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Abstract

We develop a second-order central-upwind scheme for the non-hydrostatic version of the
Saint-Venant system recently proposed in [M.-O. Bristeau and J. Sainte-Marie, Dis-
crete Contin. Dyn. Syst. Ser. B, 10 (2008), pp. 733–759]. The designed scheme is both
well-balanced (capable of exactly preserving the “lake-at-rest” steady state) and positivity
preserving. We then use the central-upwind scheme to study ability of the non-hydrostatic
Saint-Venant system to model long-time propagation and on-shore arrival of the tsunami-type
waves. We discover that for a certain range of the dispersive coefficients, both the shape and
amplitude of the waves are preserved even when the computational grid is relatively coarse.
We also demonstrate the importance of the dispersive terms in the description of on-shore
arrival.

Key words: hyperbolic systems of balance laws, dispersive shallow water systems, Godunov-type
central-upwind schemes.

1 Introduction

Tsunami waves are characterized by having a relatively low amplitude, large wavelength, and large
characteristic wave speed, see, e.g., [7,27,31]. In fact, the amplitude of a tsunami wave can be so
small that it may not even be noticed by a ship traveling through it in deep water. Because of
their speed and wavelength, however, these waves contain a tremendous amount of energy. When
the depth of the water decreases (in the beginning of the on-shore arrival stage of tsunami wave
propagation), tsunamis undergo a process called wave shoaling, in which the wave slows down and
the wavelength decreases. In order to conserve energy, it is transformed from kinetic to potential
energy and the wave amplitude increases. This potential energy can then be released in disastrous
fashion when the wave comes to shore. It is therefore very important to have accurate models and
corresponding numerical methods for tsunami waves in order to mitigate any catastrophe that
may result.
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One model used for shallow water waves is the classical Saint-Venant system [12], which is a
depth-averaged system that can be derived from the Navier-Stokes equations (see, e.g., [14]). The
Saint-Venant system is a very good simplification for lakes, rivers, and coastal areas in which the
typical time and space scales of interest are relatively short. Tsunami waves form in deep water
and travel very long distances (thousands of kilometers) before coming to the shore. Over long
time, solutions of the Saint-Venant system break down, dissipate in an unphysical manner, shock
waves develop, and the system fails to capture small, trailing waves that are seen in nature and
laboratory experiments [29]. Thus, it is necessary to use a more sophisticated model in order to
preserve the wave characteristics over long time simulations.

Non-hydrostatic models (the celebrated Green-Naghdi equation [17] and several others, see,
e.g., [1, 3, 4] and references therein) work well for long-time propagation of tsunami-like waves
because they allow the wave to travel for long distances without decaying in amplitude. In addition,
since these systems are dispersive, they give rise to trailing waves that are observed to follow
tsunamis in nature. However, it is necessary to achieve some balance between dispersion observed
with a non-hydrostatic model and the dissipation seen in the classical Saint-Venant system.

The non-hydrostatic Saint-Venant system presented in [5, 6] is given by ht + (hu)x = 0,

(hu)t +Mt +
(
hu2 +

g

2
h2
)
x

+N = −ghBx + pawx − 4(νux)x − κ(h, hu)u,
(1.1)

where h(x, t) is the water depth measured vertically from the bottom topography, described by
function B(x, t), u(x, t) is the vertically averaged velocity, hu is the horizontal momentum or
discharge, pa = pa(x, t) is the atmospheric pressure function, w := h + B is the free surface, ν is
the viscosity coefficient, κ is the friction function, and M and N are defined as

M(h, hu,B) =

(
−1

3
h3ux +

1

2
h2Bxu

)
x

+Bx

(
−1

2
h2ux +Bxhu

)
,

and

N(h, hu,B) =
(
(h2)t(hux −Bxu)

)
x

+ 2Bxht(hux −Bxu)−Bxt

(
−1

2
h2ux +Bxhu

)
. (1.2)

Here, M and N are terms that arise when the system is derived from the Euler equations and
include non-hydrostatic pressure terms [6].

