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Abstract

We study shallow water flows in river systems. An accurate description of such flows
can be obtained using the two-dimensional (2-D) shallow water equations, which can
be numerically solved by a shock-capturing finite-volume method. This approach can,
however, be inefficient and computationally unaffordable when a large river system with
many tributaries and complex geometry is to be modeled. A popular simplified approach is
to model flow in each uninterrupted section of the river (called a reach) as one-dimensional
(1-D) and connect the reaches at the river junctions. The flow in every reach can then be
modeled using the 1-D shallow water equations, whose numerical solution is dramatically
less computationally expensive compared with solving its 2-D counterpart. Even though
several point-junction models are available, most of them prove to be sufficiently accurate
only in the case of a smooth flow though the junction.

We propose a new 1-D/2-D river junction model, in which each reach of the river
is modeled by the 1-D shallow water equations, while the confluence region, where the
mixing of flows from the different directions occurs, is modeled by the 2-D ones. We define
the confluence region to be a trapezoid with parallel vertical sides. This allows us to take
into account both the average width of each reach and the angle between the directions
of flow of the tributary and the principal river at the confluence. We choose a trapezoidal
confluence region as it is consistent with the 1-D model of the river.

We implement well-balanced positivity preserving second-order semi-discrete central-
upwind schemes developed in [A. Kurganov and G. Petrova, Commun. Math. Sci.,
5 (2007), pp. 133–160] for the 1-D shallow water equations and in [H. Shirkhani, A.
Mohammadian, O. Seidou and A. Kurganov, Comput. & Fluids, 126 (2016), pp.
25–40] for the 2-D shallow water equations using quadrilateral grids. For the 2-D junction
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simulations in the confluence region we choose a very coarse 2-D mesh as the goal of
our model is not to resolve the fine details of complex 2-D vortices that form around the
junction, but to efficiently compute average water depth and velocity in the connected
1-D reaches. A special ghost cell technique is developed for coupling the reaches to the
confluence region, which is one of the most important parts of a good 1-D/2-D coupling
method. The proposed approach leads to very significant computational savings compared
to numerically solving the full 2-D problem.

We perform several numerical experiments to demonstrate plausibility of the proposed
1-D/2-D coupling model.

Key words: Shallow water flow in river systems, one-dimensional/two-dimensional coupling,
quadrilateral confluence region, well-balanced central-upwind scheme.

AMS subject classification: 86A05, 86-08, 76M12, 65M08, 35L65.

1 Introduction
?〈sec1〉?

There has been a growing interest in the scientific community in studying problems involving
flows in networks formed by domains joined by junctions. In the context of shallow water
applications, examples of such flows include river systems as well as man-made networks such
as canals. Flow in such a network can be modeled using the two-dimensional (2-D) Saint-Venant
(SV) system of shallow water equations [8]:

ht + (hu)x + (hv)y = 0

(hu)t + (hu2 +
1

2
gh2)x + (huv)y = −ghBx,

(hv)t + (huv)x + (hv2 +
1

2
gh2)y = −ghBy,

(1.1) sw2d

where h(x, y, t) denotes the water depth, u(x, y, t) and v(x, y, t) are the x- and y-velocities,
respectively, B(x, y) denotes the bottom topography, and g is the gravitational constant.

Figure 1.1: River junction.

2-D numerical simulations of flow in network such as
river systems typically require very fine discretization
in both space and time to resolve flow behavior through
a junction and consequently may incur prohibitive com-
putational costs. A common way to overcome this dif-
ficulty is to model flow in each uninterrupted section of
the river (called a reach) as one-dimensional (1-D) and
connect the reaches at the river junctions. For instance,
in the river junction model shown in Figure 1.1, there
are three reaches: the upstream reach, the downstream
reach, and the tributary. Suppose, in a given reach, flow
in the cross-river direction is negligible when compared
to flow in the downstream direction. In this case, the
system (1.1) reduces to the 1-D SV system of shallow
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water equations: ht + (hu)x = 0,

(hu)t + (hu2 +
1

2
gh2)x = −ghBx,

(1.2) sw1d

where x denotes the downstream direction for a given section of river, h = h(x, t), u = u(x, t)
and B = B(x).

