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a b s t r a c t

Chemotaxis systems are used tomodel the propagation, aggregation and pattern formation
of bacteria/cells in response to an external stimulus, usually a chemical one. A common
property of all chemotaxis systems is their ability to model a concentration phenomenon—
rapid growth of the cell density in small neighborhoods of concentration points/curves.
More precisely, the solution may develop singular, spiky structures, or even blow up in fi-
nite time. Therefore, the development of accurate and computationally efficient numerical
methods for the chemotaxis models is a challenging task.

We study the two-species Patlak–Keller–Segel type chemotaxis system, in which the
two species do not compete, but have different chemotactic sensitivities, which may lead
to a significantly difference in cell density growth rates. This phenomenonwas numerically
investigated in Kurganov and Lukáčová-Medviďová (2014) and Chertock et al. (2018),
where second- and higher-order methods on uniform Cartesian grids were developed.
However, in order to achieve high resolution of the density spikes developed by the species
with a lower chemotactic sensitivity, a very fine mesh had to be utilized and thus the
efficiency of the numerical method was affected.

In this work, we consider an alternative approach relying on mesh adaptation, which
helps to improve the approximation of the singular structures evolved by chemotaxis
models. We develop, in particular, an adaptive moving mesh (AMM) finite-volume semi-
discrete upwind method for the two-species chemotaxis system. The proposed AMM
technique allows one to increase the density of mesh nodes at the blowup regions. This
helps to substantially improve the resolution while using a relatively small number of
finite-volume cells.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

We develop an adaptive moving mesh (AMM) finite-volume semi-discrete upwind method for the two-species Patlak–
Keller–Segel type chemotaxis system:⎧⎪⎨⎪⎩

(ρ1)t + χ1∇ · (ρ1∇c) = ν1∆ρ1,

(ρ2)t + χ2∇ · (ρ2∇c) = ν2∆ρ2, (x, y) ∈ Ω ⊂ R2, t > 0,
τ ct = ν∆c + γ1ρ1 + γ2ρ2 − ζ c,

(1.1)
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where functions ρ1(x, y, t) and ρ2(x, y, t) are the cell densities of two non-competing species, c(x, y, t) is the concentration
of the chemoattractant, χ2 > χ1 > 0 are the chemotactic sensitivity parameters, and ν1, ν2, ν, γ1, γ2 and ζ are positive
constants which represent the diffusion, production rates and consumption rate, respectively. The parameter τ is equal to
either 1 or 0, which correspond to the parabolic–parabolic or reduced parabolic–elliptic coupling, respectively. We assume
that homogeneous Neumann (zero flux) boundary conditions are imposed along the entire boundary ∂Ω ofΩ .

The two-species chemotaxis model (1.1) was proposed in [1] and then further analytically studied in [2–8]. Depending
on the initial data and parameter values, the solution may either converge to a constant steady state, or develop singular
structures. In principle, one may expect that in the blowup scenario, different blowup time scales are exhibited by the two
variables and, for example, ρ2 may blow up faster than ρ1. As proved in [3,5], this is not possible in the parabolic–elliptic
(τ = 0) case and only simultaneous blowup occurs albeit with scalings which may differ for the two species. Indeed, as
it was first observed in [9], when χ2 ≫ χ1, ρ1 and ρ2 blow up in a different manner: while ρ2 clearly develops a δ-type
singularity, ρ1 blows up algebraically. This property was numerically discovered in [9] using the second-order hybrid finite-
volume–finite-differencemethoddeveloped in [10].Wenote that the authors had to carry out a very carefulmesh refinement
study in order to demonstrate the simultaneous blowup in [9]. Their study allowed to underline that even with a mild mesh
refinement one could have obtained very misleading results due to lack of resolution. In [10], a higher-order (fourth-order)
hybrid finite-volume–finite-difference method was developed in an attempt to go beyond this limitation. While this goal
was achieved, a very fine mesh was still required to make a blowup conjecture based on the numerical results.

Thus, the development of robust numerical methods for (1.1) represents a real challenge. Following the work in [9,10], in
this paper we propose an alternative path to improve the capturing of the singular behavior of solutions of (1.1): the use of
local mesh adaptation. In particular, we design an AMMmethod allowing one to enhance the resolution by clustering mesh
nodes in the blowup regions; for references on AMMmethods, see, e.g., [11–14] and references therein. The resultingmethod
is obtained by combining a second-order finite-volume semi-discrete upwind scheme for (1.1) with the AMM approach
from [13]. The latter, which is based on an earlier work [14], was designed in the context of nonlinear hyperbolic PDEs and
is reformulated here to account for the behavior of (1.1). We demonstrate that the proposed AMM method allows one to
confirm the conjecture of simultaneous blowup using a much smaller number of mesh cells.

The paper is organized as follows. In Section 2, we provide a systematic description of the proposedmethod. In Section 3,
we test the new method on a number of numerical examples. The obtained results clearly demonstrate the advantages of
the proposed AMMmethod.

