
Journal of Scientific Computing (2019) 80:538–554
https://doi.org/10.1007/s10915-019-00947-w

A New Approach for Designing Moving-Water Equilibria
Preserving Schemes for the ShallowWater Equations

Yuanzhen Cheng1 · Alina Chertock2 ·Michael Herty3 · Alexander Kurganov1,4 ·
Tong Wu1

Received: 24 October 2018 / Revised: 6 March 2019 / Accepted: 17 March 2019 /
Published online: 2 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We construct a new second-ordermoving-water equilibria preserving central-upwind scheme
for the one-dimensional Saint-Venant system of shallowwater equations. The idea is based on
a reformulation of the source terms as integral in the flux function. Reconstruction of the flux
variable yields then a third order equation that can be solved exactly. This procedure does not
require any further modification of existing schemes. Several numerical tests are performed
to verify the ability of the proposed scheme to accurately capture small perturbations of
steady states.
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1 Introduction

This paper is concerned with the Saint-Venant system of shallow water equations proposed
in [16] and widely used to model water flows in rivers, canals, lakes, reservoirs and coastal
areas. The equations for the water depth h(x, t) ≥ 0 and the velocity u(x, t) are given by

⎧
⎨

⎩

ht + qx = 0,

qt +
(
hu2 + g

2
h2

)

x
= −ghBx − g

n2

h7/3
|q|q.

(1.1)

Here, q(x, t) := h(x, t)u(x, t) is the discharge, B(x) is the bottom elevation, g is the constant
gravitational acceleration, and n is the Manning friction coefficient.

The system (1.1) is a hyperbolic system of balance laws, which admits both smooth and
nonsmooth solutions. A special class of the solutions are steady states at which the flux
gradient in the second equation in (1.1) is exactly balanced by the geometric and friction
source terms. Steady states are of great practical importance since many physically relevant
solutions of (1.1) are, in fact, small perturbations of the steady states.

The steady-state solutions satisfy the time-independent system:
⎧
⎨

⎩

qx = 0,
(
hu2 + g

2
h2

)

x
= −ghBx − g

n2

h7/3
|q|q.

(1.2)

In general, this system does not have an analytical solution. However, the “lake at rest” (still-
water) equilibria form a class of particular steady states with the velocity of the water equal
to zero:

q ≡ 0, h + B ≡ Const.

For some particular (moving-water) (q �≡ 0) steady states, we refer the reader to [13] and
references therein. If the bottom friction is neglected, that is, if n = 0, the general smooth
moving-water equilibria are given by

q ≡ Const, E := u2

2
+ g(h + B) ≡ Const, (1.3)

where E is the energy.
Capturing steady-state solutions or their small perturbations numerically is a challenging

task as a straightforward implementation of shock capturing numerical methods typically
leads to spurious oscillations unless a very fine computational grid is used. Indeed, if a scheme
preserves the steady state up to the order of its formal accuracy, the spurious numerical waves
may have larger magnitude than the water waves to be captured. Therefore, it is necessary
to design well-balanced schemes, that is, schemes that are capable of exactly preserving
steady-state solutions. We refer the reader to the non-exhaustive list of references on still-
water equilibria preserving numerical methods [1,3,4,6,17,20,22,23,26,31,34,35]. The well-
balanced property of thesemethods hinges on a special approximation of the geometric source
term −ghBx , which is relatively easy to construct. The case of the moving-water equilibria
is substantially more complicated even in the frictionless case (n = 0); see, e.g., [5,7,10,18,
22,33,36,37,41–43]. The difficulty is related to the fact that well-balanced approximations of
the geometric source now need to include terms that are small for smooth solutions, but may
become artificially large at discontinuities. In the nonzero friction case, only certain particular
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moving-water equilibria could be exactly preserved by existing numerical methods; see, e.g.,
[9,13,22].