We emphasize that numerically solving the 1-D system (1.2) is dramatically less compu-
tationally expensive than solving its 2-D counterpart (1.1). A key point in designing efficient
numerical methods for river networks is to model the flow in each reach by the 1-D SV system
and couple all of the 1-D reaches that converge to a certain junction. This should be done
in a way that (i) accurately models flow through the river junction, (ii) is able to handle all
flow regimes (that is, both sub-, super- and transcritical flows); (iii) captures the influence of
junction geometry, and (iv) limits computational cost of numerical simulations.

Two main approaches may be identified in modeling river junctions. The first and most
common approach is to model the river junction as a point; see, e.g., Figure 1.2. For subcritical
flows, the connecting boundary conditions are often taken to be continuity of flow,

(hu)(R3)
∣∣
C

= (hu)(R1)
∣∣
C

+ (hu)(R2)
∣∣
C
,

and continuity of either stage (w = h+B),

w(R1)
∣∣
C

= w(R2)
∣∣
C

= w(R3)
∣∣
C
,

or energy (E = w +
u2

2g
),

E(R1)
∣∣
C

= E(R2)
∣∣
C

= E(R3)
∣∣
C
.

Most of the time flow through a river junction is smooth, so a number of existing models use
this condition; see, e.g., [1, 5, 7, 10, 24, 25, 30, 34, 35, 38].

R2

R1 R3
C

Figure 1.2: A river junction modeled as a point. R1 and R3 are the upstream and downstream
reaches of the principal river and R2 is the tributary. C is the point of confluence.

〈approach1〉
Alternatively, some models use a momentum balance at the junction point. This allows for

modeling of supercritical flow and includes river width and tributary angle, [4, 28]. However,
it may result in nonphysical jumps in energy for subcritical flows, [5]. For this reason, some
models use a combination of energy and momentum conditions to handle sub- and supercritical
flow differently; see, e.g., [5, 39].

The main advantage of modeling the junction as a point is simplicity. If the application is
limited to subcritical flow, practice has shown it to work well. Some of the disadvantages are
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(i) it does not work in transcritical and supercritical flow regimes; (ii) it does not capture the
influence of junction geometry, when using continuity of flow and stage; (iii) there is a preferred
direction of flow so that shocks traveling one direction are captured but not in another, when
using momentum methods.

The second approach, taken in this paper, is to model the junctions as 2-D regions (see,
e.g., Figure 1.3), solve the 2-D SV system there, and then connect the 2-D junctions to the
1-D reaches using a 1-D/2-D coupling. This approach was considered in [14, 15, 32] using a
hexagonal region to represent the river junction. In [3], this approach was implemented for
T-shaped regions. One advantage of the 1-D/2-D coupling approach is that the shallow water
assumption is valid everywhere. This improves model consistency throughout the river junction
and allows for more reliable simulations of both sub-, super- and transcritical flows.

DR1

R2

φ

R3

Figure 1.3: A river junction modeled as a region. R1 and R3 are the upstream and downstream
reaches of the principal river and R2 is the tributary. D is the confluence region.

〈approach2a〉
In this paper, we propose a new river junction model, in which each reach of the river is

modeled by the 1-D SV system (1.2) and the confluence region, where the mixing of flows from
the different directions occurs, by the 2-D SV system (1.1). We assume that x indicates the
direction of flow of the main river and denote by y the direction orthogonal to x. We define
the confluence region D to be a trapezoid with parallel vertical sides; see Figure 1.3. Denote
the domains corresponding to upstream and downstream reaches of the principal river by R1

and R3, respectively, and denote by φ the angle between the directions of flow of the tributary
R2 and the principal river at the confluence. We choose a trapezoidal confluence region as is it
consistent with the 1-D model of the river. We wish to make clear that while the trapezoidal
confluence region is determined by the geometry of the actual junction, it is not a direct model
of the physical river junction, but a 2-D domain on which the mixing that occurs at the junction
is modeled. For this reason, a maximum angle of φ = π/2 is sufficient in all but extreme cases.
If a river junction does not fit these assumptions, a more general region D must be considered.
Note that by reversing the flow, a river diversion may also be modeled using this set-up.