One of the goals of the current work is to numerically study the effects of the dispersion terms
present in the non-hydrostatic model (1.1). To this end, we introduce the new scaling parameters
αM and αN as coefficients to M and N in (1.1). For the purpose of this work we will neglect fluid
viscosity and friction by setting ν and κ(h, hu) to be identically zero and also assume that the
bottom topography function is independent of time, i.e., B = B(x). In addition, we follow the
approach in [20, 24] and rewrite our system in terms of the equilibrium variables w = h + B and
q := hu: 

wt + qx = 0,

qt + αMMt +

(
q2

w −B
+
g

2
(w −B)2

)
x

+ αNN = −g(w −B)Bx + pawx.
(1.3)
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When αM = αN = pa ≡ 0, (1.3) reduces to the classical Saint-Venant system, and as we increase
these parameters, the amount of dispersion in our model increases and the effects of the lack of
the hydrostatic pressure assumption should be apparent.

To study the non-hydrostatic effects, we design a highly accurate and robust numerical method
for (1.3). A good scheme for this model should be well-balanced (it should exactly preserve “lake-
at-rest” steady-state solutions at the discrete level), it should preserve positivity of h, and it
should be able to properly handle discontinuous/nonsmooth solutions. The system (1.3) presents
challenges in the approximation and treatment of the higher-order mixed derivatives in the non-
hydrostatic terms whose semi-discretization leads to stiff terms that require an efficient numerical
solver for the resulting system of ODEs. In this paper, we develop a central-upwind scheme for
(1.3) which possesses all of the aforementioned features and use it to examine the effects of the
non-hydrostatic pressure terms on the propagation of waves over long times and on their on-shore
arrival.

Central-upwind schemes (first introduced in [26] and further developed in [21,23]) are Godunov-
type finite volume methods. They belong to the class of Riemann-problem-solver-free central
schemes and thus can be applied to a variety of hyperbolic systems of conservation laws as a
“black-box” solver. When central-upwind schemes are applied to systems of balance laws, a
special treatment of the source terms appearing in the system at hand must be developed. This
was done for single- and two-layer shallow water models in [2,9–11,19,20,24,25]. In order to apply
the central-upwind scheme to (1.3), one needs to specify the way the terms on the right-hand
side (RHS) of (1.3) are discretized. As it was mentioned above, this should be done in such a
way that physically relevant steady-state solutions are exactly preserved and h is guaranteed to
be nonnegative.

The physically relevant steady-state solution for (1.3) is the “lake-at-rest” solution, correspond-
ing to the water surface being perfectly flat and stationary:

w = h+B ≡ Const, hu ≡ 0. (1.4)

Preserving this particular steady state would guarantee that no artificial surface waves are gener-
ated, and also ensure that small perturbations of the water surface will not lead to a “numerical
storm”. This is achieved by using a special discretization of the geometric source term on the RHS
of (1.3) which is presented in Section 2.1.3.

Preserving positivity of h is essential since solutions containing negative h would not only be
unphysical, but will cause the numerical computations to fail. To ensure positivity of h, we follow
the idea from [24]. We first replace the bottom topography with its continuous piecewise linear
approximation and then adjust the piecewise linear reconstruction of the water heights, ensuring
that through each computational cell the depth of each layer is nonnegative. This is presented in
Section 2.1.1.

With the numerical method in place, we examine the effect of the non-hydrostatic pressure
terms in Section 3, where we try to strike a balance between dissipation and dispersion inherent
in the system.
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2 Numerical Method

2.1 Central-Upwind Scheme

We develop a new well-balanced positivity preserving scheme for (1.3), which is based on the semi-
discrete central-upwind scheme from [23] (see also [24,25]). For simplicity, we introduce a uniform
grid xj = j∆x where ∆x is a small spatial scale, and denote the computational cells centered at
xj by Ij := [xj− 1

2
, xj+ 1

2
].

