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Abstract

We introduce adaptive moving mesh central-upwind schemes for one- and two-dimensional
hyperbolic systems of conservation and balance laws. The proposed methods consist of
three steps. First, the solution is evolved by solving the studied system by the second-order
semi-discrete central-upwind scheme on either the one-dimensional nonuniform grid or two-
dimensional structured quadrilateral mesh. When the evolution step is complete, the grid
points are redistributed according to the moving mesh differential equation. Finally, the
evolved solution is projected onto the new mesh in a conservative manner.

The resulting adaptive moving mesh methods are applied to the one- and two-dimensional
Euler equations of gas dynamics and granular hydrodynamics systems. Our numerical re-
sults demonstrate that in both cases, the adaptive moving mesh central-upwind schemes
outperform their uniform mesh counterparts.

1 Introduction

We consider the hyperbolic system of conservation/balance laws:

Ut +∇ · F(U) = S(U), (1.1)
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where U is a vector of the conserved quantities, F(U) are the flux functions and S(U) are the
source terms.

Development of accurate, efficient and robust numerical methods for the system (1.1) is an
important and challenging problem. A major difficulty is related to the fact that the system (1.1)
admits nonsmooth solutions. Moreover, it is well-known that even smooth solutions may develop
nonsmooth waves including shocks, rarefaction waves and contact discontinuities.

There is a wide variety of shock capturing methods designed to accurately capture this type
of solutions, see, e.g., the monographs [3, 7, 15,25,31,43] and references therein.

Numerical methods for (1.1) are typically designed using fixed grids. This limits the efficiency
of the methods since finer grids and special nonlinear techniques (such as nonlinear limiters) are
required in “rough” parts of the computed solution (vicinities of nonsmooth waves), while the
smooth parts can be captured using significantly smaller computation effort. In order to achieve
high resolution as well as to improve the efficiency of the numerical methods, various adaptive
strategies can be applied. The simplest one is a scheme adaption technique, according to which
different schemes are used in “rough” and smooth parts of the computed solution. For example,
one can use nonlinear limiters near shocks and possibly contact waves, while using a higher-order
“nonlimited” scheme in the rest of the computational domain; see, for example, [11, 12, 24, 33].
Alternatively, instead of manipulating numerical schemes on uniform Cartesian meshes, one can
use more flexible meshes. For instance, one can apply adaptive mesh refinement (AMR) or adaptive
moving mesh (AMM) methods. In the AMR methods, initial uniform Cartesian mesh is adaptively
refined into layers of finer grids within the “rough” regions of the computed solution to increase
the local resolution and then inter-grid projections are made to combine different layers using the
intricate data structure; see, e.g., [4–6,32,36,37] and references therein. In contrast, in the AMM
methods, the mesh points are adaptively shifted towards the “rough” parts to capture the details
in the regions where large variations in the computed solutions are found. A variety of AMM
algorithms, including the variational approach [46], moving mesh PDEs (MMPDE) approach [10],
and moving mesh methods based on harmonic mapping [13] have been developed. For AMM
methods for compressible Euler and Navier-Stokes equations we refer the reader to, for example,
[19,22,23,42,47].

In this paper, we present new AMM central-upwind schemes for the system (1.1) on both adap-
tive one-dimensional (1-D) nonuniform grids and two-dimensional (2-D) structured quadrilateral
meshes. Our AMM method consists of two steps: PDE time evolution and mesh redistribution.
The time evolution step is performed using the second-order semi-discrete central-upwind schemes
on irregular meshes. Such schemes were derived on Cartesian meshes in [26, 27, 29, 30], and later
extended to triangular [9,28], quadrilateral [40] and cell-vertex polygonal [2] grids. These schemes
are attractive alternatives to upwind methods because they are simple (Riemann-problem-solver-
free), efficient, and can be used as a “black-box” solver for general (multidimensional) hyperbolic
systems of conservation/balance laws. After evolving the solutions to the new time level, the
mesh points are redistributed accordingly to the MMPDE which takes into account the size of
the gradient of computed solution or another smoothness indicator. However, when the computed
solution contains very large gradients or discontinuities, the mesh movement has to be adjusted
in order to avoid rapid changes in the local mesh size as such changes can affect the accuracy of
the approximated solution. To this end, we develop a new simple and robust technique, which
helps to guarantee that the mesh remains structured, no very small cells appear, and the ratio
between the areas of nearby cells remains bounded. Additionally, in order to bridge the solutions
and newly shifted mesh, a conservative solution projection is implemented to obtain the solution
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over the new mesh.
The paper is organized as follows. In §2, we present the second-order central-upwind schemes

on 1-D nonuniform grids as well as on 2-D irregular quadrilateral meshes. In §3, we briefly review
the moving mesh equations in both 1-D and 2-D cases and propose the associated conservative
solution projection strategy. In §4, we demonstrate the high resolution and robustness of the
proposed AMM method on Euler equations of gas dynamics in both 1-D and 2-D cases, where the
advantages of the AMM methods over the corresponding uniform mesh methods can be clearly
observed. In §5, we apply the developed AMM central-upwind schemes to the 1-D and 2-D granular
hydrodynamics systems, which admit spiky solutions, which are efficiently and accurately captured
by the developed AMM central-upwind schemes.

2 Central-Upwind Schemes on Structured Meshes

In this section, we present the central-upwind schemes on fixed 1-D nonuniform grids as well as on
fixed 2-D structured quadrilateral meshes. The adaptive moving mesh techniques will be discussed
in §3.

2.1 One-Dimensional Semi-Discrete Scheme

Consider the 1-D hyperbolic system of conservation/balance laws:

Ut + F (U)x = S(U).

Assume that the computational domain is covered with nonuniform cells Cj = [xj− 1
2
, xj+ 1

2
] of the

size ∆xj := xj+ 1
2
− xj− 1

2
centered at xj := (xj− 1

2
+ xj+ 1

2
)/2, and that at a certain time t, the cell

averages of the computed solution,

Uj(t) ≈
1

∆xj

∫
Cj

U(x, t) dx,

are available. Using these data, we first reconstruct a conservative non-oscillatory piecewise poly-
nomial interpolant

P̃(x, t) :=
∑
j

Pj(x, t)χj(x), (2.1)

where χj(x) is the characteristic function of the interval [xj− 1
2
, xj+ 1

2
] and Pj(x, ·) is the corre-

sponding polynomial piece. A (formal) order of accuracy of the reconstruction (2.1) is determined
by the accuracy of the polynomial interpolants at each cell. In this paper, our goal is to design
second-order central-upwind schemes, which require second-order piecewise linear reconstructions

Pj(x, t) = Uj(t) + (Ux)j(x− xj), (2.2)

whose slopes (Ux)j are (at least) first-order approximations of the derivatives at x = xj, which are
to be computed using a nonlinear limiter to ensure a non-oscillatory nature of the reconstruction.
In this paper, we carry out the following two-step strategy for each component of the solution.
We first use the generalized minmod limiter [35,41,45]

(U (i)
x )

mm

j = minmod

(
ψ
U

(i)

j+1(t)−U (i)

j (t)

xj+1 − xj
,
U

(i)

j+1(t)−U (i)

j−1(t)

xj+1 − xj−1

, ψ
U

(i)

j (t)−U (i)

j−1(t)

xj − xj−1

)
, (2.3)
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where the minmod function is defined by

minmod(z1, z2, . . .) :=


min(z1, z2, . . .), if zi > 0 ∀i,
max(z1, z2, . . .), if zi < 0 ∀i,
0, otherwise,

and ψ ∈ [1, 2] is the parameter, which controls the amount of numerical viscosity: larger values
of ψ lead to sharper reconstructions, but (slightly) more oscillatory numerical solutions. Next,
we notice that some components of the solution may represent positive physical quantities such
as density and energy. Therefore, to maintain their positivity, we follow the strategy in [48] and

correct the slopes (U
(i)
x )

mm

j obtained in (2.3) by setting

(U (i)
x )j :=

{
τ

(i)
j (U

(i)
x )

mm

j , if U (i) is a positive physical quantity,

(U
(i)
x )

mm

j , otherwise,

where τ
(i)
j is a positivity enforcing parameter computed by

τ
(i)
j = min

1,

∣∣∣∣∣∣ U
(i)

j

min
{
P(i)
j (xj+ 1

2
),P(i)

j (xj− 1
2
)
}
−U (i)

j

∣∣∣∣∣∣
 .

We then follow the derivation of the second-order semi-discrete central-upwind scheme in [26]
and obtain the following system of time-dependent ODEs:

d

dt
Uj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆xj
+Sj(t), (2.4)

where the numerical fluxes are

Hj+ 1
2

:=
a+
j+ 1

2

F (U−
j+ 1

2

)− a−
j+ 1

2

F (U+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+
j+ 1

2

−U−
j+ 1

2

− dj+ 1
2

]
, (2.5)

where the built-in anti-diffusion term dj+ 1
2

is

dj+ 1
2

= minmod
(
U+
j+ 1

2

−U int
j+ 1

2
, U int

j+ 1
2
−U−

j+ 1
2

)
,

and the intermediate value U int
j+ 1

2

is computed by

U int
j+ 1

2
=
a+
j+ 1

2

U+
j+ 1

2

− a−
j+ 1

2

U−
j+ 1

2

−
{
F (U+

j+ 1
2

)− F (U−
j+ 1

2

)
}

a+
j+ 1

2

− a−
j+ 1

2

.