We implement well-balanced positivity preserving second-order semi-discrete central-upwind
schemes developed in [19] for the 1-D SV system and in [33] for the 2-D SV system using
quadrilateral grids. It should be observed that for the 2-D junction simulations we will choose
a very coarse 2-D mesh. As the goal of this model is not to resolve the fine details of complex
2-D vortices that form around the junction, but to efficiently compute average water depth and
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velocity in the connected 1-D reaches, this coarse 2-D mesh is sufficient. A special ghost cell
technique will be developed for coupling the reaches to the confluence region, which is one of the
most important parts of a good 1-D/2-D coupling method; see, e.g., [3, 9, 27, 31, 34, 40]. The
proposed approach does not only allow one to easily model the geometry of the river junction,
including relative widths of the reaches, the angle of entry of the tributary and the bottom
topography, but also leads to very significant computational savings compared to solving the
full 2-D problem.

The paper is organized as follows. In §2, we introduce a specific way of discretizing both the
1-D river reaches and 2-D confluence region. In §3, we describe the 1-D and 2-D second-order
semi-discrete central-upwind schemes. §4 is devoted to the description of the 1-D/2-D coupling
strategy. A number of numerical examples is presented in §5. Finally, in §6, we discuss possible
extensions of the proposed model and directions for future work.

2 Domain Discretization
〈sec2〉

In this section, we introduce a specific way of discretizing both the 1-D river reaches and 2-D
confluence region outlined in Figure 1.3.

2.1 Discretization of River Reaches
?〈sec21〉?

In order to discretize a river reach as a 1-D domain, we partition the river into cells which
go all the way across the river as shown in Figure 2.1. For reach Ri, i = 1, 2, 3, we indicate
corresponding variables using superscript (Ri). We denote cell centers by x

(Ri)
j , for j = 1, . . . , Ni,

numbered in the direction of flow and we define additional cells, called ghost cells, extending
each domain by two cells centered at x

(Ri)
0 and x

(Ri)
Ni+1. For the simplicity of presentation, we

assume the interior cells are of uniform width ∆x = x
(Ri)

j+ 1
2

− x(Ri)

j− 1
2

within each reach Ri, but the

ghost cells might be of different width. We denote these widths ∆x
(Ri)
0 and ∆x

(Ri)
Ni+1 and will

explain how to determine them in §2.3 below.

∆x
(R1)
0 ∆x ∆x

(R1)
Ni+1

x
(R1)
j

x
(R1)

j+ 1
2

x
(R1)
j+1x

(R1)
0 x

(R1)
Ni+1

Figure 2.1: Discretization of reach R1 as a 1-D domain. Cells centered at x
(R1)
0 and x

(R1)
N1+1 are

ghost cells.
〈Figure:Discretization-1D〉
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2.2 Discretization of Confluence Region

〈sec22〉Before describing the specific discretization of the trapezoidal confluence region D, we must
consider the choice of dimensions of D as well as the grid size. In practice, each river junction
model is intended to form a small part in a larger model representing a river system containing
many reaches and junctions. As a result, computation of solution at the scale of the whole
system may be dominated by computation at river junctions. It is therefore impractical to
attempt to resolve 2-D waves appearing in the actual confluence region. Instead, we introduce
an artificial trapezoidal domain D, designed to take into account some geometrical features of
the actual confluence region and discretized using a small number of M×M cells (our numerical
experiments reported in §5 indicate that M = 4 as in Figure 2.2 seems to be sufficient for
accurate results). The size of the 2-D cells depends on the mesh size used in the 1-D reaches.
Ideally, the grid size in the confluence region should be comparable to the grid size in the
reaches. In this case the area of D is ∼ M2(∆x)2, which can be smaller than the size of the
actual confluence region. However, if the 1-D flow is underresolved (∆x is large), then we take
the domain D to be roughly of the same size as the actual confluence region and then still
split D into M2 cells so that the grid size in D will be (much) smaller than the grid size in the
reaches.

To quantify the aforementioned approach, we denote by bi the width of reach Ri, i = 1, 2, 3,
at the junction and distinguish between the following two cases.