We rewrite the system (1.3) in the following form:

Ut +M(U, B)t + F(U, B)x +N (U, B) = S(U, B), U := (w, q)> (2.1)

where

F(U, B) =
(
q,

q2

w −B
+
g

2
(w −B)2

)T
, S(U, B) = (0,−g(w −B)Bx + pawx)>,

M(U, B) = (0, αMM(U, B))T , N (U, B) = (0, αNN(U, B))T .

Using the above notations, a semi-discrete central-upwind scheme for (2.1) takes the form of
the following system of time-dependent ODEs:

d

dt

(
Uj(t) +Mj(t)

)
= −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
+ Sj(t)−N j(t), (2.2)

where (·)j(t) is used to denote the approximated cell averages over the corresponding cells:

Uj(t) ≈
1

∆x

∫
Ij

U(x, t) dx, Sj(t) ≈
1

∆x

∫
Ij

S(U(x, t), B(x)) dx,

M j(t) ≈
1

∆x

∫
Ij

M(U(x, t), B(x)) dx, N j(t) ≈
1

∆x

∫
Ij

N(U(x, t), B(x)) dx,

and Hj+ 1
2
(t) are the central-upwind numerical fluxes Hj+ 1

2
proposed in [24] (see also [21,23]):

Hj+ 1
2
(t) =

a+
j+ 1

2

F
(
U−

j+ 1
2

, Bj+ 1
2

)
− a−

j+ 1
2

F
(
U+

j+ 1
2

, Bj+ 1
2

)
a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+

j+ 1
2

−U−
j+ 1

2

]
. (2.3)

Here, the values U±
j+ 1

2

are the right/left point values at x = xj+ 1
2

of the conservative piecewise

linear reconstruction Ũ,

Ũ(x) := Uj + (Ux)j (x− xj) , xj− 1
2
< x < xj+ 1

2
, (2.4)

which is used to approximate U at time t, that is,

U±
j+ 1

2

:= Ũ
(
xj+ 1

2
± 0
)

= Uj+ 1
2
± 1

2
∓ ∆x

2
(Ux)j+ 1

2
± 1

2
. (2.5)
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The numerical derivatives (Ux)j are at least first-order accurate component-wise approximations
of Ux(xj, t), computed using a nonlinear limiter needed to ensure the non-oscillatory nature of
the reconstruction (2.4). The right- and left-sided local speeds a±

j+ 1
2

in (2.3) are obtained from

the smallest and largest eigenvalues of the Jacobian ∂F
∂U

(see Section 2.1.1 for details). Notice that

the terms U±
j+ 1

2

, Uj, a
±
j+ 1

2

, Ũ(x) and (Ux)j all depend on t, but we suppress this dependence for

simplicity.
We also follow the work of [24,25] and replace B(x) in (2.3) with its continuous piecewise linear

approximation by defining

Bj+ 1
2

:= B(xj+ 1
2
) and Bj :=

1

2
(Bj+ 1

2
+Bj− 1

2
). (2.6)

This will help to ensure the positivity preserving nature of the proposed scheme, as we show below.

2.1.1 Positivity-Preserving Reconstruction

The use of a piecewise linear reconstruction (2.4) requires the computation of slopes (Ux)j to
obtain the right/left point values defined in (2.5). It is well-known that in order to ensure the
non-oscillatory nature of the reconstruction, the use of a nonlinear limiter is required. We choose
to use the generalized minmod limiter:

(Ux)j = minmod

(
θ
Uj −Uj−1

∆x
,
Uj+1 −Uj−1

2∆x
, θ

Uj+1 −Uj

∆x

)
, θ ∈ [1, 2], (2.7)

where the minmod function defined as

minmod(z1, z2, . . . ) :=


min
j
{zj}, if zj > 0 ∀j,

max
j
{zj}, if zj < 0 ∀j,

0, otherwise,

is applied in a componentwise manner. The parameter θ can be used the control the amount of
numerical viscosity present in the resulting scheme (see, e.g., [28,30,33] for more details concerning
the generalized minmod and other nonlinear limiters).