Sj(t) are appropriate discretizations of the cell averages of the source terms:

Sj ≈
1

∆xj

∫
Cj

S(U(x, t)) dx. (2.6)
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In (2.5), U+
j+ 1

2

and U−
j+ 1

2

are the corresponding right- and left-sided values of the interpolant (2.2)

at the cell interface x = xj+ 1
2
, namely,

U+
j+ 1

2

:= Pj+1(xj+ 1
2
) and U−

j+ 1
2

:= Pj(xj+ 1
2
),

and a±
j+ 1

2

are the one-sided local speeds of propagation, which, in the case of convex flux function,

can be estimated by

a+
j+ 1

2

= max

{
λN

(
∂F

∂U
(U−

j+ 1
2

)

)
, λN

(
∂F

∂U
(U+

j+ 1
2

)

)
, 0

}
,

a−
j+ 1

2

= min

{
λ1

(
∂F

∂U
(U−

j+ 1
2

)

)
, λ1

(
∂F

∂U
(U+

j+ 1
2

)

)
, 0

}
,

(2.7)

with λ1 ≤ · · · ≤ λN being N eigenvalues of the Jacobian ∂F
∂U

. We note that the estimate (2.7) may
be inaccurate. In the case of 1-D Euler equation of gas dynamics, a more accurate estimate has
been derived in [18].

Remark 2.1 Note that in (2.5)–(2.7), all of the indexed quantities depend on t, but from now
on, we will omit this dependence for the sake of brevity.

Remark 2.2 Notice that if both a±
j+ 1

2

are very close to zero, that is, if a+
j+ 1

2

− a−
j+ 1

2

< ε, where

ε > 0 is a prescribed small parameter, we replace the numerical flux (2.5) with

Hj+ 1
2

:=
1

2

[
F (U+

j+ 1
2

) + F (U−
j+ 1

2

)
]
.

In all of our numerical examples, we have used ε = 10−8.

2.2 Two-Dimensional Semi-Discrete Scheme

We now consider the 2-D hyperbolic system of conservation/balance laws:

Ut + F (U)x + G(U )y = S(U).

Assume that the computational domain is covered with a structured irregular quadrilateral mesh
consisting of cells Cj,k of size |Cj,k|, and use the following notations (see Figure 2.1):

zj+ 1
2
,k+ 1

2
:= (xj+ 1

2
,k+ 1

2
, yj+ 1

2
,k+ 1

2
) : cell vertices,

zj,k := (xj,k, yj,k) : center of mass of Cj,k,

`j+ 1
2
,k := |zj+ 1

2
,k+ 1

2
− zj+ 1

2
,k− 1

2
| : length of the edge zj+ 1

2
,k− 1

2
zj+ 1

2
,k+ 1

2
,

zj+ 1
2
,k :=

1

2
(zj+ 1

2
,k+ 1

2
+ zj+ 1

2
,k− 1

2
) : midpoint of the edge zj+ 1

2
,k− 1

2
zj+ 1

2
,k+ 1

2
,

nj+ 1
2
,k := (cos(θj+ 1

2
,k), sin(θj+ 1

2
,k)) : the unit outer normal vector to the edge zj+ 1

2
,k− 1

2
zj+ 1

2
,k+ 1

2
,

`j,k+ 1
2

:= |zj+ 1
2
,k+ 1

2
− zj− 1

2
,k+ 1

2
| : length of the edge zj− 1

2
,k+ 1

2
zj+ 1

2
,k+ 1

2
,

zj,k+ 1
2

:=
1

2
(zj+ 1

2
,k+ 1

2
+ zj− 1

2
,k+ 1

2
) : midpoint of the edge zj− 1

2
,k+ 1

2
zj+ 1

2
,k+ 1

2
,

nj,k+ 1
2

:= (cos(θj,k+ 1
2
), sin(θj,k+ 1

2
)) : the unit outer normal vector to the edge zj− 1

2
,k+ 1

2
zj+ 1

2
,k+ 1

2
.
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Figure 2.1: A typical quadrilateral cell Cj,k with its four neighbors.

Assume that at a certain time t, we have computed an approximate solution, realized in terms
of its cell averages:

Uj,k ≈
1

|Cj,k|

∫∫
Cj,k

U(x, y, t) dx dy.

Using these data, we first construct a second-order conservative non-oscillatory piecewise polyno-
mial interpolant

P̃(x, y) =
∑
j,k

Pj,k(x, y)χCj,k
,

where χCj,k
is the characteristic function of the cell Cj,k and Pj,k(x, y) is the corresponding poly-

nomial piece. To achieve the second-order accuracy, we employ the piecewise linear reconstruction

Pj,k(x, y) = Uj,k + (Ux)j,k(x− xj,k) + (Uy)j,k(y − yj,k), (2.8)

where the slopes (Ux)j,k and (Uy)j,k are (at least) first-order approximations of the x- and y-
derivatives of U at zj,k.

In order to calculate the ith component of the numerical derivatives of U , (U
(i)
x )j,k and (U

(i)
y )j,k,

we construct four linear interpolations: L+,+
j,k (x, y), L−,+j,k (x, y), L+,−

j,k (x, y) and L−,−j,k (x, y) outlined
in Figure 2.2. Each of these linear interpolations is obtained by passing a plane through the point

(zj,k,U
(i)

j,k) and the corresponding points in the two neighboring cells. For example, L+,+
j,k (x, y) is

obtained using the following three points: (zj,k,U
(i)

j,k), (zj+1,k,U
(i)

j+1,k) and (zj,k+1,U
(i)

j,k+1). Notice
that since zj,k is the geometric center of Cj,k, the obtained linear interpolants are conservative in
Cj,k, that is,

1

|Cj,k|

∫∫
Cj,k

L±,±j,k (x, y) dx dy = U
(i)

j,k .
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Figure 2.2: Four linear interpolants over the cell Cj,k.

In order to obtain a non-oscillatory reconstruction, we need to compute (Ux)j,k and (Uy)j,k
using a nonlinear limiter. As in the 1-D case, we use a two-step strategy for each component of
the solution. We first use the following generalization of the 1-D minmod limiter:

(U (i)
x )

mm

j,k = minmod

(
1

4

[
(L+,+

j,k )x + (L−,+j,k )x + (L−,−j,k )x + (L+,−
j,k )x

]
,

ψ(L+,+
j,k )x, ψ(L−,+j,k )x, ψ(L−,−j,k )x, ψ(L+,−

j,k )x

)
,

(U (i)
y )mm

j,k = minmod

(
1

4

[
(L+,+

j,k )y + (L−,+j,k )y + (L−,−j,k )y + (L+,−
j,k )y,

]
,

ψ(L+,+
j,k )y, ψ(L−,+j,k )y, ψ(L−,−j,k )y, ψ(L+,−

j,k )y

)
,

(2.9)

where, as in the 1-D case, ψ ∈ [1, 2] is the parameter that controls the amount of numerical
dissipation. Next, in order to maintain the positivity of some components of the solution, we

follow [48] and correct (U
(i)
x )

mm

j,k and (U
(i)
y )mm

j,k obtained in (2.9) by setting

(
(U (i)

x )j,k, (U (i)
y )

j,k

)
:=

 τ
(i)
j,k

(
(U

(i)
x )

mm

j,k , (U
(i)
y )

mm

j,k

)
, if U (i) is a positive physical quantity,(

(U
(i)
x )

mm

j,k , (U
(i)
y )

mm

j,k

)
, otherwise,

where τ
(i)
j,k is a positivity enforcing parameter computed by

τ
(i)
j,k = min

1,

∣∣∣∣∣∣ U
(i)

j,k

min
{
P(i)
j,k(zj+ 1

2
,k+ 1

2
),P(i)

j,k(zj− 1
2
,k+ 1

2
),P(i)

j,k(zj+ 1
2
,k− 1

2
),P(i)

j,k(zj− 1
2
,k− 1

2
)
}
−U (i)

j,k

∣∣∣∣∣∣
 .
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The cell averages Uj,k are then evolved in time according to the second-order semi-discrete
central-upwind scheme on quadrilateral grids developed in [40], which we modify here by reducing
the numerical dissipation using the approach presented in [26]:

d

dt
Uj,k = − 1

|Cj,k|

[
Hj+ 1

2
,k −Hj− 1

2
,k + Hj,k+ 1

2
−Hj,k− 1

2

]
+ Sj,k, (2.10)

where Hj± 1
2
,k and Hj,k± 1

2
are the numerical fluxes along the cell interfaces between Cj,k and its

four neighboring cells. For instance, the numerical flux between Cj,k and Cj+1,k is