In this paper, we present a novel way of designing moving-water equilibria preserving
schemes, which would not require a special approximation of the geometric or friction source
terms. Following the idea from [11,15], we incorporate the source term in the discharge
equation into its flux term and rewrite (1.1) in the following equivalent form:

{
ht + qx = 0,

qt + Kx = 0,
(1.4)

where

K := hu2 + g

2
h2 + R, (1.5)

so that K is a global equilibrium variable with

R(x, t) := g

x∫ [

h(ξ, t)Bx (ξ) + n2

h7/3(ξ, t)
|q(ξ, t)|q(ξ, t)

]

dξ. (1.6)

Indeed, the general (moving-water) steady state (which is a solution of (1.2)) can be expressed
in terms of q and K as

q ≡ Const, K ≡ Const. (1.7)

The system (1.4) is a hyperbolic system with a global flux, which makes the devel-
opment of an upwind scheme based on the solution of (generalized) Riemann problems
difficult or even impossible. We therefore derive a Riemann-problem-solver-free central-
upwind scheme, which can be quite easily applied to problems with global fluxes; see, e.g.,
[11,27]. Central-upwind schemes are Godunov-type finite-volume methods that were intro-
duced in [29] and then further developed in [24,25,28,30]. Central-upwind schemes were
also applied to the Saint-Venant system of shallow water equations. Still-water equilibria
preserving central-upwind schemes were proposed in [23,26], while several moving-water
equilibria preserving central-upwind scheme have been recently introduced in [10,13]. We
also refer the reader to the recent review paper [22].

In this paper, we develop a moving-water equilibria preserving semi-discrete central-
upwind scheme for the system (1.4). Like in every finite-volume method, the solution
computed by the central-upwind scheme is realized in terms of the cell averages of h and q .
When these quantities are available at a certain time level, we first follow the approach in
[11,14,15,27] and obtain the discrete values of the equilibrium variable K using the midpoint
quadrature for the spatial integral (1.5). Then, in order to derive a well-balanced scheme, we
reconstruct the equilibrium variables q and K rather than conservative ones (h and q), and
use these reconstructed values to evaluate the numerical central-upwind fluxes. We enforce
the positivity of the water depth h using the draining time-step technique from [4]; also
see [3,10,15] (positivity-preserving property is another very important feature of numerical
methods for the Saint-Venant system since if h is small, then even small numerical oscilla-
tions may lead to appearance of negative values of h and thus to a breakdown of numerical
schemes since the eigenvalues of the Jacobian for the Saint-Venant system are u ± √

gh).
The paper is organized as follows.Anewmoving-water equilibria preserving semi-discrete

central-upwind scheme is derived in Sect. 2. The new scheme is tested on a variety of
numerical examples in Sect. 3.
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2 Semi-Discrete Central-Upwind Scheme

In this section,we describe a semi-discrete second-order central-upwind scheme for the Saint-
Venant system (1.4). To this end, we rewrite (1.4) in the vector form in term of U = (h, q)T

and F(U, B) = (q, K )T :

U t + F(U, B)x = 0. (2.1)

We first discretize the spatial computational domain using finite-volume cells C j =
[x j− 1

2
, x j+ 1

2
] of size �x centered at x j = j�x with j = j�, . . . , jr and assume that the cell

averages of the computed solution at a certain time level t ,

U j (t) := 1

�x

∫

C j

U(x, t) dx,

are known. The semi-discrete central-upwind scheme for the system (2.1) reads as

d

dt
U j = −

H j+ 1
2

− H j− 1
2

�x
, (2.2)

where H j+ 1
2
are the central-upwind numerical fluxes (see [23,26]):

H j+ 1
2

=
a+
j+ 1

2
F(U−

j+ 1
2
, Bj+ 1

2
) − a−

j+ 1
2
F(U+

j+ 1
2
, Bj+ 1

2
)

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(U+
j+ 1

2
− U−

j+ 1
2
). (2.3)

Here,U±
j+ 1

2
are left and right point values ofU at the cell interfaces x = x j+ 1

2
, a±

j+ 1
2
are one-

sided local speeds of propagation, and Bj+ 1
2
are the point values of the continuous piecewise

linear interpolant (see [26] for details), namely:

Bj+ 1
2

:=
B(x j+ 1

2
+ 0) + B(x j+ 1

2
− 0)

2
,

which reduces to Bj+ 1
2

:= B(x j+ 1
2
) if B is continuous at x = x j+ 1

2
. In order to complete the

construction of the well-balanced central-upwind scheme, we now need to evaluate U±
j+ 1

2

and a±
j+ 1

2
.