Case 1. ∆x is large compared to the size of the physical junction, that is, ∆x > 1
4

min(b1, b2, b3).
This will likely be the case in very large river system models unless an adaptive moving mesh
or adaptive mesh refinement strategy is used to enhance the resolution of strong nonsmooth
waves. In this case, we define D to have side lengths b1, b2 and b3 on the sides corresponding
to reaches R1, R2 and R3. These three side lengths together with the angle φ between R1 and
R2 uniquely define the trapezoidal confluence domain D. Notice that in the case where ∆x is
very large, this choice of dimension may limit the size of time steps.

Case 2. ∆x is small compared to the size of the physical junction. In this case, we reduce the
size of the confluence region in a way that preserves the ratios of b1, b2 and b3. To this end, we
set the side lengths of the trapezoidal region D to be

b∗1 = M∆xb1

√
2

(b1 + b3)b2 sinφ
, b∗2 =

b2
b1
b∗1, b∗3 =

b3
b1
b∗1.

This results in a confluence region D of area ∼ (M∆x)2 with relative side lengths that reflect
the geometry of the physical junction.

We now denote the centers of gravity of each 2-D cell Cj,k by zj,k = (xj,k, yj,k) with j, k =
1, . . . ,M numbered left to right and bottom to top and the cell corners by zj± 1

2
,k± 1

2
. Note that

there is no superscript, but the double subscript indicates a point in the 2-D domain.

For the three sides corresponding to reaches, we define rectangular ghost cells extending
our domain in each direction as shown in Figure 2.2. These are denoted using the subscripts
j, k = 0,M + 1. Specifically, j = 0 corresponds to R1, k = 0 corresponds to R2, j = M + 1
corresponds to R3, and all having the width ∆x. We set a wall boundary condition at the
upper (river bank) side of D. The ghost cells on this fourth side are reflections of the interior
boundary cells across the boundary; see Figure 2.2.
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z1,1

zNx,Ny

Reach 1 Reach 3

R
ea
ch

2

Figure 2.2: Discretization of the general confluence region D with M = 4. Ghost cells are shown
using dotted lines. Ghost cells are rectangular on each of the sides corresponding to inflow and
outflow. On the side corresponding to the river bank, ghost cells are reflections of the interior cells
across the boundary.

〈disc2d〉

2.3 One-Dimensional Ghost Cells
〈sec23〉

We are now ready to give details of how to define the ghost cell widths for the 1-D reaches.

Consider the confluence region shown in Figure 2.2. Along the boundary corresponding to
reach R1, the cells are of constant width in the x-direction (the direction of R1), so the width
of the ghost cell at the right ends of R1 is given by

∆x
(R1)
N1+1 = x 3

2
,k − x 1

2
,k. (2.1) dxe1

Similarly, the width of the ghost cell at the left end of R3 is

∆x
(R3)
0 = xM+ 1

2
,k − xM− 1

2
,k. (2.2) dxw3

Note that the quantities in both (2.1) and (2.2) are independent of k.

The direction of R2 is (cosφ, sinφ), so we set the ghost cell width for the right end to be
the average cell width in this direction. One way to calculate this is to set

∆x
(R2)
N2+1 =

sinφ

M + 1

M+1∑
j=1

(yj− 1
2
, 3
2
− yj− 1

2
, 1
2
).

The other ghost cells, which are located away from the 2-D confluence region, are all set to
be of width ∆x, that is, ∆x

(R1)
0 = ∆x

(R2)
N2+1 = ∆x

(R3)
0 = ∆x.

Equipped with the entire domain discretization, we proceed to a description of both 1-D
and 2-D numerical schemes.
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3 Numerical Schemes
〈sec3〉

The studied 1-D/2-D model of the river and tributary requires the implementation of two
numerical schemes: a 1-D scheme for the river reaches and a 2-D scheme for the confluence
region. In practice, any stable and sufficiently accurate schemes may be used. As an example, we
use the well-balanced positivity preserving second-order semi-discrete central-upwind schemes
described in [19] and [21]. In this section, we briefly describe these schemes as applied to the
river junction model.