2. Numerical method

2.1. Main notation

At a given time level t , we assume to have a nonuniform structured quadrilateral tessellation of the computational domain
Ω = [xmin, xmax] × [ymin, ymax], consisting of non-overlapping quadrilateral cells {Ij,k(t)}. The coordinate vector is denoted
by z := (x, y), and in particular we use z j,k(t) := (xj,k(t), yj,k(t)) to label the geometric center of Ij,k(t), while cell vertices are
denoted by z j± 1

2 ,k±
1
2
(t) := (xj± 1

2 ,k±
1
2
(t), yj± 1

2 ,k±
1
2
(t)), and cell areas by |Ij,k(t)|.

For every mesh face, we introduce a specific notation for length, mid-point and unit normal. The face between Ij,k(t) and
Ij+1,k(t) has the length ℓj+ 1

2 ,k
(t) := |z j+ 1

2 ,k+
1
2
(t) − z j+ 1

2 ,k−
1
2
(t)|, midpoint z j+ 1

2 ,k
(t) :=

(
z j+ 1

2 ,k+
1
2
(t) + z j+ 1

2 ,k−
1
2
(t)

)
/2 and

unit normal vector nj+ 1
2 ,k

(t) that points into Ij+1,k(t). The face between cells Ij,k(t) and Ij,k+1(t) has the length ℓj,k+ 1
2
(t) :=

|z j+ 1
2 ,k+

1
2
(t) − z j− 1

2 ,k+
1
2
(t)|, midpoint z j,k+ 1

2
(t) :=

(
z j+ 1

2 ,k+
1
2
(t)+ z j− 1

2 ,k+
1
2
(t)

)
/2 and unit normal vector nj,k+ 1

2
(t) that points

into Ij,k+1(t).
At the same time level, the computed solution is represented by means of its cell averages:

( ρi )j,k(t) ≈
1

|Ij,k(t)|

∫
Ij,k(t)

ρi(x, y, t) dxdy, i = 1, 2 and c j,k(t) ≈
1

|Ij,k(t)|

∫
Ij,k(t)

c(x, y, t) dxdy.

The cell averages of ρ1 and ρ2 are used to construct global (in space) piecewise polynomial interpolants of ρ1 and ρ2. In
particular, second-order finite-volume methods employ piecewise linear reconstructions:

q̃(x, y; t) =

∑
j,k

1j,k(t)
[

q j,k(t) + (qx(t))j,k(x − xj,k(t)) + (qy(t))j,k(y − yj,k(t))
]
, (2.1)

where 1j,k(t) is the characteristic function of cell Ij,k(t), q := (ρ1, ρ2)⊤, and (qx(t))j,k and (qy(t))j,k are appropriately defined
slopes, which should be computed in a non-oscillatory manner using a nonlinear limiter (see Section 2.4 for a particular
example). The corresponding one-sided point values at the cell interfaces are then obtained using the interpolant (2.1) as
follows:

q−

j+ 1
2 ,k

(t) := lim
z→z

j+ 1
2 ,k

(t)

z∈Ij,k(t)

q̃(z), q+

j+ 1
2 ,k

(t) := lim
z→z

j+ 1
2 ,k

(t)

z∈Ij+1,k(t)

q̃(z),

q−

j,k+ 1
2
(t) := lim

z→z
j,k+ 1

2
(t)

z∈Ij,k(t)

q̃(z), q+

j,k+ 1
2
(t) := lim

z→z
j,k+ 1

2
(t)

z∈Ij,k+1(t)

q̃(z).
(2.2)
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2.2. Parabolic–elliptic case

We begin with a numerically more challenging parabolic–elliptic (τ = 0) case.

2.2.1. Presentation of the general algorithm
When τ = 0, the system (1.1) is composed of a time-independent elliptic equation, defining the concentration of the

chemoattractant, and of a set of evolution equations for the species densities. To start our computation, we assume to be
given a set of initial cell averages {( ρ1 )j,k(0), ( ρ2 )j,k(0)} of the densities, associated with the initial mesh defined by the
nodes {z j± 1

2 ,k±
1
2
(0)}. For all t ≥ 0, we propose the following discretization of (1.1).

1. Evolution step:

(a) Compute the cell-averaged concentrations c j,k at the current time level t using efficient and robust relaxation
iterations to numerically solve the third (time-independent) equation in the system (1.1). Besides the iteration
scheme, this step also involves appropriate definitions of the directional derivatives of c along face normals as
well as of reconstructed values of c on the faces.

(b) Compute new values of the cell-averaged densities ( ρ1 )j,k, ( ρ2 )j,k at the next time level t + ∆t using a
conservative upwind finite volume explicit approximation. This requires the definition of the upwind fluxes,
including directional derivatives of the densities along face normals, as well as of the reconstruction strategy to
evaluate the one-sided values of the densities (and their derivatives) at face midpoints. If a multi-stage scheme
(such as a Runge–Kutta one) is used to integrate the resulting ODE, the evolution step is repeated to obtain
intermediate values of the concentration.