We first describe a piecewise linear reconstruction procedure used to compute the point
values U±

j+ 1
2

= (h±
j+ 1

2
, q±

j+ 1
2
). As it was shown in [23], a direct reconstruction of the con-

servative variables h and q would not lead to a well-balanced scheme. To overcome this
difficulty, it was proposed in [23] to reconstruct the water surface w := h + B and discharge
q variables, which results in a still-water equilibria preserving reconstruction. As mentioned
in Sect. 1, the key point in designing amoving-water equilibria preserving scheme is to recon-
struct the equilibrium variables V := (q, K ), where K is defined in (1.5), to use the obtained
reconstructions to evaluate V±

j+ 1
2

= (q±
j+ 1

2
, K±

j+ 1
2
), and then to recover the corresponding

values h±
j+ 1

2
as explained below.
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It should be observed that while the cell averages h j and q j are available, the values of
K at the cell centers x = x j are still to be computed. The latter can be done, for example, as
follows. We approximate the global variable R defined in (1.6) using the midpoint rule:

R(x j+ 1
2
, t) ≈ R j+ 1

2
:= g

j∑

m= j�

{

hm(Bm+ 1
2

− Bm− 1
2
) + n2

h
7/3
m

|qm |qm�x

}

, (2.4)

and then obtain the values of K at x = x j as follows:

K j = q 2
j

h j
+ g

2
h
2
j +

R j+ 1
2

+ R j− 1
2

2
. (2.5)

Note that formulae (2.4), (2.5) can be written in the following recursive way:

R j�− 1
2

= 0, R j+ 1
2

= R j− 1
2

+ g

[

h j (Bj+ 1
2

− Bj− 1
2
)

+ n2

h
7/3
j

|q j |q j�x

]

for j ≥ j�, (2.6)

K j = q 2
j

h j
+ g

2
h
2
j + R j− 1

2
+ g

2

[

h j (Bj+ 1
2

− Bj− 1
2
) + n2

h
7/3
j

|q j |q j�x

]

. (2.7)

Given the values V j := (q j , K j ), a second-order piecewise linear reconstruction of V is
constructed as

Ṽ (x) = V j + (V x ) j (x − x j ), x ∈ C j , (2.8)

where (V x ) j are at least first-order approximations of the corresponding derivatives
V x (x j , t). The non-oscillatory nature of the reconstruction (2.8) is ensured by applying
a nonlinear limiter while computing the slopes there. In all of our numerical experiments, we
have used a generalized minmod limiter (see, e.g., [32,38,39]):

(V x ) j = minmod

(

θ
V j+1 − V j

�x
,
V j+1 − V j−1

2�x
, θ

V j − V j−1

�x

)

, θ ∈ [1, 2],

where

minmod(z1, z2, . . .) :=
⎧
⎨

⎩

min(z1, z2, . . .), if zi > 0 ∀i,
max(z1, z2, . . .), if zi < 0 ∀i,
0, otherwise,

and the parameter θ is used to control the amount of the numerical dissipation—larger values
of θ correspond to a sharper reconstruction, but more dispersive reconstruction. The point
values of V at the cell interface x = x j+ 1

2
are then computed as

V−
j+ 1

2
:= Ṽ (x j+ 1

2
− 0) = V j + �x

2
(V x ) j ,

V+
j+ 1

2
:= Ṽ (x j+ 1

2
+ 0) = V j+1 − �x

2
(V x ) j+1.
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Equipped with q±
j+ 1

2
, K±

j+ 1
2
, R j+ 1

2
, the point values h±

j+ 1
2
can be obtained by solving the

nonlinear algebraic equations, arising from the definition of the global variable K in (1.5):

ϕ(h) :=
(qi

j+ 1
2
)2

h
+ g

2
h2 + R j+ 1

2
− K i

j+ 1
2

= 0, i ∈ {+,−}. (2.9)