Hj+ 1
2
,k = `j+ 1

2
,k

[(
cos
(
θj+ 1

2
,k

)
Hx

j+ 1
2
,k

+ sin
(
θj+ 1

2
,k

)
Hy

j+ 1
2
,k

)
+

a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

(
U+
j+ 1

2
,k
−U−

j+ 1
2
,k
− dj+ 1

2
,k

)]
,

(2.11)

where the x- and y-directional fluxes are

Hx
j+ 1

2
,k

=
a+
j+ 1

2
,k
F
(
U−
j+ 1

2
,k

)
− a−

j+ 1
2
,k
F
(
U+
j+ 1

2
,k

)
a+
j+ 1

2
,k
− a−

j+ 1
2
,k

Hy

j+ 1
2
,k

=
a+
j+ 1

2
,k
G
(
U−
j+ 1

2
,k

)
− a−

j+ 1
2
,k
G
(
U+
j+ 1

2
,k

)
a+
j+ 1

2
,k
− a−

j+ 1
2
,k

,

(2.12)

the built-in anti-diffusion term is

dj+ 1
2
,k = minmod

(
Pj+1,k(zj+ 1

2
,k+ 1

2
)−U int

j+ 1
2
,k
, Pj+1,k(zj+ 1

2
,k− 1

2
)−U int

j+ 1
2
,k
,

U int
j+ 1

2
,k
−Pj,k(zj+ 1

2
,k+ 1

2
), U int

j+ 1
2
,k
−Pj,k(zj+ 1

2
,k− 1

2
)
)

and the intermediate value U int
j+ 1

2
,k

is computed by

U int
j+ 1

2
,k

=
a+
j+ 1

2
,k
U+
j+ 1

2
,k
− a−

j+ 1
2
,k
U−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

− cos
(
θj+ 1

2
,k

)F (U+
j+ 1

2
,k

)
− F

(
U−
j+ 1

2
,k

)
a+
j+ 1

2
,k
− a−

j+ 1
2
,k

− sin
(
θj+ 1

2
,k

)G(U+
j+ 1

2
,k

)
−G

(
U−
j+ 1

2
,k

)
a+
j+ 1

2
,k
− a−

j+ 1
2
,k

.

(2.13)

The numerical fluxes Hj,k+ 1
2

can be computed in a similar way. In (2.11), (2.12) and (2.13) and

similar formulae for Hj,k+ 1
2
, U±

j+ 1
2
,k

and U±
j,k+ 1

2

are the point values of the corresponding linear

pieces (2.8) at cell interfaces, namely,

U−
j+ 1

2
,k

:= Pj,k(zj+ 1
2
,k), U+

j+ 1
2
,k

:= Pj+1,k(zj+ 1
2
,k),

U−
j,k+ 1

2

:= Pj,k(zj,k+ 1
2
), U+

j,k+ 1
2

:= Pj,k+1(zj,k+ 1
2
),
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and a±
j+ 1

2
,k

and a±
j,k+ 1

2

are the directional local speeds of propagation, which, in the case of convex

flux function, can be estimated by

a+
j+ 1

2
,k

= max
{
λN
(
V +
j+ 1

2
,k

)
, λN

(
V −
j+ 1

2
,k

)
, 0
}
, a−

j+ 1
2
,k

= min
{
λ1

(
V +
j+ 1

2
,k

)
, λ1

(
V −
j+ 1

2
,k

)
, 0
}
,

a+
j,k+ 1

2

= max
{
λN
(
V +
j,k+ 1

2

)
, λN

(
V −
j,k+ 1

2

)
, 0
}
, a−

j,k+ 1
2

= min
{
λ1

(
V +
j,k+ 1

2

)
, λ1

(
V −
j,k+ 1

2

)
, 0
}
,

(2.14)

with λ1(V ) ≤ λ2(V ) ≤ · · ·λN(V ) being the N eigenvalues of the matrix V and

V ±
j+ 1

2
,k

:= cos
(
θj+ 1

2
,k

)∂F
∂U

(
U±
j+ 1

2
,k

)
+ sin

(
θj+ 1

2
,k

)∂G
∂U

(
U±
j+ 1

2
,k

)
,

V ±
j,k+ 1

2

:= cos
(
θj,k+ 1

2

)∂F
∂U

(
U±
j,k+ 1

2

)
+ sin

(
θj,k+ 1

2

)∂G
∂U

(
U±
j,k+ 1

2

)
.

(2.15)

We note that as in the 1-D case, the estimate (2.14), (2.15) may be inaccurate; see [18].
Finally, the term Sj,k in (2.10) represents appropriate discretizations of the cell averages of the

source terms:

Sj,k ≈
1

|Cj,k|

∫∫
Cj,k

S(U (x, y, t)) dx dy. (2.16)

Remark 2.3 Notice that if both a±
j+ 1

2
,k

are very close to zero, that is, if a+
j+ 1

2
,k
−a−

j+ 1
2
,k
< ε, where

ε > 0 is a small parameter, we replace the numerical fluxes Hj+ 1
2
,k in (2.11) with

Hj+ 1
2
,k =

`j+ 1
2
,k

2

(
cos
(
θj+ 1

2
,k

)[
F
(
U−
j+ 1

2
,k

)
+ F

(
U+
j+ 1

2
,k

)]
+ sin

(
θj+ 1

2
,k

)[
G
(
U−
j+ 1

2
,k

)
+ G

(
U+
j+ 1

2
,k

)])
.

Similarly, if both a±
j,k+ 1

2

are very close to zero, we replace the numerical fluxes Hj,k+ 1
2

in (2.11)

with

Hj,k+ 1
2

=
`j,k+ 1

2

2

(
cos
(
θj,k+ 1

2

)[
F
(
U−
j,k+ 1

2

)
+ F

(
U+
j,k+ 1

2

)]
+ sin

(
θj,k+ 1

2

)[
G
(
U−
j,k+ 1

2

)
+ G

(
U+
j,k+ 1

2

)])
.

In all of our numerical experiments, we have used ε = 10−8.

Remark 2.4 The ODE systems (2.4)–(2.6) and (2.10)–(2.16) should be numerically solved by a
stable ODE solver of a proper order. In all of the numerical examples in this paper, we have used the
three-stage third-order strong stability preserving (SSP) Runge-Kutta method; see, e.g., [16, 17].
The time step is restricted by the CFL condition, which, in the 1-D case, is

∆t max
j

{
max

{
|a+
j− 1

2

|, |a−
j+ 1

2

|
}

∆xj

}
≤ 1

2
, (2.17)

and in the 2-D case, is

∆t max
j,k

{
max

{
|a−
j+ 1

2
,k
|, |a+

j− 1
2
,k
|, |a−

j,k+ 1
2

|, |a+
j,k− 1

2

|
}

dist(zj,k, ∂Cj,k)

}
≤ 1. (2.18)
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3 Adaptive Moving Mesh (AMM) Methods

The main idea of AMM methods is to have more grid points in the “rough” parts of the solution
to increase the resolution there. Assuming the mesh was adapted to the solution structure at
a certain time level t, we evolve the solution to the new time level t + ∆t on this mesh. Upon
completion of the evolution step, the mesh should be adapted to the structure of the evolved
solution. In this section, we overview the moving mesh techniques that allow one to obtain a new
mesh in both the 1-D and 2-D cases. After this, the solution should be projected to the new mesh
in a conservative way as described below.

3.1 One-Dimensional Algorithm

We first describe the AMM method for 1-D nonuniform grids. In addition to the computational
domain [a, b] covered by the nonuniform mesh {xj+ 1

2
}, we introduce the uniform logical mesh

ξj+ 1
2

= j∆ξ, j = 0, . . . , N with ∆ξ = 1/N . Let us denote the one-to-one coordinate transformation
from the logical domain to the computational one by

x = x(ξ), ξ ∈ [0, 1], x(0) = a, x(1) = b,

so that xj+ 1
2

= x(ξj+ 1
2
).

Mesh Redistribution. Following a variational approach (see, e.g., [20] for a detailed deriva-
tion), one can obtain the following moving mesh equation:

(ωxξ)ξ = 0, (3.1)

where ω(U ) is a monitor function, which is designed to detect regions of large variations in the
solution. A typical choice of the monitor function (see, e.g., [1, 20,44]) is

ω(U) = 1 + αϕ(|DU |), (3.2)

where D is a differential operator (for example, one may use DU = U
(i)
ξ or DU = U

(i)
ξξ for

some component of U). In this paper, we compute the required numerical derivatives using the
second-order centered differences:

DUj =
(
U

(i)
ξξ

)
j

=
U

(i)

j+1 − 2U
(i)

j + U
(i)

j−1

(∆ξ)2
.