2. Move the mesh according to an appropriate error sensor depending on the smoothness of the densities. This requires
the definition of the error sensor as well as of a strategy to define and control nodal displacements, and of a projection
of cell averages of densities and concentration from one mesh to the other.

The following sections are devoted to the description of the main bricks of the method. In particular, Section 2.2.2
discusses the iterative procedure to solve the time-independent elliptic equation for the concentration,while the basic finite-
volume semi-discrete upwind method is discussed in Section 2.2.3. Complements to complete the previous two aspects are
discussed in Section 2.4 devoted to the evaluation of midpoint values and directional derivatives on cell faces. The only
missing element is the AMM strategy, which is thoroughly explained in Section 2.5.

In order to simplify the notation, in the following paragraphs we will suppress the dependence on time of the considered
quantities whenever possible.

2.2.2. Relaxation iterations for the concentration c
For a given distribution in space of ρ1 and ρ2, we compute c by discretizing the third equation in (1.1) and then solving

the obtained nonlinear algebraic system using Jacobi iterations. To this end, we first integrate the third equation in (1.1) over
cell Ij,k to obtain its finite-volume approximation:

ζ c j,k − ν∆j,kc = γ1( ρ1 )j,k + γ2( ρ2 )j,k, (2.3)

where

∆j,kc :=

ℓj+ 1
2 ,k

Dncj+ 1
2 ,k

− ℓj− 1
2 ,k

Dncj− 1
2 ,k

+ ℓj,k+ 1
2
Dncj,k+ 1

2
− ℓj,k− 1

2
Dncj,k− 1

2

|Ij,k|
(2.4)

is the numerical approximation of∆c , and Dn is an approximation of the directional derivative along the normal direction.
Details on the evaluation of Dn will be given in Section 2.4. The discretization (2.3), (2.4) can be rewritten as

ζ c j,k −

∑
−1≤m,n≤1

αj+m,k+n c j+m,k+n = γ1( ρ1 )j,k + γ2( ρ2 )j,k, (2.5)

so that the Jacobi iterations applied to (2.5) read as

c ∗

j,k =

∑
−1≤m,n≤1, |m|+|n|>0 αj+m,k+n c (i)

j+m,k+n + γ1( ρ1 )j,k + γ2( ρ2 )j,k
ζ − α0,0

. (2.6)

In practice, each iteration step (2.6) is followed by the relaxation one:

c (i+1)
j+m,k+n = (1 − θ ) c (i)

j+m,k+n + ν c ∗

j,k, (2.7)

where θ is the relaxation parameter chosen as follows. If c ∗

j,k ≥ 0 for all j, k, we take θ =
2
3 ; otherwise, we select θ such

that c (i+1)
j+m,k+n >

1
2 c (i)

j+m,k+n.
We run the iterations (2.6), (2.7) until ∥ c (i+1)

− c (i)
∥ becomes smaller than a prescribed tolerance, while keeping

i < imax, where imax is an a-priori prescribed upper bound on the number of iterations.



A. Chertock, A. Kurganov, M. Ricchiuto et al. / Computers and Mathematics with Applications 77 (2019) 3172–3185 3175

2.2.3. Semi-discrete upwind scheme for the evolution of ρ1 and ρ2
In this section, we develop a second-order semi-discrete upwind scheme for the first two equations in (1.1), which we

first rewrite in the following flux form:{
(ρ1)t + ∇ · F1(ρ1, c) = 0, F1(ρ1, c) = χ1ρ1∇c − ν1∇ρ1,

(ρ2)t + ∇ · F2(ρ2, c) = 0, F2(ρ2, c) = χ2ρ2∇c − ν2∇ρ2.
(2.8)

We then approximate the analytical fluxes Fi, i = 1, 2 at the cell interfaces (xj+ 1
2
, yk) and (xj, yk+ 1

2
) by

Fi
⏐⏐
(x

j+ 1
2
,yk)

≈ (Fi)j+ 1
2 ,k

= χi(ρi)j+ 1
2 ,k

Dncj+ 1
2 ,k

− νiDn(ρi)j+ 1
2 ,k
,

Fi
⏐⏐
(xj,yk+ 1

2
) ≈ (Fi)j,k+ 1

2
= χi(ρi)j,k+ 1

2
Dncj,k+ 1

2
− νiDn(ρi)j,k+ 1

2
,

i = 1, 2. (2.9)

As before, Dn denotes the discrete directional derivatives in the corresponding normal directions, which will be explicitly
defined in Section 2.5. The values at the midpoint of cell interfaces (ρi)j+ 1

2 ,k
and (ρi)j,k+ 1

2
are defined in an upwind manner

as follows:

(ρi)j+ 1
2 ,k

=

⎧⎨⎩ (ρi)−j+ 1
2 ,k

if Dncj+ 1
2 ,k

≥ 0,

(ρi)+j+ 1
2 ,k

if Dncj+ 1
2 ,k
< 0,

(ρi)j,k+ 1
2

=

⎧⎨⎩ (ρi)−j,k+ 1
2
, Dncj,k+ 1

2
≥ 0,

(ρi)+j,k+ 1
2
, Dncj,k+ 1

2
< 0,

i = 1, 2,

with (ρi)±j+ 1
2 ,k

and (ρi)±j,k+ 1
2
, i = 1, 2, being the corresponding one-sided point values reconstructed using the interpolant

(2.1) and formula (2.2).
Finally, integrating (2.8) over Ij,k and using the numerical fluxes (2.9), we arrive at the following semi-discrete upwind

scheme:

d
dt

( ρ i)j,k = −

ℓj+ 1
2 ,k

(Fi)j+ 1
2 ,k

− ℓj− 1
2 ,k

(Fi)j− 1
2 ,k

+ ℓj,k+ 1
2
(Fi)j,k+ 1

2
− ℓj,k− 1

2
(Fi)j,k− 1

2

|Ij,k|
. (2.10)

This is a system of time-dependent ODEs, which should be numerically solved using a sufficiently accurate and stable ODE
solver. In the numerical results reported in Section 3, we have used the three-stage third-order strong-stability preserving
Runge–Kutta (SSP-RK) method (see, e.g., [15,16]) implemented together with the ‘‘draining’’ time-step strategy to ensure
the positivity of ρ1 and ρ2 (this strategy was originally proposed in [17] in the context of the Saint-Venant system of shallow
water equations, applied to the chemotaxis systems in [10], and extended to structured quadrilateral meshes in [18]).

2.3. Parabolic–parabolic case

Wenowconsider the parabolic–parabolic (τ = 1) case, inwhichρ1 andρ2 are still evolved in time using the semi-discrete
upwind scheme presented in Section 2.2.3. However, the chemoattractant concentration c now satisfies the time-dependent
parabolic equation, which is discretized in space as follows:

d
dt

c j,k =

∑
−1≤m,n≤1

αj+m,k+n c j+m,k+n + γ1( ρ1 )j,k + γ2( ρ2 )j,k − ζ c j,k, (2.11)

where the coefficients αj+m,k+n of the discrete Laplacian are the same as in formula (2.5).
In this case, one needs to numerically solve the system of ODEs (2.10), (2.11) for both ρ1, ρ2 and c using an accurate

and stable ODE solver. As outlined above, in our numerical experiments we have used the three-stage third-order SSP-RK
method (notice that the initial conditions should now be given for all three variables). One can show that the positivity of c
can be easily guaranteed by choosing a sufficiently small time step.

2.4. Positivity preserving reconstruction and normal derivatives

We now describe how the piecewise linear reconstruction (2.1) as well as required directional derivatives, Dnqj+ 1
2 ,k

and
Dnqj,k+ 1

2
, as well as Dncj+ 1

2 ,k
and Dncj,k+ 1

2
can be obtained.

We note that both the global polynomial in (2.1) and directional derivatives are computed in the componentwisemanner
and therefore, for the sake of simplicity, we restrict our consideration to the ρ1-component only.

We start with the reconstruction procedure and recall that the slopes ((ρ1)x)j,k and ((ρ1)y)j,k in (2.1) are to be computed
using a nonlinear limiter needed to prevent oscillations and appearance of unphysical negative reconstructed point values.
To this end, we build four linear interpolations: L+,+

j,k (x, y), L−,+
j,k (x, y), L+,−

j,k (x, y) and L−,−
j,k (x, y) outlined in Fig. 2.1. Each

one of these linear interpolations is obtained by passing a plane through the point (z j,k, ( ρ1 )j,k) and the corresponding
points in the two neighboring cells. For example, L+,+

j,k (x, y) is obtained using the following three points: (z j,k, ( ρ1 )j,k),
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Fig. 2.1. Four linear interpolants over cell Ij,k .

(z j+1,k, ( ρ1 )j+1,k) and (z j,k+1, ( ρ1 )j,k+1). Notice that since z j,k is the geometric center of cell Ij,k, the obtained linear
interpolants are conservative in Ij,k, that is,

1
|Ij,k|

∫∫
Ij,k

L±,±
j,k (x, y) dx dy = ( ρ1 )j,k.

The corresponding numerical derivatives ((ρ1)x)j,k and ((ρ1)y)j,k are then computed by using a nonlinear limiter

((ρ1)x)j,k =
σj,k

4

[
(L+,+

j,k )x + (L−,+
j,k )x + (L−,−

j,k )x + (L+,−
j,k )x

]
,

((ρ1)y)j,k =
σj,k

4

[
(L+,+

j,k )y + (L−,+
j,k )y + (L−,−

j,k )y + (L+,−
j,k )y

]
,

where σj,k is a positivity enforcing parameter given by

σj,k = min
{
1,

⏐⏐⏐⏐ ( ρ1 )j,k
mj,k − ( ρ1 )j,k

⏐⏐⏐⏐} ,
where

mj,k = min
{
(ρ̂1)j,k(z j+ 1

2 ,k+
1
2
), (ρ̂1)j,k(z j− 1

2 ,k+
1
2
), (ρ̂1)j,k(z j+ 1

2 ,k−
1
2
), (ρ̂1)j,k(z j− 1

2 ,k−
1
2
)
}

and (ρ̂1)j,k =
(
L+,+
j,k + L−,+

j,k + L−,−
j,k + L+,−

j,k

)
/4.