3.1 One-Dimensional Scheme
?〈sec31〉?

In each of the river reaches Ri, i = 1, 2, 3, we apply the 1-D central-upwind scheme described
in [19]. Since the scheme is independent of reach, we drop the reach indicator superscripts in
this section.

Let us denote by q := hu the discharge and introduce the vector of unknown quantities
U := (h, q)>. We also denote by

U j(t) ≈
1

∆x

x
j+1

2∫
x
j− 1

2

U(x, t) dx,

the cell averages of U , which are assumed to be available at a certain time level t. We note
that all of the computed indexed quantities will depend on t, but from now on we will omit
this dependence for the sake of brevity.

Piecewise Linear Reconstruction of Equilibrium Variables. Equipped with the com-
puted cell averages, we first approximate the solution using a global (in space) piecewise linear
interpolant. Following [17, 19], we reconstruct the equilibrium variables V := (w := h+B, q)>

(those that remain constant at “lake-at-rest” steady states, for which w ≡ Const and q ≡ 0) as
follows:

Ṽ (x) =
∑
j

Pj(x)χ[x
j− 1

2
,x

j+1
2
](x). (3.1) 3.1

Here, χ[x
j− 1

2
,x

j+1
2
] is the characteristic function corresponding to the jth cell and Pj is a linear

function of the form

Pj(x) =V j + (Px)j(x− xj), (3.2) 3.2

where (Px)j are the slopes that have to be at least first-order approximations of the corre-
sponding derivatives Vx(xj, t). In order to make the reconstruction (3.1), (3.2) non-oscillatory,
the slopes (Px)j are to be computed using a nonlinear limiter. A library of such limiters is
available; see, e.g., [11, 16, 23] and references therein. In the numerical experiments reported
in §5, we have used the generalized minmod limiter (see, e.g., [29, 36, 37]):

(Px)j = minmod

(
κ
V j+1 −V j

∆x
,
V j+1 −V j−1

2∆x
, κ

V j −V j−1

∆x

)
(3.3) 3.2a
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applied in a componentwise manner. Here, V j = (wj, qj)
>, wj := hj +Bj, where the quantity

Bj is defined below, κ ∈ [1, 2] is a parameter that controls the amount of numerical diffusion
in the overall method—larger values of κ correspond to sharper reconstructions, but typically
lead to (slightly) more oscillatory results, and the minmod function is defined by

minmod(a1, a2, . . .) =


min(a1, a2, . . .), if ai > 0,∀i
max(a1, a2, . . .), if ai < 0,∀i
0, otherwise.

After reconstructing Ṽ , we compute the left and right point values of V at each cell interface:

V −
j+ 1

2

= Pj(xj+ 1
2
) and V +

j+ 1
2

= Pj+1(xj+ 1
2
), (3.4) 3.2b

and then obtain the one-sided point values of the water depth h±
j+ 1

2

= w±
j+ 1

2

− Bj+ 1
2
, where

Bj+ 1
2

= B(xj+ 1
2
) if B is continuous and Bj+ 1

2
= 1

2

[
limx→x+

j+1
2

B(x)+limx→x−
j+1

2

B(x)
]

otherwise.

Continuous Piecewise Linear Approximation of the Bottom Topography. Following
[19], we replace the given bottom topography function B with its continuous piecewise linear
approximant

B̃(x) = Bj− 1
2

+
(
Bj+ 1

2
−Bj− 1

2

)
·
x− xj− 1

2

∆x
, xj− 1

2
≤ x ≤ xj+ 1

2
.

This choice of approximation has several advantages. First, the cell center values for B̃,

Bj :=
Bj+ 1

2
+Bj− 1

2

2
= Bj,

are equal to the cell averages of B̃. Also, the approximation is second order accurate so that the
overall accuracy of the method is unchanged. Furthermore, this approximation will allow one
to easily enforce the positivity of the reconstructed water depth after the following positivity
correction procedure is implemented.