Even when all of the cell averages hj are nonnegative, the reconstructed right/left point values
at the cell interface h±

j+ 1
2

may be negative. To guarantee positivity of h throughout the entire

computational domain, we follow the procedure from [24] and amend the reconstruction (2.4),
(2.5), (2.7) in the following conservative way:

if w−
j+ 1

2

< Bj+ 1
2
, then take (wx)j := − wj

∆x/2
=⇒ w−

j+ 1
2

= Bj+ 1
2
, w+

j− 1
2

= 2wj,

if w+
j− 1

2

< Bj− 1
2
, then take (wx)j :=

wj

∆x/2
=⇒ w−

j+ 1
2

= 2wj, w+
j− 1

2

= Bj− 1
2
.

(2.8)

It is necessary to compute the nonconservative quantity u = q/h for the computation of
numerical fluxes and local propagation speeds. We follow the desingularization procedure outlined
in [24,25] to avoid possible division by small values of h:

u :=

√
2(w −B) · q√

(w −B)4 + max ((w −B)4, ε)
, (2.9)
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where ε is a small desingularization parameter (in our numerical experiments, we have taken
ε = min((∆x)3, 10−4)). Notice that this procedure will only affect the velocity computations when
h4 < ε. It is also important to recalculate the values of q at the points where the velocity was
desingularized by setting

q := h · u.

Since the flux term F in (2.1) is equivalent to that of the classical Saint-Venant system, the
local propagation speeds a±

j+ 1
2

are computed the same way using the eigenvalues of ∂F
∂U

:

a+
j+ 1

2

:= max
{
u+
j+ 1

2

+
√
gh+

j+ 1
2

, u−
j+ 1

2

+
√
gh−

j+ 1
2

, 0
}
,

a−
j+ 1

2

:= min
{
u+
j+ 1

2

−
√
gh+

j+ 1
2

, u−
j+ 1

2

−
√
gh−

j+ 1
2

, 0
}
.

Remark 2.1 Proof of the positivity preserving property of this reconstruction is available in
[20,24].

2.1.2 Discretization of the Non-hydrostatic Pressure Terms

The dispersive terms M j and N j are computed using the second-order midpoint rule. We first
follow [5] and discretize the terms of M at xj in the following ways:(

1

3
h3ux

)
x

(xj) ≈
1

3∆x

[
uj+1 − uj

∆x

(
hj+ 1

2

)3 − uj − uj−1
∆x

(
hj− 1

2

)3]

=
1

3(∆x)2

(hj+ 1
2

)3
hj+1

qj+1 −

(
hj+ 1

2

)3
+
(
hj− 1

2

)3
hj

qj +

(
hj− 1

2

)3
hj−1

qj−1

 , (2.10)

(
1

2
h2Bxu

)
x

(xj) =

(
1

2
hBxq

)
x

(xj) ≈
1

2∆x

[
hj+ 1

2
(Bx)j+ 1

2
qj+ 1

2
− hj− 1

2
(Bx)j− 1

2
qj− 1

2

]
=

1

4∆x

[
hj+ 1

2
(Bx)j+ 1

2
qj+1 +

(
hj+ 1

2
(Bx)j+ 1

2
− hj− 1

2
(Bx)j− 1

2

)
qj − hj− 1

2
(Bx)j− 1

2
qj−1

]
, (2.11)

(
1

2
Bxh

2ux

)
(xj) ≈

1

2
(Bx)jh

2

j(ux)j ≈
1

2
(Bx)jh

2

j

[
1

hj
(qx)j −

(hx)j

h
2

j

qj

]