Let us solve the equation in (2.9) for h+
j+ 1

2
(the solution for h−

j+ 1
2
is obtained in a similar

manner). First, we note that one can easily show that the equation for h+
j+ 1

2
does not have

any positive solutions unless

(
q+
j+ 1

2

)4 ≤
8(K+

j+ 1
2

− R j+ 1
2
)3

27g
. (2.10)

If (2.10) is not satisfied (which is a very unlikely case), we reconstruct w̃ and set

h+
j+ 1

2
= w+

j+ 1
2

− Bj+ 1
2
. (2.11)

If (2.10) is satisfied, then there will be two possibilities. First, in the case q+
j+ 1

2
= 0, we

obtain the unique positive solution

h+
j+ 1

2
=

√
√
√
√

2
(
K+

j+ 1
2

− R j+ 1
2

)

g
,

while if q+
j+ 1

2
�= 0, we solve the equation for h+

j+ 1
2
in (2.9) exactly and obtain the following

three solutions:

h+
j+ 1

2
= 2

√
P cos

(
1

3

[
� + 2πk

]
)

, k = 0, 1, 2,

where

P :=
2
(
K+

j+ 1
2

− R j+ 1
2

)

3g
and � := arccos

(

−
(
q+
j+ 1

2

)2

gP3/2

)

.

One can show that one of these roots is negative, while the other two roots, which correspond
to the subsonic and supersonic cases, are positive. We single out the physically relevant
solution by choosing a root that is closer to the corresponding value of h+

j+ 1
2
given in (2.11).

Remark 2.1 We notice that when h+
j+ 1

2
is computed using (2.11), it may be negative. In order

to preserve the nonnegativity of reconstructed point values of h, we have implemented the
positivity correction procedure proposed in [26, Sect. 2.2]

Finally, the one-sided local speeds of propagation a±
j+ 1

2
in (2.3) are estimated using the

largest and smallest eigenvalues of the Jacobian ∂F/∂U and given by:

a+
j+ 1

2
= max

{

u−
j+ 1

2
+

√

gh−
j+ 1

2
, u+

j+ 1
2

+
√

gh+
j+ 1

2
, 0

}

,

a−
j+ 1

2
= min

{

u−
j+ 1

2
+

√

gh−
j+ 1

2
, u+

j+ 1
2

+
√

gh+
j+ 1

2
, 0

}

.
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Remark 2.2 It is easy to check that the designed semi-discrete second-order central-upwind
scheme is capable of preserving discrete moving-water equilibria. Indeed, if one takes the
steady-state data q j ≡ q̂, K j ≡ K̂ and substitutes them into (2.2), (2.3), the right-hand
side (RHS) of (2.2) will vanish since in this case, the numerical fluxes (2.3) are reduced to
H j+ 1

2
≡ (̂q, K̂ ).

Remark 2.3 We would like to point out that in the frictionless case (n = 0), the steady states
(1.3) and (1.7) are equivalent for smooth solutions in the continuous setting. In the discrete
setting, however, these steady states are different as the integral in (1.6) is computed using
a quadrature, and thus the presented central-upwind scheme can preserve the moving-water
equilibrium (1.7) only. In fact, the proposed scheme is capable of preserving a discrete version
of the steady state (1.7), which is aboutO(

(�x)2
)
away from the analytical one.Moreover, as

no explicit formulae (in terms of the evolved quantities h and q) of moving-water equilibria
are available, it is our conjecture that no well-balanced scheme capable of exactly preserving
the analytical moving-water steady states, can be developed.

Remark 2.4 We note that in (almost) dry regions, the values h±
j+ 1

2
can be very small or

even zero. This may not allow one to (accurately) compute the values of the velocity u±
j+ 1

2
,

which may become artificially large. We therefore desingularize the velocity computation as
follows:

u±
j+ 1

2
=

2 h±
j+ 1

2
q±
j+ 1

2
(
h±
j+ 1

2

)2 + max
{(
h±
j+ 1

2

)2
, ε2

} .

For consistency, the values q±
j+ 1

2
are then recomputed using q±

j+ 1
2

= h±
j+ 1

2
· u±

j+ 1
2
. In all of

our numerical experiments, we have taken ε = 10−8. A similar desingularization technique
has to be implemented whenever h j in the denominator in (2.5) is small. We note that one
may use other desingularization strategies; see, e.g., the discussion in [22,26].