Positivity Preserving Correction of w̃. We note that the use of aforementioned nonlinear
limiters cannot prevent appearance of negative point values of h−

j+ 1
2

or h+
j− 1

2

at the cell interfaces

in cells where hj is very close to Bj. Following [19], we correct the reconstruction of w̃ in the
following conservative way:

1. If w−
j+ 1

2

< Bj+ 1
2
, then set w−

j+ 1
2

= Bj+ 1
2

and w+
j− 1

2

= 2wj −Bj+ 1
2
, and consequently

h−
j+ 1

2

= 0 and h+
j− 1

2

= 2 (wj − Bj).

2. If w+
j− 1

2

< Bj− 1
2
, then set w+

j− 1
2

= Bj− 1
2

and w−
j+ 1

2

= 2wj −Bj− 1
2
, and consequently

h+
j− 1

2

= 0 and h−
j− 1

2

= 2 (wj − Bj).
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Time Evolution. We use the semi-discrete central-upwind scheme from [19] and evolve the
cell averages of U in time by solving the following system of ODEs:

d

dt
U j = −

Hj+ 1
2
−Hj− 1

2

∆x
+ Sj, (3.5) sd1d

where

Hj+ 1
2

=
a+
j+ 1

2

F
(
U−

j+ 1
2

)
− a−

j+ 1
2

F
(
U+

j+ 1
2

)
a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+

j+ 1
2

−U−
j+ 1

2

]
(3.6) nf

are central-upwind numerical fluxes and F (U) =
(
q, q

2

h
+ 1

2
gh2
)>

denote the flux.

In (3.5), the source term Sj is computed in a well-balanced manner (see [17, 19]):

Sj =

(
0,−ghj

Bj+ 1
2
−Bj− 1

2

∆x

)>
.

In (3.6), a±
j+ 1

2

are one-sided local speeds of propagation determined by the eigenvalues of

the flux Jacobian ∂F
∂U

; see [18]. For the SV system (1.2), the eigenvalues of the Jacobian are
u±√gh, and therefore

a−
j+ 1

2

= min
{
u−
j+ 1

2

−
√
gh−

j+ 1
2

, u+
j+ 1

2

−
√
gh+

j+ 1
2

, 0
}
,

a+
j+ 1

2

= max
{
u−
j+ 1

2

+
√
gh−

j+ 1
2

, u+
j+ 1

2

+
√
gh+

j+ 1
2

, 0
}
.

We finally note that in order to evaluate the one-sided local speeds of propagation and
numerical fluxes one needs to compute the point values of the velocity u±

j+ 1
2

. In principle,

u = q/h, but this formula should be desingularized to avoid division by zero or by very small
values of h. This can be done in many different ways, for example, by setting

u±
j+ 1

2

=

√
2h±

j+ 1
2

q±
j+ 1

2√
(h±

j+ 1
2

)4 + max
{

(h±
j+ 1

2

)4, ε
} , (3.7) 3.5

where ε is a very small number; see [19] for discussion on different desingularization strategies.
For consistency, after computing u±

j+ 1
2

using (3.7) we need to recompute q±
j+ 1

2

= h±
j+ 1

2

· u±
j+ 1

2

.

3.2 Two-Dimensional Numerical Scheme
〈sec32〉

For the confluence region described in §2.2, we use the well-balanced and positivity preserving
method for structured quadrilateral grids described in [21]; see also [20] for the derivation of
the central-upwind fluxes on quadrilateral grids and [33] for the central-upwind scheme for
unstructured quadrilateral grids.

Let us denote the 2-D velocity vector by u := (u, v)> and the discharge vector by q := hu =
(hu, hv)>. The vector of unknowns in the confluence region is then denoted by U := (h, q)>

and its cell averages over cell Cj,k by

U j,k(t) =
1

|Cj,k|

∫
Cj,k

U(z, t) dz, z := (x, y).

As in the previous section, we will omit writing the dependence on t.
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Piecewise Linear Reconstruction of Equilibrium Variables. As in the 1-D case, we
approximate the solution using a piecewise linear interpolant by reconstructing equilibrium
variables V := (w := h+B, q)>. We denote this approximation by

Ṽ(z) =
∑
j,k

Pj,k(z)χCj,k
,

where χCj,k
is the characteristic function corresponding to cell Cj,k and Pj,k(z) is a linear

function of the form

Pj,k(z) =Vj,k + (Pj,k)x (x− xj) + (Pj,k)y (y − yk).