The directional derivatives of ρ1 are defined as

Dn(ρ1)j+ 1
2 ,k

= ∇(ρ1)(xj+ 1
2 ,k
, yj+ 1

2 ,k
) · nj+ 1

2 ,k
and Dn(ρ1)j,k+ 1

2
= ∇(ρ1)(xj,k+ 1

2
, yj,k+ 1

2
) · nj,k+ 1

2
,

and they can be estimated by

Dn(ρ1)j+ 1
2 ,k

=
(ρ1)Wj+1,k − (ρ1)Ej,k

|zWj+1,k − zEj,k|
and Dn(ρ1)j,k+ 1

2
=

(ρ1)Sj,k+1 − (ρ1)Nj,k
|zSj,k+1 − zNj,k|

, (2.12)

respectively. In (2.12), zEj,k, for example, is the intersection between the orthogonal bisector of the cell interface between Ij,k
and Ij+1,k and one of the line segments: either z j,kz j,k+1 or z j,kz j,k−1 (see Fig. 2.2), and

(ρ1)Ej,k = ρ̃1(zEj,k),

where ρ̃1(x, y) is a piecewise linear reconstruction of ρ1 given by (2.1). All of the other values (zWj+1,k, z
N
j,k, z

S
j,k+1, (ρ1)

W
j,k, (ρ1)

N
j,k

and (ρ1)Sj,k+1) in (2.12) are computed in a similar manner.
Finally, we describe how the normal derivatives of c , needed in the discrete Laplacian (2.4), are evaluated. In fact, we use

the same formula as (2.12), namely,

Dncj+ 1
2 ,k

=
cWj+1,k − cEj,k

|zWj+1,k − zEj,k|
and Dncj,k+ 1

2
=

cSj,k+1 − cNj,k
|zSj,k+1 − zNj,k|

, (2.13)
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Fig. 2.2. Set-up for numerical computations of normal derivatives.

but the point values cEj,k, c
W
j,k , c

N
j,k and cSj,k+1 are now computed in a different, simpler way. For instance, in order to compute

cEj,k, we distinguish between the following two cases:

cEj,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(z j,k+1 − zEj,k) c j,k + (zEj,k − z j,k) c j,k+1

|z j,k+1 − z j,k|
, if zEj,k ∈ z j,kz j,k+1 (as in Fig. 2.2),

(z j,k−1 − zEj,k) c j,k + (zEj,k − z j,k) c j,k−1

|z j,k−1 − z j,k|
, if zEj,k ∈ z j,kz j,k−1.

All of the other values (cWj,k , c
N
j,k and cSj,k+1) in (2.13) are computed in a similar manner.

2.5. Adaptive moving mesh (AMM) procedure

In this section, we briefly describe the AMM procedure used to adapt the structured finite-volume mesh so that the size
of the cells are automatically getting substantially smaller near the spiky structures developed by the solution of the system
(1.1). For a complete description, we refer the reader to [13].

We introduce the uniform rectangular logical mesh{
(ξj+ 1

2
, ηk+ 1

2
)
⏐⏐⏐ ξj+ 1

2
= j∆ξ, ηk+ 1

2
= k∆η

}
, j = 0, . . . ,N, k = 0, . . . ,M,

where∆ξ = 1/N and∆η = 1/M are the spatial scales in the ξ - and η-directions, respectively. Let us denote the one-to-one
coordinate transformation from the logical domain to the computational one by

(x, y) = (x(ξ, η), y(ξ, η)), (ξ, η) ∈ [0, 1] × [0, 1],

so that xj+ 1
2 ,k+

1
2

= x(ξj+ 1
2
, ηk+ 1

2
) and yj+ 1

2 ,k+
1
2

= y(ξj+ 1
2
, ηk+ 1

2
). We assume that x(0, η) = xmin and x(1, η) = xmax for all η as

well as y(ξ, 0) = ymin and y(ξ, 1) = ymax for all ξ .

Mesh redistribution. Using a variational approach (see, e.g., [12]), one can obtain the following system of moving mesh PDEs
(MMPDEs):

(ωzξ )ξ + (ωzη)η = 0, (2.14)

whereω is themonitor function, which is supposed to be dependent on a differential operator applied, for example, to one of
the components of the computed solution q. In Examples 1–4 considered in Section 3, we have taken the following ρ2-based
monitor function:

ω(ρ2) = 1 + δϕ (|Dρ2|) , (2.15)
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where Dρ2 = ((ρ2)ξ , (ρ2)η). When the MMPDEs (2.14) is discretized, we compute the corresponding numerical derivatives
at (ξj, ηk) by using the second-order centered differences:

(Dρ2)j,k =

(
( ρ2 )j+1,k − ( ρ2 )j−1,k

2∆ξ
,
( ρ2 )j,k+1 − ( ρ2 )j,k−1

2∆η

)
.