The function ϕ in (3.2) is a smoothing filter needed since rapid changes in the solution may lead
to the appearance of sharp gradients in the function ξ = ξ(x). We design this filter by averaging
over the neighboring cells for each j for a prescribed number of iterations, that is, we introduce

ϕ`+1
j :=

1

4

(
ϕ`j+1 + 2ϕ`j + ϕ`j−1

)
, ` = 0, 1, . . . ,m− 1,

where ϕ0
j := |DU |, and then set

(ϕ(|DU |))j := ϕmj , (3.3)

which is used in (3.2). In our numerical experiments, we have taken m = 4.
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Finally, α in (3.2) is the intensity parameter employed to control the mesh concentration: the
use of larger values of α leads to the higher concentration of grid points in the “rough” areas. In
our computations, we follow [21] and choose α to be

α =

(
1− β
β(b− a)

b∫
a

ϕ(|DU |) dx

)−1

,

where β ∈ (0, 1) is a prescribed fraction of mesh points to be concentrated in the “rough” areas of
the computed solution.

Equipped with the monitor function ω, we evolve the mesh according to the following iterative
algorithm, in which we denote by xν

j+ 1
2

the grid nodes in the beginning of the (ν + 1)th iteration

step (with the initial guess x0
j+ 1

2

being the grid nodes from the previous evolution step) and

xνj := (xν
j− 1

2

+ xν
j+ 1

2

)/2.

Algorithm 3.1 (Adjusted 1-D Mesh Movement)

Step 1. Discretize the moving mesh equation (3.1) using the centered difference approximation,
which results in the following linear algebraic system for the mesh points locations:

x 1
2

= a,

ωj+1(xj+ 3
2
− xj+ 1

2
)− ωj(xj+ 1

2
− xj− 1

2
) = 0, j = 1, . . . N − 1,

xN+ 1
2

= b,

and take one Jacobi iteration sweep:

ωj+1(xν
j+ 3

2
− x∗

j+ 1
2
)− ωj(x∗j+ 1

2
− xν

j− 1
2
) = 0, j = 1, . . . N − 1, (3.4)

which results in {x∗
j+ 1

2

}.

Step 2. Ensure that the mesh remains logically structured by setting

x∗∗
j+ 1

2
= min

{
max

(
x∗
j+ 1

2
, xνj
)
, xνj+1

}
, j = 1, . . . N − 1, (3.5)

and denote by ∆x∗∗j := x∗∗
j+ 1

2

− x∗∗
j− 1

2

.

Step 3. Set σ = 0.

Step 4. Prevent rapid change in the mesh size as well as appearance of very small cells as follows.
For each j = 1, . . . N − 1, if either

∆x∗∗j+1

∆x∗∗j
> 3 or

∆x∗∗j+1

∆x∗∗j
<

1

3
or min

(
∆x∗∗j ,∆x

∗∗
j+1

)
< ∆xmin,

where ∆xmin is a prescribed minimal allowed cell size, set

x∗∗∗
j+ 1

2
= min

{
max

(x∗∗
j− 1

2

+ x∗∗
j+ 3

2

2
, xνj

)
, xνj+1

}
and σ = 1. (3.6)
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Step 5. If σ = 1, then set
x∗∗
j+ 1

2
= x∗∗∗

j+ 1
2
, j = 1, . . . N − 1,

and go to Step 3.

Step 6. Set
xν+1
j+ 1

2

= x∗∗
j+ 1

2
, j = 1, . . . N − 1.

Remark 3.1 We note that according to Algorithm 3.1 the mesh does not evolve purely according
to the moving mesh equation (3.1) as its movement is adjusted in order to ensure better properties
of the resulting mesh.

Remark 3.2 It immediately follows from (3.5) and (3.6) that

xνj ≤ xν+1
j+ 1

2

≤ xνj+1,

which, in turn, implies that
xν+1
j+ 1

2

∈
(
xν+1
j− 1

2

, xν+1
j+ 3

2

)
,

so that the logical structure of the mesh indeed does not change.

Conservative Solution Projection. After obtaining the new mesh, we need to project the
solution from the cells Cν

j := [xν
j− 1

2

, xν
j+ 1

2

] to the new cells Cν+1
j := [xν+1

j− 1
2

, xν+1
j+ 1

2

].

Let U
ν

j and U
ν+1

j be the cell averages over the cells Cν
j and Cν+1

j , respectively, and denote the

mesh shift by µ
ν+ 1

2

j+ 1
2

:= xν+1
j+ 1

2

− xν
j+ 1

2

. We use the conservative solution projection step from [42]

given by

∆xν+1
j U

ν+1

j = ∆xνj U
ν

j + µ
ν+ 1

2

j+ 1
2

U ν
j+ 1

2
− µν+ 1

2

j− 1
2

U ν
j− 1

2
,

where

U ν
j+ 1

2
:=


U+
j+ 1

2

, if µ
ν+ 1

2

j+ 1
2

> 0,

U−
j+ 1

2

, if µ
ν+ 1

2

j+ 1
2

< 0,

and U±
j+ 1

2

are the point values reconstructed over the grid Cν
j as described in §2.1.

3.2 Two-Dimensional Algorithm

In this section, we present the AMM method for structured 2-D quadrilateral meshes. As-
sume that the computational domain Ω = [a, b] × [c, d] is covered by the nonuniform mesh
{xj+ 1

2
,k+ 1

2
, yj+ 1

2
,k+ 1

2
}. We introduce the uniform rectangular logical mesh{

(ξj+ 1
2
, ηk+ 1

2
)
∣∣∣ ξj+ 1

2
= j∆ξ, ηk+ 1

2
= k∆η

}
, j = 0, . . . , N, k = 0, . . . ,M,

where ∆ξ = 1/N and ∆η = 1/M are the spatial scales in the ξ- and η-directions, respectively. Let
us denote the one-to-one coordinate transformation from the logical domain to the computational
one by

(x, y) = (x(ξ, η), y(ξ, η)), (ξ, η) ∈ [0, 1]× [0, 1],

so that xj+ 1
2
,k+ 1

2
= x(ξj+ 1

2
, ηk+ 1

2
) and yj+ 1

2
,k+ 1

2
= y(ξj+ 1

2
, ηk+ 1

2
). We assume that x(0, η) = a and

x(1, η) = b for all η as well as y(ξ, 0) = c and y(ξ, 1) = d for all ξ.
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Mesh Redistribution. As in the 1-D case, one can use a variational approach (see, e.g., [20])
to obtain the following system of MMPDEs:

(ωzξ)ξ + (ωzη)η = 0, where z := (x, y). (3.7)

Similarly to the 1-D case, the monitor function is chosen to be

ω(U) = 1 + αϕ (‖DU‖) , (3.8)

where D is a differential operator (for example, one may use DU = ∇U (i) or DU = ∆U (i) for
some component of U , where ∇ := ( ∂

∂ξ
, ∂
∂η

) and ∆ := ∂2

∂ξ2
+ ∂2

∂η2
). In this paper, we compute the

required numerical derivatives at (ξj, ηk) by using the second-order centered differences:

DUj,k = ∆U
(i)
j,k =

U
(i)

j+1,k − 2U
(i)

j,k + U
(i)

j−1,k

(∆ξ)2
+
U

(i)

j,k+1 − 2U
(i)

j,k + U
(i)

j,k−1

(∆η)2
.

The smoothing filter ϕ in (3.8) is employed to prevent the appearance of sharp gradient in the
function ξ = ξ(x, y). Similarly to the 1-D case, we first carry out the cutoff step and denote by

ϕ0
j,k := min {max {|DUj,k|, c‖DU‖1} , C‖DU‖1} ,

where ‖DU‖1 := 1
(b−a)(d−c)

∑
j,k |DUj,k||Cj,k|. After ϕ0

j,k, j = 0, . . . , N, k = 0, . . . ,M are obtained,
they are smoothed out by averaging the values over the neighboring cells for each j, k for a
prescribed number of iterations, that is, we introduce

ϕ`+1
j,k =

1

4
ϕ`j,k +

1

8

(
ϕ`j,k−1 + ϕ`j,k+1 + ϕ`j−1,k + ϕ`j+1,k

)
+

1

16

(
ϕ`j−1,k−1 + ϕ`j+1,k−1 + ϕ`j−1,k+1 + ϕ`j+1,k+1

)
, ` = 0, . . . ,m− 1,

and then set

(ϕ (‖DU‖))j,k := ϕmj,k, (3.9)

which is used in (3.8). In our numerical experiments, we have taken m = 4.

Finally, α in (3.8) is an intensity parameter needed to control the mesh concentration. In our
computation, we choose α to be

α =

(
1− β
β|Ω|

∫∫
Ω

ϕ (‖DU‖) dx dy

)−1

,

where β ∈ (0, 1) is the prescribed fraction of mesh points to be concentrated at the “rough” areas
of the solution and |Ω| is the total area of the computational domain.

Equipped with the monitor function ω, we proceed similarly to the 1-D case and evolve the
mesh according to the following iterative algorithm.