Remark 2.5 Notice that the second component of the central-upwind flux (2.3) can be rewrit-
ten as

H (2)
j+ 1

2
= Ĥ (2)

j+ 1
2

+ R j+ 1
2
, (2.12)

where

Ĥ (2)
j+ 1

2
:=

a+
j+ 1

2
(K−

j+ 1
2

− R j+ 1
2
) − a−

j+ 1
2
(K+

j+ 1
2

− R j+ 1
2
)

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(q+
j+ 1

2
− q−

j+ 1
2
). (2.13)

Substituting then (2.12) and (2.13) into the second component of the ODE system (2.2) and
taking into account (2.6) results in

d

dt
q j = −

Ĥ (2)
j+ 1

2
− Ĥ (2)

j− 1
2

�x
− g h j

B j+ 1
2

− Bj− 1
2

�x
− g

n2

h
7/3
j

|q j |q j . (2.14)
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Remark 2.6 The presented central-upwind semi-discretization results in the system of ODEs
(2.2), which should be integrated in time by a sufficiently accurate, efficient and stable ODE
solver. In all of our numerical experiments, we have used the second-order steady state and
sign preserving semi-implicit Runge–Kutta SI-RK3 method developed in [12]. To this end,
we have to replace the second equation in (2.2) with an equivalent ODE (2.14) so that the
last term on the RHS of (2.14) can be treated in a semi-implicit manner as it was done in
[12,13].

During the time evolution, the positivity of the computed values h j (t + �t) is ensured
using the “draining” time step technique proposed in [4]; we refer the reader to [10] for a
detailed description.

3 Numerical Examples

We test the performance of the proposed semi-discrete second-order central-upwind scheme
on numerical examples used in [10]. In these examples, we consider the cases of both con-
tinuous and discontinuous bottom topographies. In all of the examples, we use the following
parameters: the gravitational constant g = 9.812 (except for Example 3, where we take
g = 9.81), the computational domain [0, 25] if not stated otherwise; the minmod parameter
θ = 1.3; and a CFL number of 0.5.

We also compare the results obtained by the proposed moving-water equilibria preserving
central-upwind scheme (New Scheme) with the ones computed by the still-water equilibria
preserving central-upwind scheme (Old Scheme) from [26].

3.1 Frictionless Saint-Venant System (n = 0)

We first consider a frictionless case, for which a moving-water equilibria preserving central-
upwind scheme has been recently derived in [10] based on the reconstruction of the
equilibrium variables q and E . The New Scheme may be viewed as an alternative to the
scheme from [10], and in this section we show how the New Scheme performs in the exam-
ples thatwere used in [10] (in fact, we have tested theNewScheme on all of the examples from
[10] and draw a clear conclusion that in the frictionless case both central-upwind schemes
lead to very similar numerical solutions).

Example 1 Accuracy Test. In this example, taken from [26,33], we check the experimental
rate of convergence. The initial data and the bottom topography function are

h(x, 0) = 5 + ecos(2πx), q(x, 0) = sin(cos(2πx)), B(x) = sin2(πx),

and the 1-periodic boundary conditions are imposed (the computational domain in this exam-
ple is [0, 1]). Since the exact solution is not known, we use a numerical solution computed
on a very fine mesh with 51,200 uniform grid cells as a reference one. The solution at
time t = 0.01 is still smooth and we measure the L1-errors for both h and q . The results
are reported on Table 1, where one can clearly observe the experimental second order of
accuracy as expected.

Example 2 Convergence to Steady States. In this example, we study the convergence in
time towards steady flow over a bump where the bottom topography function is continuous
and given by
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Table 1 Example 1: L1-errors
and experimental convergence
rates

Number of grid cells h q

L1-error Rate L1-error Rate

50 1.51e–03 – 1.21e–00 –

100 3.06e–04 2.30 2.26e–01 2.42

200 6.68e–05 2.20 4.90e–02 2.21

400 1.54e–05 2.12 1.17e–02 2.06

800 3.76e–06 2.04 2.95e–03 1.99

1600 9.29e–07 2.02 7.34e–04 2.01

B(x) =
{
0.2 − 0.05(x − 10)2, if 8 ≤ x ≤ 12,
0, otherwise.