The function ϕ in (2.15) is a smoothing filter employed to prevent the appearance of sharp gradients in the functions
ξ = ξ (x, y) and η = η(x, y); for details, see [13]. Finally, α in (2.15) is an intensity parameter needed to control the mesh
concentration. In our numerical experiments, we have chosen α to be

δ =

(
1 − β

β|Ω|

∫∫
Ω

ϕ (|Dρ2|) dx dy
)−1

,

where β ∈ (0, 1) is the prescribed fraction of mesh points to be concentrated at the ‘‘rough’’ areas of the solution and |Ω| is
the total area of the computational domain. In Examples 1–4 considered in Section 3, we have used β = 0.2.

Remark 2.1. We note that the ρ2-based monitor function ω in (2.15) is a reasonable choice as ρ2 expects to develop a
spiky structure faster than ρ1. However, there are situations (like in Example 5 considered in Section 3, when the solution
develops a multi-spiky structure with several spikes of substantially different magnitude), in which the use of ρ2-based
monitor function may lead to an excessive concentration of the mesh cells near the highest spike. In order to prevent this
undesirable scenario, one may replace (2.15) with

ω(ρ2) = 1 + δϕ (|D(ln(1 + ρ2))|) ,

whose use would help to redistribute the mesh cells more uniformly so that they concentrate in the vicinities of all of the
spikes. Also, in the multi-spiky Example 5, we have used a larger value of β = 0.6 in order to allocate a larger portion of the
mesh cells in the spiky parts of the computed solution.

Equipped with the monitor function ω, we discretize the MMPDEs (2.14) using the centered difference approximation,
which results in a linear algebraic system for the mesh points locations. The obtained system is numerically solved using
the Jacobi iterations combined with the mesh relaxation procedure to avoid rapid change of mesh. Also, we limit the mesh
movement at each iteration (see [13] for details) to ensure that

min
j,k

{
min

i∈{−1,0,1}

(
xj+ 3

2 ,k+
1
2 +i − xj+ 1

2 ,k+
1
2
, xj+ 1

2 ,k+
1
2

− xj− 1
2 ,k+

1
2 +i

)}
≥ κ

xmax − xmin

N

and

min
j,k

{
min

i∈{−1,0,1}

(
yj+ 1

2 +i,k+ 3
2

− yj+ 1
2 ,k+

1
2
, yj+ 1

2 ,k+
1
2

− yj+ 1
2 +i,k− 1

2

)}
≥ κ

ymax − ymin

M
,

where κ is taken to be 0.1 in all of the numerical examples reported in Section 3.

Conservative solution projection. After obtaining the newmesh, we follow the approach in [14] and project the solution from
the cells Ioldj,k , whose vertices are zold

j± 1
2 ,k±

1
2
, to the new cells Inewj,k with the vertices znew

j± 1
2 ,k±

1
2
.

Let q old
j,k and q new

j,k be the cell averages over the cells Ioldj,k and Inewj,k , respectively. We use the conservative solution
projection step from [14] given by

|Inewj,k | q new
j,k = |Ioldj,k | q old

j,k + µj+ 1
2 ,k

qold
j+ 1

2 ,k
− µj− 1

2 ,k
qold
j− 1

2 ,k
+ µj,k+ 1

2
qold
j,k+ 1

2
− µj,k− 1

2
qold
j,k− 1

2
,

where

µj+ 1
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=
1
2
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,
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,

qold
j+ 1

2 ,k
=

{
q+

j+ 1
2 ,k

if µj+ 1
2 ,k
> 0,

q−

j+ 1
2 ,k

if µj+ 1
2 ,k
< 0, qold
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2
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{
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2
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2
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2
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and q±

j+ 1
2 ,k

and q±

j,k+ 1
2
are the point values reconstructed over the grid Ioldj,k using the piecewise linear reconstruction (2.1) and

formula (2.2).



A. Chertock, A. Kurganov, M. Ricchiuto et al. / Computers and Mathematics with Applications 77 (2019) 3172–3185 3179

Fig. 3.1. Example 1 (χ2 = 2): The maximums of ρ1 (left) and ρ2 (right) as functions of time.

Fig. 3.2. Example 1 (χ2 = 2): ρ1(x, y, 0.01) (left) and ρ2(x, y, 0.01) (middle) and the mesh distribution at time T = 0.01 (right), obtained using N = 100.

3. Numerical examples

In this section, we test the designed AMM scheme on a number of numerical examples. In all of them, we consider
the two-species chemotaxis system (1.1) with γ1 = γ2 = ζ = ν1 = ν2 = 1 and numerically solved it on the domain
Ω = [−3, 3] × [−3, 3] subject to the homogeneous Neumann boundary conditions.