Algorithm 3.2 (Adjusted 2-D Mesh Movement)
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Step 1. Discretize the moving mesh equation (3.7) using the centered difference approximation,
which results in the following linear algebraic system for the mesh points locations:

x 1
2
,k+ 1

2
= a, xN+ 1

2
,k+ 1

2
= b, k = 0, . . . ,M

ωj+1,k+ 1
2
(xj+ 3

2
,k+ 1

2
− xj+ 1

2
,k+ 1

2
)− ωj,k+ 1

2
(xj+ 1

2
,k+ 1

2
− xj− 1

2
,k+ 1

2
)

(∆ξ)2
+ j = 1, . . . , N − 1,

ωj+ 1
2
,k+1(xj+ 1

2
,k+ 3

2
− xj+ 1

2
,k+ 1

2
)− ωj+ 1

2
,k(xj+ 1

2
,k+ 1

2
− xj+ 1

2
,k− 1

2
)

(∆η)2
= 0, k = 0, . . . ,M,

xj+ 1
2
,− 1

2
= xj+ 1

2
, 3
2
, xj+ 1

2
,M+ 3

2
= xj+ 1

2
,M− 1

2
, j = 0, . . . , N,



yj+ 1
2
, 1
2

= c, yj+ 1
2
,M+ 1

2
= d, j = 0, . . . , N

ωj+1,k+ 1
2
(yj+ 3

2
,k+ 1

2
− yj+ 1

2
,k+ 1

2
)− ωj,k+ 1

2
(yj+ 1

2
,k+ 1

2
− yj− 1

2
,k+ 1

2
)

(∆ξ)2
+ j = 0, . . . , N,

ωj+ 1
2
,k+1(yj+ 1

2
,k+ 3

2
− yj+ 1

2
,k+ 1

2
)− ωj+ 1

2
,k(yj+ 1

2
,k+ 1

2
− yj+ 1

2
,k− 1

2
)

(∆η)2
= 0, k = 1, . . . ,M − 1,

y− 1
2
,k+ 1

2
= y 3

2
,k+ 1

2
, yN+ 3

2
,k+ 1

2
= yN− 1

2
,k+ 1

2
, k = 0, . . . ,M,

where ωj,k+ 1
2

:= (ωj,k+ωj,k+1)/2 and ωj+ 1
2
,k := (ωj,k+ωj+1,k)/2. We then take one Jacobi iteration

sweep:

ωj+1,k+ 1
2
(xj+ 3

2
,k+ 1

2
− x∗

j+ 1
2
,k+ 1

2

)− ωj,k+ 1
2
(x∗

j+ 1
2
,k+ 1

2

− xj− 1
2
,k+ 1

2
)

(∆ξ)2
+ j = 1, . . . , N − 1,

ωj+ 1
2
,k+1(xj+ 1

2
,k+ 3

2
− x∗

j+ 1
2
,k+ 1

2

)− ωj+ 1
2
,k(x

∗
j+ 1

2
,k+ 1

2

− xj+ 1
2
,k− 1

2
)

(∆η)2
= 0, k = 0, . . . ,M,

ωj+1,k+ 1
2
(yj+ 3

2
,k+ 1

2
− y∗

j+ 1
2
,k+ 1

2

)− ωj,k+ 1
2
(y∗
j+ 1

2
,k+ 1

2

− yj− 1
2
,k+ 1

2
)

(∆ξ)2
+ j = 0, . . . , N,

ωj+ 1
2
,k+1(yj+ 1

2
,k+ 3

2
− y∗

j+ 1
2
,k+ 1

2

)− ωj+ 1
2
,k(y

∗
j+ 1

2
,k+ 1

2

− yj+ 1
2
,k− 1

2
)

(∆η)2
= 0, k = 1, . . . ,M − 1,

(3.10)

which results in {z∗
j+ 1

2
,k+ 1

2

} =
{

(x∗
j+ 1

2
,k+ 1

2

, y∗
j+ 1

2
,k+ 1

2

)
}

.

Step 2. Ensure that the mesh remains logically structured by replacing z∗
j+ 1

2
,k+ 1

2

with

z∗∗
j+ 1

2
,k+ 1

2
= (1− τj+ 1

2
,k+ 1

2
)zν

j+ 1
2
,k+ 1

2
+ τj+ 1

2
,k+ 1

2
z∗
j+ 1

2
,k+ 1

2
(3.11)

which will be inside the convex hull Cj+ 1
2
,k+ 1

2
:= Conv

(
zν
j+1,k+ 1

2

, zν
j,k+ 1

2

, zν
j+ 1

2
,k+1

, zν
j+ 1

2
,k

)
provided

τj+ 1
2
,k+ 1

2
= min

[
max
τ∈[0,1]

{
τ | (1− τ)zν

j+ 1
2
,k+ 1

2
+ τz∗

j+ 1
2
,k+ 1

2
∈ Cj+ 1

2
,k+ 1

2

}
, 1

]
(3.12)

and denote the new cells based on the grid {z∗∗
j+ 1

2
,k+ 1

2

} by C∗∗j,k; see Figure 3.1.

Step 3. Set σ = 0.
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Figure 3.1: Modifying the grid z∗
j+ 1

2
,k+ 1

2

: τj+ 1
2
,k+ 1

2
< 1 (left) vs. τj+ 1

2
,k+ 1

2
= 1 (right) cases.

Step 4. Prevent rapid change in the cell size as well as appearance of very small cells as follows.
For each (j + 1

2
, k + 1

2
), if either

max{|C∗∗j,k|, |C∗∗j+1,k|, |C∗∗j,k+1|, |C∗∗j+1,k+1|}
min{|C∗∗j,k|, |C∗∗j+1,k|, |C∗∗j,k+1|, |C∗∗j+1,k+1|}

> 9 or min{|C∗∗j,k|, |C∗∗j+1,k|, |C∗∗j,k+1|, |C∗∗j+1,k+1|} < |C|min,

where |C|min is a prescribed minimal allowed cell size, set

z∗∗∗
j+ 1

2
,k+ 1

2
= (1− τj+ 1

2
,k+ 1

2
)zν

j+ 1
2
,k+ 1

2
+ τj+ 1

2
,k+ 1

2
ẑ ∗∗
j+ 1

2
,k+ 1

2
and σ = 1. (3.13)

Here, ẑ ∗∗
j+ 1

2
,k+ 1

2

:=
(
z∗∗
j,k+ 1

2

+ z∗∗
j+1,k+ 1

2

+ z∗∗
j+ 1

2
,k

+ z∗∗
j+ 1

2
,k+1

)
/4 and τj+ 1

2
,k+ 1

2
is computed similarly to

(3.12):

τj+ 1
2
,k+ 1

2
= min

[
max
τ∈[0,1]

{
τ | (1− τ)zν

j+ 1
2
,k+ 1

2
+ τ ẑ ∗∗

j+ 1
2
,k+ 1

2
∈ Cj+ 1

2
,k+ 1

2

}
, 1

]
.

Step 5. If σ = 1, then set
z∗∗
j+ 1

2
,k+ 1

2
= z∗∗∗

j+ 1
2
,k+ 1

2
,

and go to Step 3.

Step 6. Set
zν+1
j+ 1

2
,k+ 1

2

= z∗∗
j+ 1

2
,k+ 1

2
.

Remark 3.3 We note that according to Algorithm 3.2 the mesh does not evolve purely according
to the MMPDE (3.7) as its movement is adjusted in order to ensure better properties of the
resulting mesh.

Remark 3.4 It follows from (3.11) and (3.13) that both

zν
j+ 1

2
,k+ 1

2
∈ Conv

(
zν
j− 1

2
,k+ 1

2
, zν

j+ 3
2
,k+ 1

2
, zν

j+ 1
2
,k− 1

2
, zν

j+ 1
2
,h+ 3

2

)
and

zν+1
j+ 1

2
,k+ 1

2

∈ Conv
(
zν+1
j− 1

2
,k+ 1

2

, zν+1
j+ 3

2
,k+ 1

2

, zν+1
j+ 1

2
,k− 1

2

, zν+1
j+ 1

2
,h+ 3

2

)
,

which means that the logical structure of the mesh does not change.
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Conservative Solution Projection. After obtaining the new mesh, we need to project the
solution from the cells Cν

j,k, whose vertices are zν
j± 1

2
,k± 1

2

, to the new cells Cν+1
j,k with the vertices

zν+1
j± 1

2
,k± 1

2

.

Let U
ν

j,k and U
ν+1

j,k be the cell averages over the cells Cν
j,k and Cν+1

j,k , respectively, see Fig-

ure 3.2, and denote the signed areas of the quadrilaterals zν
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Figure 3.2: The shift of the cell Cν
j,k (solid line) to Cν+1

j,k (dashed line).