Here,Vj,k = (wj,k, qj,k)>, wj,k = hj,k+Bj,k, where Bj,k is defined below, and (Pj,k)x and (Pj,k)y
are approximations of Vx (zj,k) and Vy (zj,k), respectively. Since the computational cells are
non-rectangular, estimating these derivatives is nontrivial. There are several ways to do this.
We estimate them in a two-step process following [33]. First, for each cell, we construct four
linear interpolants on the triangles shown in Figure 3.1 and compute the x- and y-derivatives
of these interpolants. Next, we use these derivatives together with a minmod slope limiter to
estimate the slopes for each cell in a way that avoids numerical oscillations and preserves cell
averages.

zj,k

zj,k+1

zj,k−1

zj−1,k zj+1,k

Figure 3.1: Linear reconstruction for 2-D structured grid.

For the first step, let (Vj,k)+,+
x and (Vj,k)+,+

y denote the x- and y-derivatives of the component-

wise linear interpolant Ṽ through the points zj,k, zj+1,k and zj,k+1. Similarly, let (Vj,k)+,−
x and

(Vj,k)+,−
y denote the x- and y-derivatives of the interpolant through the points zj,k, zj+1,k and

zj,k−1; let (Vj,k)−,−x and (Vj,k)−,−y denote the x- and y-derivatives of the interpolant through
the points zj,k, zj−1,k and zj,k−1; and let (Vj,k)−,+x and (Vj,k)−,+y denote the x- and y-derivatives
interpolant through the points zj,k, zj−1,k and zj,k+1.
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We now set

(Pj,k)x = minmod
(
κ (Vj,k)+,+

x , κ (Vj,k)+,−
x , κ (Vj,k)−,−x , κ (Vj,k)−,+x ,

1

4

[
(Vj,k)+,+

x + (Vj,k)+,−
x + (Vj,k)−,−x + (Vj,k)−,+x

] )
and

(Pj,k)y = minmod
(
κ (Vj,k)+,+

y , κ (Vj,k)+,−
y , κ (Vj,k)−,−y , κ (Vj,k)−,+y ,

1

4

[
(Vj,k)+,+

y + (Vj,k)+,−
y + (Vj,k)−,−y + (Vj,k)−,+y

] )
,

where 1 ≤ κ ≤ 2 is a minmod parameter with higher values giving sharper but possibly more
oscillatory solutions.

Lastly, we define approximate cell edge values

VE
j,k := Pj,k(zj+1,k), VW

j,k := Pj,k(zj−1,k), VN
j,k := Pj,k(zj,k+1), VS

j,k := Pj,k(zj,k−1),

where zj± 1
2
,k and zj,k± 1

2
are cell edge midpoints as shown in Figure 3.2.

zj,k

zj,k+1

zj,k−1

zj−1,k zj+1,k

−nj− 1
2 ,k

nj,k+ 1
2

nj+ 1
2 ,k

−nj,k− 1
2

zj− 1
2
,k zj+ 1

2
,k

zj,k+ 1
2

zj,k− 1
2

zj− 1
2 ,k+

1
2

zj− 1
2 ,k− 1

2

zj+ 1
2 ,k+

1
2

zj+ 1
2 ,k− 1

2

Figure 3.2: Notation for 2-D grid.

Continuous Piecewise Linear Approximation of the Bottom Topography. As in the
1-D case, we approximate the bottom topography with a continuous piecewise linear approx-
imation. We follow the method proposed in [33], according to which the bottom interpolant

B̃(z) in each quadrilateral cell Cj,k consists of four continuously connected linear pieces con-
structed over the following four triangles shown in Figure 3.3: TW

j,k (the triangle with vertices
zj,k, zj− 1

2
,k− 1

2
and zj− 1

2
,k+ 1

2
), TE

j,k (the triangle with vertices zj,k, zj+ 1
2
,k− 1

2
and zj+ 1

2
,k+ 1

2
), T S

j,k

(the triangle with vertices zj,k, zj− 1
2
,k− 1

2
and zj+ 1

2
,k− 1

2
) and TN

j,k (the triangle with vertices zj,k,

zj− 1
2
,k+ 1

2
and zj+ 1

2
,k+ 1

2
).