(3.1)

Depending on the initial and boundary conditions, the flow may be subcritical, supercritical
or transcritical. We consider the following three sets of initial and boundary data (Cases
(b)–(c) are taken from [19,40]; Case (a) is similar to a test problem considered in [21]):

(a) Supercritical flow with

h(x, 0) = 2 − B(x), q(x, 0) ≡ 0,

h(0, t) = 2, q(0, t) = 24; (3.2)

(b) Subcritical flow with

h(x, 0) = 2 − B(x), q(x, 0) ≡ 0,

q(0, t) = 4.42, h(25, t) = 2; (3.3)

(c) Transcritical flow with

h(x, 0) = 0.33 − B(x), q(x, 0) ≡ 0,

q(0, t) = 0.18, h(25, t) = 0.33.
(3.4)

In all of these three cases, we compare the numerical solutions obtained by the New and
Old Schemes at t = 500 using 100 uniform grid cells. The obtained numerical results are
shown in Figs. 1, 2 and 3. As one can see, the water depth h obtained by the New and
Old Schemes are very close to the corresponding steady states in all three cases, while the
equilibrium variables q and K are accurately computed only by the New Scheme and only in
the smooth Cases (a) and (b). In Case (c), both the New and Old Schemes fail to accurately
resolve the equilibria since the errors at the shock are O(1) for both schemes (this result is
expected since neither of the studied schemes preserves nonsmooth steady states). It should

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
23.95

24

24.05

0 5 10 15 20 25

307.3

307.6

307.9

308.2

308.5

0 5 10 15 20 25

91.5

91.75

92

Fig. 1 Example 2, Case (a): w, q, K and E (from left to right) computed by the New and Old Schemes
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0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

0 5 10 15 20 25

4.418

4.42

4.422

0 5 10 15 20 25

29.38

29.385

29.39

29.395

0 5 10 15 20 25
22.062

22.064

22.066

22.068

Fig. 2 Example 2, Case (b): w, q, K and E (from left to right) computed by the New and Old Schemes

0 5 10 15 20 25
0

0.25

0.5

0 5 10 15 20 25

0.18

0.2

0.22

0 5 10 15 20 25

0.89

0.93

0.97

1.01

1.05

0 5 10 15 20 25
3

3.5

4

4.5

5

5.5

6

Fig. 3 Example 2, Case (c): w, q, K and E (from left to right) computed by the New and Old Schemes

be observed that for smooth solutions of the frictionless Saint-Venant system, the steady
states (1.3) and (1.7) are equivalent and therefore in each one of the Figs. 1, 2 and 3 we
also plot the computed values of E . We emphasize that for the New Scheme, E is not an
equilibrium variable. However, in Case (a), E is still computed very accurately.

3.2 Saint-Venant Systemwith Friction (n �= 0)

We now test the proposed moving-water equilibria preserving central-upwind scheme in the
presence of the Manning friction term. In Example 3, we take n = 0.03, while in Examples
4–8, we set n = 0.05.

Example 3 Accuracy Test. In this example taken from [2,13], we consider a subcritical flow
over a nonflat bottom.As described in [2,13], the system (1.1) admits the steady-state solution
with

hst(x) = 0.8 + 1

4
exp

[

−135

4

(
x − 75

150

)2
]

, qst(x) ≡ 2,

and the bottom topography function B satisfying the following ODE:

B ′(x) =
(

4

9.81 h3st(x)
− 1

)

h′
st(x) − 0.0036

h10/3st (x)
,

which is numerically integrated on the fine mesh with 6400 uniformly distributed grid points.
We take the computational domain [0, 150] and implement the following boundary con-

ditions by setting the ghost cell values to be

hæ�−1 := 2h j� − hæ�+1, qæ�−1 := 2, h jr+1 := hst(x jr+1), q jr+1 := q jr .