3.1. Parabolic–elliptic case

Here, we consider the system (1.1) with τ = 0, ν = χ1 = 1 and following initial data:

ρ1(x, y, 0) = ρ2(x, y, 0) = 50e−100(x2+y2).

The computational domain is initially split into N × N uniform cells and the numerical solution is computed on several
different grids.

Example 1—Smooth solutions
The purpose of the first example is to test the accuracy of the designed AMM method. To this end, we consider two

different values of χ2, for which the solution remains smooth.
We first choose χ2 = 2 and compute the numerical solutions until the final time T = 0.01 using N = 100, 200 and

400. In Fig. 3.1, we show that the maximum values of both ρ1 and ρ2 decrease in time. As one can see, these curves are
almost indistinguishable for different values of N . In Fig. 3.2, we plot the profiles of ρ1 and ρ2 along with the final timemesh
distribution for N = 100.

We then choose a larger χ2 = 10 and use four different grids with N = 50, 100, 200 and 400 to compute the numerical
solutions until the final time T = 0.04. In Fig. 3.3, where the maximum values of ρ1 and ρ2 are plotted as functions of time,
one can see the effect of a larger chemotactic sensitivity parameter: ρ2 does not decay in the same monotone manner as
in the case of a smaller χ2 = 2. The final time numerical solution (ρ1 and ρ2) computed using N = 100, as well as the
corresponding mesh distribution are presented in Fig. 3.4. It should be observed that in the case of a larger χ2 = 10, the
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Fig. 3.3. Example 1 (χ2 = 10): The maximums of ρ1 (left) and ρ2 (right) as functions of time.

Fig. 3.4. Example 1 (χ2 = 10): ρ1(x, y, 0.04) (left) and ρ2(x, y, 0.04) (middle) and the mesh distribution at time T = 0.04 (right), obtained using N = 100.

Table 3.1
Example 1 (χ2 = 10): The L1- and L∞-convergence rates for ρ1 and ρ2 .
N rN2 (ρ1) rN

∞
(ρ1) rN2 (ρ2) rN

∞
(ρ2)

50 1.62 0.62 −0.06 0.10
100 1.47 1.08 1.03 0.62
200 1.83 1.01 2.16 1.06

difference in the magnitude between ρ1 and ρ2 is quite large (though they both are smooth and bounded) and the mesh is
more concentrated near the origin.

We also use this example (with χ2 = 10) to study the convergence of the proposed AMM method and compute the
experimental rates of convergence by

rN2 (ρi) := log2

[
EN
2 (ρi)

E2N
2 (ρi)

]
and rN

∞
(ρi) := log2

[
EN

∞
(ρi)

E2N
∞

(ρi)

]
, i = 1, 2,

where the L2- and L∞-errors are defined by

EN
2 (ρi) := ∥ρN

i − ρ800
i ∥2 =

N∑
j=1

N∑
k=1

(
( ρi N )j,k − ϱ800

i (xNj,k, y
N
j,k)

)2
|INj,k|,

EN
∞
(ρi) := ∥ρN

i − ρ800
i ∥∞ = max

1≤j,k≤N

⏐⏐( ρi N )j,k − ϱ800
i (xNj,k, y

N
j,k)

⏐⏐ .
Here, ϱ800

i is a linear interpolant for the reference solution ρ800
i computed using 800 × 800 cells, ( ρi N )j,k is the cell average

of ρi over cell INj,k in the N × N mesh, and (xNj,k, y
N
j,k) is the geometric center of cell INj,k.

In Table 3.1, the experimental convergence rates are shown. As one can see, while the L2-errors exhibit the second-order
decay, the L∞-errors decay much slower. We note that these results are satisfactory as the mesh is nonuniform and its size,
especially near the origin, does not depend linearly on 1/N .
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Fig. 3.5. Example 2: The maximums of ρ1 (left) and ρ2 (right) computed using the fourth-order hybrid finite-volume–finite-difference scheme from [10].

Example 2—Blowing up solution
In this example, we take even largerχ2 = 20. In this case, the solution behaviorwill be drastically different fromwhat has

been observed in Example 1. In particular, according to [3,5] both ρ1 and ρ2 will blow up in finite time and only simultaneous
blowup is possible. Moreover, as it was first demonstrated in [9] and then confirmed in [10], ρ1 and ρ2 are expected to
blow up in a different manner: while ρ2 is supposed to develop a δ-type singularity, ρ1 would grow up algebraically. Thus,
capturing this blowup behavior is a challenging task. To cite an example, we refer the reader to [10], where the solution
of the studied initial–boundary value problem was computed by both second- and a fourth-order hybrid finite-volume–
finite-difference schemes on fixed uniform grids. The results obtained there indicated that even though both the second-
and fourth-order schemes asymptotically behaved in a similar way in the blowup regime, themagnitudes of ρ1, which grows
algebraically, were substantially larger in the fourth-order computations. On the other hand, the results (maximum values
of ρ1 and ρ2 as functions of time) obtained by the aforementioned fourth-order scheme and presented in Fig. 3.5 show that
the ρ1-component of the blowing up solution is still not well captured even when a very fine mesh is used. Moreover, as one
can see in this figure, there are some discrepancy among the solutions on different grids before the approximated blowup
time, which may imply that the actual blowup time is earlier than t = 3.3 × 10−3 predicted based on the experiments
reported in [10]. It is therefore advantageous to use AMM techniques to numerically detect the blowup in amore convincing
way.

