i

2∆x
,

((rm)y) j,k,i =
(rm) j,k+1,i− (rm) j,k−1,i

2∆y
,

m = 1,2, (60)

and exactly solve the following linear ODEs obtained from a semi-discrete approx-
imations for ( j1) j,k,i and ( j2) j,k,i:
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d
d t

( j1) j,k,i +
1
ε2 (1+(T1) j,k)( j1) j,k,i =

− 1
ε2

[
(1− ε

2)ui((r1)x) j,k,i− (1− ε
2)vi((r1)y) j,k,i

]
+

ρ j,k

ε
J1[T1] j,k,i,

d
d t

( j2) j,k,i +
1
ε2 (1+(T1) j,k)( j2) j,k,i =

− 1
ε2

[
(1− ε

2)ui((r2)x) j,k,i +(1− ε
2)vi((r2)y) j,k,i

]
+

ρ j,k

ε
J2[T1] j,k,i.

(61)

3.3.2 L2: Numerical Solution of the Non-Stiff Subsystem (54)

We first solve the equation for WWW , from which we obtain the macroscopic density ρ

and then use it to update the values of the chemoattractant concentration c.
The equation for WWW can be solved by the second-order upwind method (written

here in the semi-discrete form):

d
d t

WWW j,k,i =− (A+
1 )i(WWW−x ) j,k,i− (A−1 )i(WWW+

x ) j,k,i

− (A+
2 )i(WWW−y ) j,k,i− (A−2 )i(WWW+

y ) j,k,i,
(62)

where

(A+
1 )i =

1
2


ui ui 0 0
ui ui 0 0
0 0 ui ui
0 0 ui ui

 , (A−1 )i =
1
2


−ui ui 0 0
ui −ui 0 0
0 0 −ui ui
0 0 ui −ui

 ,

(A+
2 )i =

1
2


vi −vi 0 0
−vi vi 0 0
0 0 vi vi
0 0 vi vi

 , (A−2 )i =
1
2


−vi −vi 0 0
−vi −vi 0 0
0 0 −vi vi
0 0 vi −vi

 ,

and
(WWW+

x ) j,k,i =
−WWW j+2,k,i +4WWW j+1,k,i−3WWW j,k,i

2∆x
,

(WWW−x ) j,k,i =
3WWW j,k,i−4WWW j−1,k,i +WWW j−2,k,i

2∆x
,

(WWW+
y ) j,k,i =

−WWW j,k+2,i +4WWW j,k+1,i−3WWW j,k,i

2∆y
,

(WWW−y ) j,k,i =
3WWW j,k,i−4WWW j,k−1,i +WWW j,k−2,i

2∆y
,

are the second-order forward and backward finite-difference approximations of the
spatial derivatives. The system of time-dependent ODEs (62) should be numerically
integrated in time using a stable and sufficiently accurate ODE solver. It is important
to stress that according to the definitions in (48), both r1 and r2 (and hence ρ , see
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(49)) should be positive, which is not guaranteed unless the ODE solver is used
with a very small (possibly impractical) time step ∆ t. Therefore, one may want to
implement a “draining” time step technique described in §2.2; see [19] for details.

Once the new point values of (r1) j,k,i and (r2) j,k,i are obtained, they can be used
to compute ρ j,k from (49), say, by the midpoint rule:

ρ j,k = 2v0 ∑
i

[
(r1) j,k,i +(r2) j,k,i

]
∆θ , ∀ j,k. (63)

Finally, the new point values of the chemoattractant concentration c can be com-
puted by the spectral method using a fast Fourier transform (FFT); see [19] for
details.

3.4 AP Property

As it was mentioned in the Introduction, the solutions of the studied kinetic-
chemotaxis model is expected to converge to the corresponding solutions of PKS
system as ε→ 0. In this section, we repeat the arguments from [19] to show that the
numerical method presented in §§3.1–3.3 for (5) provides a consistent discretization
of (1) in the limiting ε → 0 case. This guarantees that the numerical method is AP
as the uniform stability in ε is ensured by the fact that the stiff ODEs (59) and (61)
are solved exactly.

For simplicity of presentation, we only consider the first-order splitting (56) and
either local or nonlocal turning kernels described in (45) and (47), respectively. We
denote by (

WWW ∗

c∗

)
:= L1(∆ t)

(
WWW n

cn

)
,

so that the first-order splitting (56) yields:(
WWW n+1

cn+1

)
:= L2(∆ t)

(
WWW ∗

c∗

)
= L2(∆ t)L1(∆ t)

(
WWW n

cn

)
.