We use the conservative solution projection step from [42] given by

|Cν+1
j,k |U

ν+1

j,k = |Cν
j,k|U

ν

j,k + µ
ν+ 1

2

j+ 1
2
,k
U ν
j+ 1

2
,k
− µν+ 1

2

j− 1
2
,k
U ν
j− 1

2
,k

+ µ
ν+ 1

2

j,k+ 1
2

U ν
j,k+ 1

2
− µν+ 1

2

j,k− 1
2

U ν
j,k− 1

2
,

where

U ν
j+ 1

2
,k

:=

 U+
j+ 1

2
,k
, if µ

ν+ 1
2

j+ 1
2
,k
> 0,

U−
j+ 1

2
,k
, if µ

ν+ 1
2

j+ 1
2
,k
< 0,

U ν
j,k+ 1

2
:=

 U+
j,k+ 1

2

, if µ
ν+ 1

2

j,k+ 1
2

> 0,

U−
j,k+ 1

2

, if µ
ν+ 1

2

j,k+ 1
2

< 0,

and U±
j+ 1

2
,k

and U±
j,k+ 1

2

are the point values reconstructed over the grid Cν
j,k as described in §2.2.

3.3 Solution Algorithm

In this section, we summarize the 1-D and 2-D AMM central-upwind solution algorithm.
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Algorithm 3.3 (AMM Central-Upwind Scheme)

Step 1. Set t := 0.

Step 2. Given the initial condition, we adapt the computational mesh using the iterative method
described in §3.1 and §3.2. These iterations require a starting mesh (for ν = 0 at the initial time
moment when the mesh from previous time step is unavailable). We take the starting mesh to be
uniform in both 1-D and 2-D cases.

Step 3. Based on the solution at a given time level, compute ∆t according to the CFL condition
(2.17) or (2.18).

Step 4. Use the central-upwind scheme presented in §2 to evolve the solution U(t) represented in
terms of its cell averages over a current mesh to the new time level t+∆t. We denote the obtained
solution by V (t+ ∆t).

Step 5. Based on V (t + ∆t), implement the AMM procedure described in §3.1 and §3.2 to
generate a new finite volume mesh and the corresponding cell averages. The resulting solution is
denoted by U(t+ ∆t).

Step 6. Set t := t+ ∆t.

Step 7. If the final computational time is not reached yet, go to Step 3.

Remark 3.5 We set up the stopping criteria for the AMM iterations in §3.1 and §3.2 to be
maxj{|xν+1

j+ 1
2

− xν
j+ 1

2

|} < tol and maxj,k{‖zν+1
j+ 1

2
,k+ 1

2

− zν
j+ 1

2
,k+ 1

2

‖} < tol, respectively. However, in

practice, since the mesh does not typically change much in one evolution time step (Step 4 of
Algorithm 3.3), we improve the efficiency of the resulting AMM method by stopping the iteration
process after several iterations even if the required tolerance has not been reached. In our numerical
experiments, the upper bound on the number of iterations has been set to 4.

4 Euler Equation of Gas Dynamics – Numerical Examples

In this section, we apply the developed AMM central-upwind schemes to the 1-D and 2-D Euler
equations of gas dynamics. We compare the obtained results with the ones computed by the
central-upwind scheme from [30] implemented on uniform meshes. These examples clearly demon-
strate the ability of the proposed schemes to capture the “rough” parts of the computed solutions
with high resolution.

In all of the examples in this section, we use the minmod parameter ψ = 1.3 and apply the
positivity preserving correction to the reconstructions of the density and total energy.

Example 1—One-Dimensional Riemann Problem

We numerically solve the 1-D Euler Equations of gas dynamics:

∂

∂t


ρ

M
E

+
∂

∂x


M

ρu2 + p

u(E + p)

 = 0, (4.1)
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where ρ(x, t) is the density, u(x, t) is the velocity, M(x, t) = ρ(x, t)u(x, t) is the momentum,
E(x, t) is the total energy, p(x, t) is the pressure satisfying the equation of state

p = p(ρ,M, E) = (γ − 1)

[
E − M

2

2ρ

]
, (4.2)

and γ is a specific heat ratio taken to be 1.4.
We consider the Riemann problem studied in [26] with the initial conditions

(ρ(x, 0), u(x, 0), p(x, 0)) =

{
(1,−19.59745, 1000), if x < 0.3,

(1,−19.59745, 0.01), if x > 0.3,

and compute the solution until the final time T = 0.012.
We use the computational domain [−0.5, 0.5], which is initially split into NAMM = 100 uniform

finite volume cells, and compute the solution by the proposed AMM central-upwind scheme using
two different values of the mesh concentration parameter (β = 0.3 and 0.6) and minimal allowed
cell size (∆xmin = 1/(10NAMM) and 1/(100NAMM)).

We first use DU = ρξξ to compute the monitor function in (3.2) (except for the mesh initializa-
tion Step 2 in Algorithm 3.3, in which we have used DU = Eξξ since ρ is initially constant). The
obtained densities together with the time-space distributions of mesh cells are plotted in Figures
4.1 and 4.2. As one can see, when ∆xmin = 1/(10NAMM) is relatively large (Figure 4.1) increasing
β from 0.3 to 0.6 does not lead to a significant improvement in the resolution of either contact
or shock waves. However, when a much smaller ∆xmin = 1/(100NAMM) is used, one may observe
(Figure 4.2) that as β increases, more mesh points are concentrated near the shock and contact
waves. Also notice that the rarefaction“corners”are slightly better captured as β increases. At the
same time, the use of larger β leads to the appearance of smaller cells, which cause the time steps to
become smaller and thus the CPU time increases from 0.85 s to 0.92 s when ∆xmin = 1/(10NAMM)
and from 1.12 s to 1.82 s when ∆xmin = 1/(100NAMM). We then compare the AMM results with
the solution computed using uniform meshes of the sizes that require about the same CPU times,
namely, with Nunif = r280, 320, 550 and 900, respectively. The uniform results (densities) are
shown in the same Figures 4.1 and 4.2, where they are compared with the corresponding AMM
solutions. As one can see, the AMM central-upwind scheme achieves much higher resolution of
both the contact and shock waves.

Remark 4.1 We note that the physical quantities ρ, E and p should be positive at all times.
In particular, the reconstructed point values of ρ, E and p at the cell interfaces should remain
positive. The positivity of ρ and E is guaranteed by the use of the positivity preserving correction,
while the positivity of p is achieved by employing the positivity preserving limiter proposed in [49].

This limiter is applied as follows. After the reconstruction step described in §2.1, we obtain the
point values ρ±

j+ 1
2

, M±
j+ 1

2

and E±
j+ 1

2

for all j and then use the equation of state (4.2) to compute

the corresponding point values of the pressure, p±
j+ 1

2

. If in a certain cell Cj, either p−
j+ 1

2

< pε

or p+
j− 1

2

< pε, where pε is a small positive number (taken to be 10−12 in all of our numerical

experiments), we replace the linear piece (2.2) in this cell with a less oscillatory one:

τj(Pj(x, t)−Uj) +Uj. (4.3)



Adaptive Moving Mesh Central-Upwind Schemes 19

-0.5 0 0.5

1

2

3

4

5

6

β = 0.3, ∆xmin = 1
10NAMM

, tCPU =0.15s

NAMM =100

Nunif =280

Exact

-0.5 0 0.5

1

2

3

4

5

6

β = 0.6, ∆xmin = 1
10NAMM

, tCPU =0.17s

NAMM =100

Nunif =320

Exact

-0.5 0 0.5
0

0.002

0.004

0.006

0.008

0.01

0.012
Mesh Evolution, β=0.3, ∆xmin=

1
10NAMM

-0.5 0 0.5
0

0.002

0.004

0.006

0.008

0.01

0.012
Mesh Evolution, β=0.6, ∆xmin=

1
10NAMM

Figure 4.1: Example 1: Density profiles (top row) computed using the uniform and adaptive meshes
using the same CPU times. The AMM central-upwind scheme was used with ∆xmin = 1/(10NAMM),
the monitor function ω = 1 + αϕ(|ρξξ|) and different values of β = 0.3 (left) and 0.6 (right). The
corresponding time-space distributions of mesh cells is shown in the bottom row.

Here, τj = min{τ−
j+ 1

2

, τ+
j− 1

2

}, in which

τ−
j+ 1

2

=

 1, if p−
j+ 1

2

> pε,

τ̂−
j+ 1

2

, otherwise,
τ+
j− 1

2

=

 1, if p+
j− 1

2

> pε,

τ̂+
j− 1

2

, otherwise,

where τ̂−
j+ 1

2

∈ (0, 1) and τ̂+
j− 1

2

∈ (0, 1) are the roots of the quadratic equations

(γ − 1)

(1− τ)Ej + τE−
j+ 1

2

−

(
(1− τ)Mj + τM−

j+ 1
2

)2

2
(
(1− τ)ρj + τρ−

j+ 1
2

)
 = pε

and

(γ − 1)

(1− τ)Ej + τE+
j− 1

2

−

(
(1− τ)Mj + τM+

j− 1
2

)2

2
(
(1− τ)ρj + τρ+

j− 1
2

)
 = pε,

respectively. We then recompute ρ±
j+ 1

2

, M±
j+ 1

2

and E±
j+ 1

2

in the cell Cj using the modified recon-

struction (4.3).
We note that in the 2-D case, the positivity of the reconstructed values of p can be enforced

in a similar manner.
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Figure 4.2: Example 1: Same as Figure 4.1, but with ∆xmin = 1/(100NAMM).