In this work, we compute the solution until the final time t = 0.004 using the designed AMMmethodwithN = 101, 201,
401 and 801. As one can see in Fig. 3.6, our AMM scheme achieves much higher resolution compared with the fourth-order
scheme from [10]. In addition,much less discrepancy between the solutions obtained on different grids is observedwhen the
solution is still smooth, which suggests that the AMM method is capable of providing a better estimate of the blowup time.
This is illustrated in Fig. 3.7, where we plot the ratios ∥ρ2N+1

2 ∥∞/∥ρ
N+1
2 ∥∞ as functions of time for both the fourth-order

hybrid finite-volume–finite-difference scheme from [10] and the proposed AMM scheme.
The final (post blowup) time numerical solution (ρ1 and ρ2) computed using N = 101 are presented in Fig. 3.8 (left and

middle). One can clearly see both qualitative and quantitative differences between ρ1 and ρ2. A high resolution is achieved
thanks to the AMM concentration in the small neighborhood of the origin; see Fig. 3.8 (right).

3.2. Parabolic–parabolic case

We now consider the system (1.1) with τ = 1, ν = 10, χ1 = 5 and χ2 = 60. In all of the computations below, we use an
initially uniform mesh with N = 101.

Example 3—Blowing up solution: ρ2 blows up faster than ρ1
In this example, taken from [9, Example 8], we choose the following initial conditions:

ρ1(x, y, 0) = ρ2(x, y, 0) = 500e−100(x2+y2), c(x, y, 0) = 1.

For this setting, numerical results reported in [9] suggest that ρ2 blows up faster than ρ1. In Fig. 3.9, we plot both densities
at the final time T = 0.001 and the corresponding mesh distribution. Compared with the results obtained in [9] on a
400 × 400 uniform grid, the proposed AMM upwind scheme provides a higher resolution of the computed solution. Indeed,
themaximumvalues ofρ1 andρ2 are now3.5758·103 and 2.8726·105, respectively (compare to 2.8660·103 and 1.8027·105).
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Fig. 3.6. Example 2: The maximums of ρ1 (left) and ρ2 (right) computed using the AMM scheme.

Fig. 3.7. Example 2: ∥ρ2N+1
2 ∥∞/∥ρ

N+1
2 ∥∞ as functions of time for different values of N , computed using the fourth-order hybrid finite-volume–finite-

difference scheme from [10] (left) and the proposed AMM scheme (right).

Example 4—Blowing up solution: large initial data
In this example, taken from [9, Example 9], we choose a larger initial cell densities:

ρ1(x, y, 0) = ρ2(x, y, 0) = 5000e−100(x2+y2), c(x, y, 0) = 1.

In this case, bothρ1 andρ2 blowupmuch earlier than in Example 3; see Fig. 3.10,where both densities and the corresponding
mesh distribution are plotted at the final time T = 0.0002. Once again, the proposed AMM upwind scheme produced more
accurate results than those computed in [9] on a 400 × 400 uniform grid.

Example 5—Multi-spiky structures
In the last example, we take noisy initial data,

ρ1(x, y, 0) ≡ ρ2(x, y, 0) = 10(1 + ψ), c(x, y, 0) ≡ 1,
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Fig. 3.8. Example 2: ρ1(x, y, 0.004) (left) and ρ2(x, y, 0.004) (middle) and themesh distribution at time T = 0.004 (right), obtained using the AMM scheme
with N = 101.

Fig. 3.9. Example 3: ρ1(x, y, 0.001) (left) and ρ2(x, y, 0.001) (middle) and themesh distribution at time T = 0.001 (right), obtained using the AMM scheme
with N = 101.

Fig. 3.10. Example 4: ρ1(x, y, 0.0002) (left) and ρ2(x, y, 0.0002) (middle) and the mesh distribution at time T = 0.0002 (right), obtained using the AMM
scheme with N = 101.

where ψ is a random variable uniformly distributed on [0, 1]. The solution, reported in Fig. 3.11, develops complicated
multi-spiky structures, which, as one can see, are captured by the our AMM upwind scheme with a high resolution.
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Fig. 3.11. Example 5: ρ1(x, y, 0.1) (top left), ρ2(x, y, 0.1) (top right), c(x, y, 0.1) (bottom left) and the mesh distribution at time t = 0.1 (bottom right),
obtained using the AMM scheme with N = 101.
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