=
1

4∆x
(Bx)j

[
hjqj+1 − 2∆x(hx)jqj − hjqj−1

]
(2.12)

(B2
xhu)(xj) ≈ (Bx)2jqj, (2.13)

where uj := qj/hj and

uj+ 1
2

:=
1

2
(uj+1 + uj), hj+ 1

2
:=

1

2
(hj+1 + hj), qj+ 1

2
:=

1

2
(qj+1 + qj),

(Bx)j :=
Bj+ 1

2
−Bj− 1

2

∆x
, (Bx)j+ 1

2
:=

1

2
((Bx)j+1 + (Bx)j), (qx)j :=

qj+1 − qj−1
2∆x

.

(2.14)



Nonhydrostatic Saint-Venant System 7

We then replace the time derivatives ht by its space equivalent −qx and use (2.14) to obtain the
following discretization of N :

Nj =− 2

∆x

[
hj+ 1

2
· qj+1 − qj

∆x

(
hj+ 1

2

uj+1 − uj
∆x

− (Bx)j+ 1
2
uj+ 1

2

)
−hj− 1

2
· qj − qj−1

∆x

(
hj− 1

2

uj − uj−1
∆x

− (Bx)j− 1
2
uj− 1

2

)]
− 2(Bx)j(qx)j

{
(qx)j − [(hx)j + (Bx)j]uj

} (2.15)

Remark 2.2 In equations (2.10)–(2.13), (hx)j are obtained using the limiter as it is described in
Section 2.1.1, while (qx)j are calculated using the centered differences (see (2.14)). The latter is
done to avoid the need to solve a nonlinear system of algebraic equations as we explain in Section
2.2.

Remark 2.3 We would like point out that all of the terms in (2.10)–(2.13) will be taken at
either tn or tn+1 depending on a particular choice of the time evolution method for the numerical
integration of the system (2.2). The manner in which these terms are combined and treated is
presented in Section 2.2.

2.1.3 Well-Balanced Source Discretization

Our goal is to design a numerical scheme for (1.3) that exactly preserves the “lake-at-rest” steady-
state solution (1.4). This is achieved by selecting a proper discretization of the geometric source

term S
(2)

j . Such a discretization was derived for the classical Saint-Venant system in [20], and since
both Mj and Nj as defined in Section 2.1.2 vanish at this steady state, we use this discretization
along with an additional atmospheric pressure term for our scheme:

S
(2)

j = −g

(
w−

j+ 1
2

−Bj+ 1
2

)
+
(
w+

j− 1
2

−Bj− 1
2

)
2

·
(Bj+ 1

2
−Bj− 1

2
)

∆x
+ pa

w−
j+ 1

2

− w+
j− 1

2

∆x
.

2.2 Time Evolution

We solve the semi-discrete system (2.2) by applying the third-order strong stability preserving
Runge-Kutta (SSP-RK) method from [15, 16], which can be written as a convex combination of
three forward Euler steps. For the purpose of demonstration, we proceed by fully discretizing (2.2)
according to the forward Euler method, and all results obtained from doing so also apply to the
SSP-RK method used in all of our numerical experiments.

When fully discretized by the forward Euler method, the first component of (2.2) becomes

wn+1
j = wn

j − λ
(
H

(1)

j+ 1
2

−H(1)

j− 1
2

)
, (2.16)

where λ = ∆t/∆x. Notice that (2.16) has no contribution fromM, N or S and therefore we may
advance the first component independently of the second one to obtain the cell averages of w at

the new time level, {wn+1
j }Nj=1 (and thus {hn+1

j }Nj=1 since h
n+1

j := wn+1
j −Bj, where Bj is given by

(2.6)). The fully discretized version of the second component of (2.2) then becomes

qn+1
j + αMM

n+1
j = qnj + αMM

n
j − λ

(
H

(2)

j+ 1
2

−H(2)

j− 1
2

)
+ ∆tS

(2)

j −∆tαNN
n
j , (2.17)
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where all of the terms on the RHS of (2.17) are taken at t = tn.