Example 2—Two-Dimensional Riemann Problem

In this example, we numerically solve the 2-D Euler equations of gas dynamics:

∂

∂t


ρ

M
N
E

+
∂

∂x


M

ρu2 + p

ρuv

u(E + p)

+
∂

∂y


N
ρuv

ρv2 + p

v(E + p)

 = 0, (4.4)

where ρ(x, y, t) is the density, u(x, y, t) and v(x, y, t) are the x- and y-velocities, M(x, y, t) :=
ρ(x, y, t)u(x, y, t) and N (x, y, t) := ρ(x, y, t)v(x, y, t) are the x- and y-momenta, E(x, y, t) is the
total energy, p(x, y, t) is the pressure satisfying the equation of state

p = p(ρ,M,N , E) = (γ − 1)

[
E − M

2 +N 2

2ρ

]
, (4.5)

and γ is a specific heat ratio taken to be 1.4.
We consider the 2-D Riemann problem with the initial condition corresponding to Configuration

7 from [30]:

(ρ, p, u, v) =


(1, 1, 0.1, 0.1), if x > 0.5 , y > 0.5,

(0.5197, 0.4,−0.6259, 0.1), if x < 0.5 , y > 0.5,

(0.8, 0.4, 0.1, 0.1), if x < 0.5 , y < 0.5,

(0.5197, 0.4, 0.1,−0.6259), if x > 0.5 , y < 0.5,



Adaptive Moving Mesh Central-Upwind Schemes 21

and run our simulations until the final time T = 0.25. We take the computational domain [0, 1]×
[0, 1], which is initially split into 100× 100 uniform finite volume cells for the AMM calculations.

We first compute the solution by the proposed AMM central-upwind scheme using DU = ∆ρ in
the monitor function (3.8) and the minimal allowed cell size |C|min = 1/(1000×1000). The densities
computed using the concentration parameters β = 0.6 and β = 0.9 and the corresponding final
time mesh distributions are presented in Figures 4.3 (left and middle) and 4.4 (left and middle),
respectively. As one can see, the mesh is concentrated in the contact and shock wave areas with
a substantially larger number of mesh cells being moved there in the case of the larger β = 0.9.
We then compare the AMM results with the ones computed by the central-upwind scheme using
uniform meshes of the sizes that require about the same CPU times, namely, with 210 × 210
(Figure 4.3 (right)) and 260× 260 (Figure 4.4 (right)) uniform cells. It can be observed that both
contact and shock waves are sharper resolved using the AMM approach.

Figure 4.3: Example 2: Density profiles computed using the adaptive mesh with β = 0.6 (left) and
210× 210 uniform mesh (right), and the final time mesh distribution (middle).

Figure 4.4: Example 2: Density profiles computed using the adaptive mesh with β = 0.9 (left) and
260× 260 uniform mesh (right), and the final time mesh distribution (middle).
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5 Granular Hydrodynamics – Numerical Examples

In this section, we apply the AMM central-upwind schemes for the 1-D and 2-D granular hy-
drodynamics equations, which are used to model granular gases; see, e.g., [8, 14, 34, 38, 39] and
references therein. Though this model has recently attracted a great attention of physicists, no
rigorous mathematical analysis of the granular hydrodynamics equations is available, especially in
the multidimensional case. In contrast to ordinary molecular gases, granular gases cool sponta-
neously because of the inelastic collisions between the particles. The inelasticity of the collisions
generally causes the granular gas to form dense clusters.

The 1-D granular hydrodynamics equations are the 1-D Euler equations of gas dynamics (4.1),
(4.2) with an additional inelastic energy loss term:

∂

∂t


ρ

M
E

+
∂

∂x


M

ρu2 + p

u(E + p)

 =


0

0

−Λρ
1
2p

3
2

 , (5.1)

where Λ is a positive constant. Similarly, the 2-D granular hydrodynamics equations are the 2-D
Euler equations of gas dynamics (4.4), (4.5) with the same inelastic energy loss term:

∂

∂t


ρ

M
N
E

+
∂

∂x


M

ρu2 + p

ρuv

u(E + p)

+
∂

∂y


N
ρuv

ρv2 + p

v(E + p)

 =


0

0

0

−Λρ
1
2p

3
2

 . (5.2)

A characteristic feature of the solutions of (5.1), (4.2) and (5.2), (4.5) is a formation of finite-time
singularities, which are different from the shock discontinuities arising in the Euler equations of
gas dynamics (4.1), (4.2) and (4.4), (4.5) based on the assumption of elastic interaction between
the particles. In particular, the granular gas singularities contain the density blowup, which sig-
nals the formation of close-packed clusters. These singularities can be accumulated in points or
distributed along a curve (see [39] for the simplest analytical ansatz demonstrating finite-time sin-
gularities formation). Moreover, the structure of granular hydrodynamics equations supports the
existence of δ-type singularities in the density component. Capturing such solutions numerically
is a challenging task and the AMM approach may become a key factor in achieving high resolution
of spiky solutions in an efficient and computationally affordable manner.

We apply the developed AMM central-upwind schemes to the systems (5.1), (4.2) and (5.2),
(4.5) in a straightforward manner. Namely, we approximate the cell averages of the source terms
using the midpoint rule, which results in the following approximations of (2.6) and (2.16):

S
(3)

j = −Λρ
1
2
j p

3
2
j and S

(4)

j,k = −Λρ
1
2
j,k p

3
2
j,k,

respectively.
In all of our numerical experiments reported below, we take Λ = 10. In Examples 3 and 4,

we use the minmod parameter ψ = 1.3, while in Example 5, we use both ψ = 1.3 and a more
dissipative minmod reconstruction with ψ = 1. As in §4, we apply the positivity preserving
correction to the reconstructions of the density and total energy.



Adaptive Moving Mesh Central-Upwind Schemes 23

Example 3—One-Dimensional Case

In this example, we numerically solve the 1-D granular hydrodynamics system (5.1), (4.2) on the
interval [−5, 5] subject to the following initial data:

ρ(x, 0) ≡ 1, u(x, 0) ≡ 0, p(x, 0) = 2− 1

1 + 16x2
, (5.3)

and the homogeneous Neumann boundary conditions.
Analyzing the initial value problem (5.1), (4.2), (5.3), one can see that the initial minimum of

pressure at x = 0 triggers the development of negative velocity derivative there, which, in turn,
causes the increase of the density at the origin. Then, unlike the case of the Euler equations
of gas dynamics (4.1), (4.2), the entropy ln(p/ργ) is not conserved along a sound characteristics
u = 0, but decreases to zero within finite or infinite time. This suggests a formation of spiky
structure in the density component along the sound characteristics, that is, at the point x = 0.
To verify this and to study the type of a possible singularity, we first compute the solution at
time t = 5 using the central-upwind scheme on three uniform meshes with N = 201, 401 and 801
cells. The obtained densities, shown in Figure 5.1 (left), indicate that by this time the singularity
could have already formed since the maximum of the density increases as the mesh is refined.
We then apply the AMM central-upwind scheme with β = 0.3, and minimal allowed cell size
∆xmin = 1/(1000NAMM), where NAMM = 201 and the monitor function (3.2) with DU = ρξξ
(except for the mesh initialization Step 2 in Algorithm 3.3, in which we have used DU = Eξξ since
ρ is initially constant) to the studied IBVP. As one can see in Figure 5.1 (middle), the obtained
density has a much larger maximum value than its uniform grid counterparts. The time-space
distribution of the mesh cells, shown in Figure 5.1 (right), suggests that using the AMM approach
is crucial in achieving a high resolution of the developed singularity. The velocity and pressure
computed by the AMM central-upwind scheme are shown in Figure 5.2. We note that the velocity
has a sharp gradient at x = 0 and the pressure values are much smaller than the initial ones due
to the energy decay caused by the source term in the third equation in (5.1).

-5 0 5
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5

10

15

20

Density at t = 5

N=201
N=401
N=801

-5 0 5
0

500

1000

Density at t = 5

Figure 5.1: Example 3: Densities computed on the uniform meshes (left) and using the AMM approach
(middle) and the corresponding time-space distributions of mesh cells (right).

Next, we further study the behavior of both the uniform mesh and AMM solutions by compar-
ing the time evolution of maxx ρ

N+1(x, t) (the upper index indicates the number of finite volume
cells used), computed using different values of N . The obtained results are shown in Figure 5.3
(left). As one can clearly see, the central-upwind AMM scheme clearly outperforms its uniform
counterpart. It is also instructive to compare the ratios maxx ρ

2N+1(x, t)/maxx ρ
N+1(x, t) for the
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Figure 5.2: Example 3: Velocity (left) and pressure (right) computed using the AMM central-upwind
scheme.

uniform grid solutions with different values of N . The obtained results, shown in Figure 5.3 (right),
can be used as an indicator of the nature of the developed singularity. Indeed, after the time t ≈ 3,
the computed ratios are getting close to 2, which indicates that at large times the solution may
have a δ-type singularity at x = 0 since the maximum of such solutions captured by finite-volume
methods on uniform grids is typically proportional to 1/∆x.