We recall that ρ and c do not change in time during the first splitting step and thus
ρ∗j,k = ρn

j,k and c∗j,k = cn
j,k. Also, formulae (45), (47) and (48) imply that (T1) j,k =

O(ε), εJ1[T1] j,k,i = O(1) and εJ2[T1] j,k,i = O(1). Using these facts, we obtain that
as ε → 0 the leading terms in (59) and (61) are equal to (see also [14, 19]):

(r1)
∗
j,k,i = ρ

n
j,kFi, (r2)

∗
j,k,i = ρ

n
j,kFi (64)

and
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( j1)∗j,k,i =
ρn

j,k(εJ1[T1]
n
j,k,i)−ui((r1)x)

∗
j,k,i + vi((r1)y)

∗
j,k,i

1+(T1)
n
j,k

=
ρn

j,k

2

[
ui(cx)

n
j,k− vi(cy)

n
j,k

]
−uiFi(ρx)

n
j,k + viFi(ρy)

n
j,k,

( j2)∗j,k,i =
ρn

j,k(εJ2[T1]
n
j,k,i)−ui((r2)x)

∗
j,k,i− vi((r2)y)

∗
j,k,i

1+(T1)
n
j,k

=
ρn

j,k

2
[
ui(cx) j,k + vi(cy) j,k

]
−uiFi(ρx)

n
j,k− viFi(ρy)

n
j,k,

(65)

respectively, where (ρx)
n
j,k and (ρy)

n
j,k are obtained from (60) and (63) and equal to

(ρx)
n
j,k =

ρn
j+1,k−ρn

j−1,k

2∆x
, (ρy)

n
j,k =

ρn
j,k+1−ρn

j,k−1

2∆y
.

Next, we consider the first and third equations in the semi-discrete upwind
scheme (62), which after the forward Euler time discretization read as

(r1)
n+1
j,k,i− (r1)

∗
j,k,i

∆ t
=−1

2

[
ui((r1)

−
x )
∗
j,k,i +ui(( j1)−x )

∗
j,k,i−ui((r1)

+
x )
∗
j,k,i

+ui(( j1)+x )
∗
j,k,i + vi((r1)

−
y )
∗
j,k,i− vi(( j1)−y )

∗
j,k,i

− vi((r1)
+
y )
∗
j,k,i− vi(( j1)+y )

∗
j,k,i

]
,

(r2)
n+1
j,k,i− (r2)

∗
j,k,i

∆ t
=−1

2

[
ui((r2)

−
x )
∗
j,k,i +ui(( j2)−x )

∗
j,k,i)−ui((r2)

+
x )
∗
j,k,i

+ui(( j2)+x )
∗
j,k,i + vi((r2)

−
y )
∗
j,k,i + vi(( j2)−y )

∗
j,k,i

− vi((r2)
+
y )
∗
j,k,i + vi(( j2)+y )

∗
j,k,i

]
.

(66)

Substituting (64) and (65) into (66), adding the above two equations, multiplying by
2v0∆θ , summing up over all i and using (63) yield (see [19] for details):

ρ
n+1
j,k = ρ

n
j,kv0 ∑

i
4Fi∆θ

− v0∆ t
[
(∆x)3(ρxxxx)

n
j,k ∑

i
uiFi∆θ +(∆y)3(ρyyyy)

n
j,k ∑

i
viFi∆θ

+2((ρcx)x)
n
j,k ∑

i
u2

i ∆θ +2((ρcy)y)
n
j,k ∑

i
v2

i ∆θ

−4(ρxx)
n
j,k ∑

i
u2

i Fi∆θ −4(ρyy)
n
j,k ∑

i
v2

i Fi∆θ

]
.

(67)

We finally use (42), (58), and the approximation property of the midpoint rule to
establish the following estimates and identities:
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v0 ∑
i

4Fi∆θ = 1+O((∆θ)2),

v0 ∑
i

uiFi∆θ ≤
v2

0
4
+O((∆θ)2), v0 ∑

i
viFi∆θ ≤

v2
0

4
+O((∆θ)2),

2v0 ∑
i

u2
i ∆θ = 2v0 ∑

i
v2

i ∆θ = v0 ∑
i
(u2

i + v2
i )∆θ = ∑

i
v4

0∆θ ≈ χ,

4v0 ∑
i

u2
i Fi∆θ = 4v0 ∑

i
v2

i Fi∆θ = 2v0 ∑
i
(u2

i + v2
i )Fi∆θ = 2∑

i
v4

0Fi∆θ ≈ µ,

which can be used to show that (67) provides a consistent approximation of the first
equation in (1).
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