Combining (2.10)–(2.13) for the discretization of M at time level tn+1 and inserting this into
the left-hand side (LHS) of (2.17) leads to the tridiagonal system T = (τn+1

i,j ), j = 1, . . . , N, i =

j − 1, j, j + 1 for {qn+1
j }:

qn+1
j + αMM

n+1
j = τn+1

j−1,jq
n+1
j−1 + τn+1

j,j qn+1
j + τn+1

j+1,jq
n+1
j+1 , (2.18)

where

τn+1
j−1,j = αM

hn+1

j (Bx)j − hn+1
j− 1

2

(Bx)j− 1
2

4∆x
−

(
hn+1
j− 1

2

)3
3h

n+1

j−1 (∆x)2

 ,
τn+1
j,j = 1 + αM

[
hn+1
j+ 1

2

(Bx)j+ 1
2
− hn+1

j− 1
2

(Bx)j− 1
2

4∆x
+

(
hn+1
j+ 1

2

)3
+
(
hn+1
j− 1

2

)3
3h

n+1

j (∆x)2
+

(Bx)j(hx)n+1
j

2
+ (Bx)2j

]
,

τn+1
j,j+1 = αM

hn+1
j+ 1

2

(Bx)j+hf − h
n+1

j (Bx)j

4∆x
−

(
hn+1
j+ 1

2

)3
3h

n+1

j+1 (∆x)2

 .
Notice that the term qnj +αMM

n
j on the RHS of (2.17) is discretized in the same way, but at time

level t = tn.

Remark 2.4 The addition of the dispersive terms M and N does not affect the well-balanced
property of the scheme because these terms vanish at the “lake-at-rest” steady state (1.4). The
positivity-preserving property of the scheme is also unaffected because these terms do not appear
in the first equation of (1.1).

Remark 2.5 We may write the LHS of (2.17) as described by (2.18) as T qn+1, where qn+1 is
the vector of the unknown cell averages {qn+1

j }Nj=1. When using free boundary conditions, T will
be strictly tridiagonal, and it is well-known that in this case, the linear algebraic system (2.17)
can be efficiently solved using the LU decomposition; see, e.g., [8, 34] for details. In the case of
periodic boundary conditions, the matrix T becomes circulant and one may still take advantage
of the banded structure of the matrix by implementing the Sherman-Morrison algorithm proposed
in [32].

3 Numerical Experiments

In the following experiments, we will examine the role that the non-hydrostatic pressure terms
play in the long-time propagation of water waves. We will use the classical Saint-Venant system
for comparison, which is simply (1.3) with αM = αN = pa ≡ 0. In all of the experiments, we take
pa ≡ 0, take the minmod parameter θ = 1.3, and consider free boundary conditions.



Nonhydrostatic Saint-Venant System 9

Example 1 — Solitary Wave Propagation

In the first example (taken from [5]), we study propagation of the wave given by the following
initial data:

h(x, 0) = 1 +
1

10
sech2

(√ 3

40
(x− 70)

)
, u(x, 0) =

√
g

10
sech2

(√ 3

40
(x− 70)

)
,

over a flat bottom topography with B(x) ≡ −0.1. We take g = 9.81 and divide the computational
domain [0, 400] into 3200 finite-volume cells. According to [5], in the case when αM = αN = 1,
these data correspond to a solitary wave, which is a single elevation of water surface above an
undisturbed surrounding, which is neither preceded nor followed by any free surface disturbances.