We test our scheme on different grids varying the number of cells from 50 to 400 and
study the convergence rate by comparing the computed solutions with the steady-state one.
As one can see, the designedmethod preserves q within (almost) themachine accuracy, while
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Table 2 Example 3: The L1- and L∞-errors and convergence rates for h and q

Number of grid cells h q

L1-error Rate L∞-error Rate L1-error L∞-error

50 2.4676e–04 – 9.6741e–04 – 7.5007e–15 1.3767e–14

100 6.1545e–05 2.0034 2.4247e–04 1.9963 1.5852e–14 2.8644e–14

200 1.5385e–05 2.0001 6.0648e–05 1.9993 4.2926e–14 8.0824e–14

400 3.8458e–06 2.0002 1.5165e–05 1.9997 9.8251e–14 1.7963e–13
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Fig. 4 Example 4, Case (a): w, q and K (from left to right) computed by the New and Old Schemes
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Fig. 5 Example 4, Case (b): w, q and K (from left to right) computed by the New and Old Schemes

h is computed within the expected second order of convergence rate (due to the piecewise
linear approximation of the bottom topography); see Table 2, where we show both the L1-
and L∞-norms of the errors together with the experimental convergence rates for h.

Example 4 Convergence to Steady States (Continuous Bottom Topography). This is a
modification ofExample 2with the only difference thatwe now take into account theManning
friction term. We still consider the same three cases: super- [Case (a)], sub- [Case (b)] and
transcritical [Case (c)] ones, but considering the same initial and boundary conditions as in
(3.2), (3.3) and (3.4), respectively.

As in Example 2, we compare the numerical solutions obtained by the New and Old
Schemes at t = 500 using 100 uniform grid cells. The obtained numerical results are shown
in Figs. 4, 5 and 6. One may notice that as in the frictionless case, the water depth h obtained
by the New and Old Schemes are very close to the corresponding steady states in all of the
three cases. One can also see that in Case (a), there is almost no difference in the computed
values of q , while the second equilibrium variable K computed by the Old Scheme contains
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Fig. 6 Example 4, Case (c): w, q and K (from left to right) computed by the New and Old Schemes

visible oscillations. InCase (b), bothq and K computed by theNewScheme are very accurate,
while the Old Scheme results are not only oscillatory, but also seem to oscillate about an
incorrect equilibrium. In Case (c), both the New and Old Schemes fail to accurately resolve
the equilibria since the errors at the shock are O(1) for both schemes. However, both q and
K computed by the Old Scheme are shifted and contain significant oscillations in the smooth
parts as well.

Example 5 Small Perturbations of Moving-Water Equilibria (Continuous Bottom
Topography). In this example, we test the performance of the New Scheme in the presence
of small perturbations of the moving-water equilibria. We consider the continuous bottom
topography function (3.1). The initial data are obtained by adding a small positive number
0.001 for x ∈ [4.5, 5.5] to the water depth for h obtained from the following two sets of the
steady-state data:

(a) Supercritical flow with

q(x, 0) ≡ 24, K (x, 0) ≡ 307.624; (3.5)

(b) Subcritical flow with

q(x, 0) ≡ 4.42, K (x, 0) ≡ 31.7005. (3.6)

We note that the data in (3.5) and (3.6) are given in terms of q and K rather than in h and
q . However, in order to start the computation at time t = 0, one needs to obtain the values of
h j . This can be done by solving the nonlinear equation (2.7), in which R j− 1

2
are obtained

from the recursive formula (2.6).
We first compute the numerical solutions using the New and Old Schemes until the final

time t = 1 with 100 uniform grid cells. In Figs. 7 and 8, we compare the difference between
the obtained h and the background moving steady-state water depth. As one can see, the
Old Scheme generates large spurious oscillations; see the dashed lines in Figs. 7 (left) and
8 (left). As we refine the mesh to 1000 uniform grid cells, the magnitude of the oscillations
decreases as expected; see the solid lines in Figs. 7 (left) and 8 (left). On the other hand, the
results obtained by the New Scheme are oscillation-free on both the coarse and fine meshes
as one can clearly see in Figs. 7 (right) and 8 (right). This shows the advantage of the newly
derived well-balanced scheme.