0 5 10
0

1000

2000

3000

4000
max

x
ρ
N+1(x, t)

N=10000
N=20000
N=40000
AMM N=200

0 5 10
1

1.5

2

max
x

ρ
2N+1/max

x
ρ
N+1

N=5000
N=10000
N=20000

Figure 5.3: Example 3: maxx ρ(x, t) as a function of time for the uniform (with 10001,
20001 and 40001 cells) and AMM (with 201 initially uniform cells) computations (left) and
maxx ρ

2N+1(x, t)/maxx ρ
N+1(x, t) as a function of time for the sequence of uniform grids with

N = 5000, 10000 and 20000 (right).

Example 4—Radially Symmetric Data

Next, we consider the 2-D granular hydrodynamics system (5.2), (4.5) on the square domain
[−5, 5]× [−5, 5] subject to the radially symmetric initial data, which are a modified version of the
1-D initial data (5.3),

ρ(x, y, 0) ≡ 1, u(x, y, 0) ≡ v(x, y, 0) ≡ 0, p(x, y, 0) = 2− 1

1 + 16(x2 + y2)
,

and the homogeneous Neumann boundary conditions.
In Figure 5.4 (left), we plot the density at time t = 5 computed by the AMM central-upwind

scheme with β = 0.3 and the minimal allowed cell size |C|min = 1/(201× 201). Initially start with
uniform mesh with 201 × 201 finite volume cells and the monitor function (3.8) with DU = ∆ρ.
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As one can see, the solution contains a spike at the origin, where the mesh is concentrated; see
Figure 5.4 (right).

Figure 5.4: Example 4: Density computed using the AMM central-upwind scheme (left) and the final
time mesh distribution (right).

At larger times, maxx,y ρ(x, y, t) keeps increasing (see Figure 5.5 (left)) and the mesh is further
concentrated at the origin. This may lead to appearance of very small cells, which may trigger
(small) oscillations in the computed energy, which, in turn, may lead to appearance of negative
pressure values near the origin. To prevent this, we use relatively small β = 0.3 both in this
example and the next one. As in the 1-D case, we study the singularity formation by comput-
ing the ratios maxx,y ρ

2N+1(x, y, t)/maxx,y ρ
N+1(x, y, t). Here, ρN+1(x, y, t) stands for the density

computed using (N + 1) × (N + 1) uniform cells. As one can see, the obtained results are quite
similar to the ones reported in Example 3. However, there are two quite important differences:
first, the ratios are getting larger than 1 earlier, and second, at large times the ratios approach 4
(and even become a little larger than 4), which clearly indicates that by time t ≈ 5 the density
develops a δ-function at the origin. We note that in the 2-D case, the maximum values of the com-
puted δ-functions are proportional to 1/(∆x∆y), so that we conclude that apparently a δ-function
appears in the density component if the aforementioned ratio is 4. We note that the obtained
blowup result is in good compliance with the theoretical finite-time blowup results in [39].

Example 5—Vortex-Like Data

In the final example, we consider the 2-D granular hydrodynamics system (5.2), (4.5) on the square
domain [−10, 10]× [−10, 10] subject to the following vortex-like initial data:

ρ(x, y, 0) ≡ 1, u(x, y, 0) = −yE , v(x, y, 0) = xE , p(x, y, 0) =
γ − 1

γ

(
R0 −

E2

2

)
(5.4)

with E := e−
1
2

(x2+y2), and the homogeneous Neumann boundary conditions. We note that if one
replace ρ(x, y, 0) in (5.4) with ρ(x, y, 0) = R0 − E2/2, then the initial data will correspond to the
steady vortex for the Euler equations of gas dynamics (4.4), (4.5). Here, R0 is a constant, which
determines the size of the vortex: the larger R0 the larger the radius of the vortex. Moreover,
as one can easily see, the solution of the initial value problem (5.2), (4.5), (5.4) is expected to
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Figure 5.5: Example 4: maxx,y ρ(x, y, t) as a function of time for the uniform (with 201 × 201,
401× 401 and 801× 801 cells) and AMM (with 101× 101 initially uniform cells) computations (left)
and maxx,y ρ

2N+1(x, y, t)/maxx,y ρ
N+1(x, y, t) as a function of time for the sequence of uniform grids

with N = 100, 200 and 400 (right).

preserve its initial radial symmetry. We first take a small R0 = 5 and compute the solution until
the final time T = 10. The densities, computed by the AMM central-upwind scheme with β = 0.3,
ψ = 1.3, initially uniform mesh with 200 × 200 finite volume cells (the minimal allowed cell size
|C|min = 1/(100 × 100)) and the monitor function (3.8) with DU = ∆(log(1 + ρ)), are shown in
the left and middle columns in Figure 5.6 at times t = 1, 5, 10 and 25. As one can see, the solution
develops a singularity along the circle-shape curve, where the mesh is concentrated; see Figures
5.6 (right column). The AMM solution at time t = 10 is similar to the one obtained using the
uniform mesh with 800× 800 uniform cells, which are plotted in Figure 5.7 (top row).

We then numerically study the process of singularity formation by measuring maxx,y ρ(x, y, t)
and maxx,y ρ

2N(x, y, t)/maxx,y ρ
N(x, y, t) as functions of time, presented in Figure 5.8. As one

can see, the maximum ratios become larger than one at t ≈ 2, but they do not approach 2 (the
maximum of the finite volume representation of δ-functions spread along curves is expected to be
proportional to 1/

√
∆x∆y rather than to 1/(∆x∆y) as in the case of δ-functions focused at isolated

points), which suggests that the observed singular structure along the circle may or may not be
the δ-function. Computing the solution at larger times, we observe that the circular singularity
structure is unstable. This can be seen in the bottom rows in Figures 5.6 and 5.7, in which the
densities, computed at the final time T = 25 using the AMM and uniform central-upwind schemes,
respectively, are plotted.

Finally, we take a large R0 = 100 and compute the solution until the same final time T = 25.
The densities and corresponding meshes at times t = 1, 5, 10 and 25, computed by the AMM
central-upwind scheme with the same parameters as before, but with β = 0.2 and ψ = 1 (the
latter corresponds to a more dissipative minmod reconstruction) are shown in Figure 5.9. As in
the case of a smaller R0 = 5, the solution develops a singularity along the curve, but a breakdown
of its circular shape, which signals on the instability development, occurs much earlier now. As
one can see, the shape deformation, is much more pronounced than in the case of a smaller R0 = 5.
We also notice that the solutions computed using the AMM and uniform mesh with 800 × 800
cells (presented in Figure 5.10) are not very closed. To further numerically study the developed
singular structures, we compute the AMM solution using a sharper minmod reconstruction with
ψ = 1.3. The obtained densities are plotted in Figure 5.11. As one can clearly see, the change in
ψ leads to a substantial change in the singularity curve, which supports the conclusion that after
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the singularity is developed the solution becomes unstable. In fact, the numerical study of the
solution maximum (see Figure 5.12) suggests that the solution develops δ-type singularity along
the circle by time t ≈ 1, that is, long before the final computational time.
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Figure 5.6: Example 5, R0 = 5: Densities computed using the AMM central-upwind scheme: three-
dimensional (3-D) plot (left column), top view (middle column) and the mesh distribution (right column)
at times t = 1, 5, 10 and 25 (from top to bottom rows).
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Figure 5.7: Example 5, R0 = 5: Densities computed using the central-upwind scheme on the uniform
800 × 800 grid: 3-D plot (left column), top view (right column) at times t = 10 (top row) and 25
(bottom row).
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Figure 5.8: Example 5, R0 = 5: maxx,y ρ(x, y, t) as a function of time for the uniform (with 200×200,
400× 400 and 800× 800 cells) and AMM (with 200× 200 initially uniform cells) computations (left)
and maxx,y ρ

2N(x, y, t)/maxx,y ρ
N(x, y, t) as a function of time for the sequence of uniform grids with

N = 100, 200 and 400 (right).
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Figure 5.9: Example 5, R0 = 100: Densities computed using the AMM central-upwind scheme with
ψ = 1: 3-D plot (left column), top view (middle column) and the mesh distribution (right column) at
times t = 1, 5, 10 and 25 (from top to bottom rows).
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Figure 5.10: Example 5, R0 = 100: Densities computed using the central-upwind scheme on the
uniform 800× 800 grid: 3-D plot (left column) and top view (right column) at times t = 1, 5, 10 and
25 (from top to bottom rows).
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Figure 5.11: Example 5, R0 = 100: Same as Figure 5.9 but with ψ = 1.3.
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Figure 5.12: Example 5, R0 = 100: maxx,y ρ(x, y, t) as a function of time for the uniform (with
400× 400 and 800× 800 cells and ψ = 1) and AMM (with 200× 200 initially uniform cells and ψ = 1
and ψ = 1.3) computations (left) and maxx,y ρ

2N(x, y, t)/maxx,y ρ
N(x, y, t) as a function of time for

the sequence of uniform grids with N = 200 and 400 (right).