In our numerical experiments below, we compute the solutions until the final time t = 50 and
demonstrate how the speed, magnitude and shape of the wave is affected by the choice of αM and
αN . We begin with the classical Saint-Venant system (αM = αN = 0) and then start adding the
non-hydrostatic pressure terms by gradually increasing αM and αN . We first observe that for a
very small value of αM = αN = 0.01, the solutions of hydrostatic and non-hydrostatic systems
are almost the same except for a small change of the shape of the wave at the top; see Figure
3.1. We then further increase αM and αN to 0.02–0.05 and observe that up to the intermediate
times (around t = 20) the solution magnitude increases before decreasing at later times. One can
also observe a substantial change in the shape of the wave as a dispersive wave structure clearly
develops for αM = αN = 0.04 and 0.05; see Figure 3.2. When αM and αN are increased up to 0.01,
the magnitude of the wave seem to increase up to about t = 30 and then it stabilizes; for even
larger values of αM = αN = 0.25 and 0.5, the dispersive wave structure starts disappearing and
the amplitude growth becomes less pronounced; and for αM = αN = 1 the expected solitary wave
structure is numerically recovered; see Figure 3.3. Finally, in Figure 3.4, we show the solution
obtained for larger dispersive coefficients αM = αN = 2 and 5. As one can see, in these two cases
the magnitude of the wave decreases and a wave train is clearly formed.

Figure 3.1: Example 1: Time evolution of the water surface for αM = αN = 0 (left) and 0.01 (right).

We also perform an experimental convergence study of the proposed method. To this end, we
take the solution computed with αM = αN = 1 at time t = 0.1 on different grids and compare
them with the reference solution obtained with 51200 finite-volume cells. The results are reported
in Tables 3.1 and 3.2 for w and q, respectively. as One can observe, the expected second order of
convergence is achieved in both L∞-, L1- and L2-norms.
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Figure 3.2: Example 1: Time evolution of the water surface for αM = αN = 0.02 (top left), 0.03 (top
right), 0.04 (bottom left) and 0.05 (bottom right).

Example 2 — Large-Scale Tsunami-Like Wave Propagation

In the second example, we consider a wave that was created using a Savage-Hutter type model of
submarine landslides and generated tsunami waves. This model is governed by a two-layer system
in which the lower layer is considered to be a fluid-granular mixture that has a larger density than
the upper layer, which is water. The lower layer slides down the slope of the solid bottom, and
the through momentum exchange causes waves to form at the water surface. For more details of
this system and associated numerical methods, see [13,18,22].

The initial data are obtained from [22, Section 4.5], where a submarine landslide on the ocean
floor creates surface waves traveling to the left and right. We choose the right-moving wave at
t = 0.3 as the initial condition for the non-hydrostatic system (1.3) and the following bottom
topography function:

B(x) =

{
−5, x < 0,

−5 +
∑5

i=1Ci sin(π(x− Si)/Li), x ≥ 0,
(3.1)

where the parameters Ci, Si and Li are given in Table 3.3. The initial water surface w(x, 0) and
velocity u(x, 0) are plotted in Figure 3.5 and a nonflat part of the bottom topography is shown in
Figure 3.6. In this example, the length scale is kilometers and the time scale is hours, so we take
the corresponding gravity to be g = 271008 km/h2. The computational domain, [−150, 2200], is
divided into 18800 finite-volume cells.

We compute the solutions until the final time t = 2 and as in Example 1 study the dependence
of the computed solutions on the choice of the dispersion parameters αM and αN . We begin with
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Figure 3.3: Example 1: Time evolution of the water surface for αM = αN = 0.1 (top left), 0.25 (top
right), 0.5 (bottom left) and 1 (bottom right).

Figure 3.4: Example 1: Time evolution of the water surface for αM = αN = 2 (left) and 5 (right).

the classical Saint-Venant system (αM = αN = 0) and plot the obtained results in Figure 3.7. As
one can see, there are many small waves created behind the large wave as a result of the nonflat
bottom topography, but the structure of the larger waves does not seem to be significantly affected.
Figure 3.8 shows time snapshots of the numerical solutions of the non-hydrostatic system (1.3)
with αM = αN = 0.05, 0.1, 0.15 and 0.2. As expected, dispersive wave trains start appearing and
become more pronounced for larger values of αM and αN .