Example 6 Convergence to Steady States (Discontinuous Bottom Topography). In this
example, we study the convergence in time towards a steady flow over a bump with the
discontinuous bottom topography function
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Fig. 7 Example 5, Case (a): The difference between h and the background moving steady-state water depth
for the Old (left) and New (right) Schemes using 100 (dashed line) and 1000 (solid line) cells
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Fig. 8 Example 5, Case (b): The difference between h and the background moving steady-state water depth
for the Old (left) and New (right) Schemes using 100 (dashed line) and 1000 (solid line) cells

B(x) =
{
0.2, if 8 ≤ x ≤ 12,
0, otherwise.

(3.7)

We take the same initial and boundary conditions as in Example 4, Cases (a)–(c). In Figs. 9,
10 and 11, we compare the numerical solutions obtained by the New and Old Schemes on
a uniform mesh with 100 cells at t = 500. As one can see, in Cases (a) and (b), quality
of the results obtained by both schemes is practically not affected by the presence of the
discontinuity in B. In the transcritical Case (c), the presence of discontinuities in the bottom
topography leads to a larger (compared to Example 4) gap between the solutions computed
by the New and Old Schemes as the obtained boundary values of w on the left edge of the
computational domain are different. This is attributed to the fact that in this case, the solution
is discontinuous and the studied Saint-Venant system (1.1) contains nonconservative product
terms, which should be discretized in an extremely careful manner. One of the proper ways
of treating such terms is by implementing the path-conservative central-upwind schemes
developed in [8], but this is beyond the scope of the current paper.

Example 7 Small Perturbations of Moving-Water Equilibria (Discontinuous Bottom
Topography). In this example, we test the ability of the New and Old Schemes to cap-
ture small perturbations of the moving-water equilibria in the case of discontinuous bottom
topography given by (3.7). As in Example 5, we consider the two sets of the steady-state
data:

(a) Supercritical flow with

q(x, 0) ≡ 24, K (x, 0) ≡ 307.624,
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Fig. 9 Example 6, Case (a): w, q and K (from left to right) computed by the New and Old Schemes
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Fig. 10 Example 6, Case (b): w, q and K (from left to right) computed by the New and Old Schemes
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Fig. 11 Example 6, Case (c): w, q and K (from left to right) computed by the New and Old Schemes

(b) Subcritical flow with

q(x, 0) ≡ 4.42, K (x, 0) ≡ 31.7705,

and add 0.001 for x ∈ [4.5, 5.5] to the corresponding water depth. We compute the solutions
until the final time t = 1 using either 100 or 1000 uniform grid cells. The obtained results,
reported in Figs. 12 and 13, clearly demonstrate that in the case of discontinuous B, the
New Scheme still captures small perturbations of the moving-water steady state much more
accurately than the Old Scheme.

Example 8 Riemann Problem. In this example, we test the positivity-preserving property
of the New Scheme. We modify the initial data of Example 4, Case (a) to

h(x, 0) =
{
2, if x < 5,
0, otherwise,

q(x, 0) =
{
24, if x < 5,
0, otherwise,
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Fig. 12 Example 7, Case (a): The difference between h and the background moving steady-state water depth
for the Old (left) and New (right) Schemes using 100 (dashed line) and 1000 (solid line) cells

0 5 10 15 20 25
-0.02

-0.01

0

0.01

0 5 10 15 20 25
-0.02

-0.01

0

0.01

0 5 10 15

0
2
4
6

10-4

Fig. 13 Example 7, Case (b): The difference between h and the background moving steady-state water depth
for the Old (left) and New (right) Schemes using 100 (dashed line) and 1000 (solid line) cells
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Fig. 14 Example 8: w, q and K (from left to right) computed by the New Scheme

and take the same bottom topography and boundary conditions as in Example 4, Case (a).
We compute the solutions using 100 uniform grid cells. Figure 14 shows the results at times
t = 0.1, 0.5, 1, 2 and 5. As one can clearly see, the water flow runs through the bump and
by t = 5 it reaches the same steady state as in Example 4, Case (a) as expected.
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