12 A. Chertock, A. Kurganov & J. Miller

Number of cells L∞-error Rate L1-error Rate L2-error Rate

400 2.94e-04 – 1.97e-04 – 1.47e-04 –

800 9.23e-05 1.67 4.46e-05 2.14 3.54e-05 2.06

1600 1.51e-05 2.61 8.99e-06 2.31 5.53e-06 2.68

3200 2.55e-06 2.56 2.04e-06 2.14 1.01e-06 2.45

6400 6.63e-07 1.94 5.13e-07 1.99 2.31e-07 2.13

12800 1.75e-07 1.92 1.49e-07 1.79 5.88e-08 1.97

Table 3.1: L∞-, L1- and L2-errors in w and the corresponding experimental rates of convergence.

Number of cells L∞-error Rate L1-error Rate L2-error Rate

400 2.28e-04 – 4.12e-04 – 1.90e-04 –

800 5.48e-05 2.06 1.03e-04 2.00 4.62e-05 2.04

1600 1.34e-05 2.04 2.56e-05 2.01 1.12e-05 2.05

3200 2.89e-06 2.21 6.49e-06 1.98 2.78e-06 2.01

6400 7.31e-07 1.98 1.65e-06 1.98 6.94e-07 2.00

12800 1.70e-07 2.10 4.14e-07 1.99 1.71e-07 2.02

Table 3.2: L∞-, L1- and L2-errors in q and the corresponding experimental rates of convergence.

i 1 2 3 4 5

Ci 0.1 0.3 0.5 0.1 1

Si 0 2 3 0 80

Li 40 70 100 10 2500

Table 3.3: Parameters used in for the bottom topography functions (3.1) and (3.2).

Figure 3.5: Example 2: Initial water surface (left) and discharge (right).

Example 3 — On-Shore Dynamics of the Large Wave

In order to further emphasize the difference between hydrostatic and non-hydrostatic solutions, we
let the computed waves to approach the shore. We take the solutions at time t = 2 shown in Figure
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Figure 3.6: Example 2: The bottom topography function (3.1).

Figure 3.7: Example 2: Time evolution of the water surface for the classical Saint-Venant system
(αM = αN = 0).

3.7 for αM = αN = 0 and Figure 3.8 for αM = αN = 0.2 as initial data in the domain [1000, 3000]
(divided into 16000 finite-volume cells) along with following bottom topography function:

B(x) =


−5 +

∑5
i=1Ci sin(π(x− Si)/Li), x < 2200,

−4.86 + 2.75 exp
[
−300

(
1− x

2600

)]
, 2200 < x ≤ 2600,

10−10 − 2.11 exp
[
−300

( x

2600
− 1
)]
, x > 2600,

(3.2)

where the coefficients Ci, Si, and Li are given in Table 3.3. We notice that near the shore, the
function B is simply a smooth curve that increases from −4.86 to almost zero; see Figure 3.9.

In order to accurately capture the on-shore arrival of the waves, we have implemented a special
well-balanced reconstruction of wet/dry fronts from [2] and computed both the hydrostatic and
non-hydrostatic solutions until the final time t = 3. We present several time snapshots of the
computed water surface in Figure 3.10. As one can see, both dispersive and non-dispersive waves
go through the shoaling process where they slow down and increase in height, and eventually
arrive on shore. If we look closer (Figure 3.11), we see that the trailing waves actually impact
how the wave comes to shore: The front of the non-hydrostatic solution is about 10–20 km behind
the hydrostatic one. This suggests that the non-hydrostatic terms must be included in a tsunami
model if one wants to accurately represent the ultimate outcome of the tsunami waves.
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Figure 3.8: Example 2: Time evolution of the water surface for αM = αN = 0.05 (top left), 0.1 (top
right), 0.15 (bottom left) and 0.2 (bottom right).

Figure 3.9: Example 3: The bottom topography function (3.2).
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