In order to complete the construction of B̃, we need to specify the point values of B̃ at each
of the aforementioned triangle vertices: zj,k, zj− 1

2
,k− 1

2
, zj+ 1

2
,k− 1

2
, zj− 1

2
,k+ 1

2
and zj+ 1

2
,k+ 1

2
. This

can be done as follows. First, we set the values of B̃ at the corners of Cj,k:

Bj± 1
2
,k± 1

2
:= B̃

(
zj± 1

2
,k± 1

2

)
= B

(
zj± 1

2
,k± 1

2

)
and Bj± 1

2
,k∓ 1

2
:= B̃

(
zj± 1

2
,k∓ 1

2

)
= B

(
zj± 1

2
,k∓ 1

2

)
.
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zj,k
TW
j,k

TE
j,k

TN
j,k

TS
j,kzj− 1

2
,k− 1

2

zj− 1
2
,k+ 1

2

zj+ 1
2
,k− 1

2

zj+ 1
2
,k+ 1

2

zj− 1
2
,k

zj,k+ 1
2

zj+ 1
2
,k

zj,k+ 1
2

Figure 3.3: Cell Ci,j with sub-triangles used in the linear approximation of the bottom topography.
〈fig:subtriangles〉

Second, we obtain the values of B̃ at the cell edge centers:

Bj± 1
2
,k := B̃

(
zj± 1

2
,k

)
=
B
(
zj± 1

2
,k+ 1

2

)
+B

(
zj± 1

2
,k− 1

2

)
2

,

Bj,k± 1
2

:= B̃
(
zj,k± 1

2

)
=
B
(
zj+ 1

2
,k± 1

2

)
+B

(
zj− 1

2
,k± 1

2

)
2

,

which are then averaged with appropriate weights to give the following cell center value:

Bj,k := B̃(zj,k) =
1

|Cj,k|
(∣∣TW

j,k

∣∣Bj− 1
2
,k +

∣∣TE
j,k

∣∣Bj+ 1
2
,k +

∣∣T S
j,k

∣∣Bj,k− 1
2

+
∣∣TN

j,k

∣∣Bj,k+ 1
2

)
.

Positivity Preserving Correction. At this point, we can recover cell edge center values
for the water depth hEj,k = wE

j,k − Bj+ 1
2
,k, hWj,k = wW

j,k − Bj− 1
2
,k, hNj,k = wN

j,k − Bj,k+ 1
2

and

hSj,k = wS
j,k −Bj,k− 1

2
. This reconstruction, however, does not guarantee that h will remain non-

negative; so following [17] we reconstruct h instead of w in dry or near dry cells. We consider
a cell to be near dry if

min {wj,k, wj±1,k, wj,k±1} < max {Bj,k, Bj±1,k, Bj,k±1}

or hj,k = wj,k −Bj,k < τ for some tolerance 0 < τ << 1.

Time Evolution. We evolve the cell averages of U using the semi-discrete central-upwind
scheme:

d

dt
U j,k(t) = − 1

|Cj,k|
(
Hj+ 1

2
,k −Hj− 1

2
,k + Hj,k+ 1

2
−Hj,k− 1

2

)
+ Sj,k, (3.8) sd2d
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where the numerical fluxes are defined by

Hj+ 1
2
,k =

`j+ 1
2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

(
cos
(
θj+ 1

2
,k

) [
a+
j+ 1

2
,k
F
(
UE

j,k

)
− a−

j+ 1
2
,k
F
(
UW

j+1,k

)]
+ sin

(
θj+ 1

2
,k

) [
a+
j+ 1

2
,k
G
(
UE

j,k

)
− a−

j+ 1
2
,k
G
(
UW

j+1,k

)]
+ a+

j+ 1
2
,k
a−
j+ 1

2
,k

(
UW

j+1,k − UE
j,k

))
,

Hj,k+ 1
2

=
`j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

(
cos
(
θj,k+ 1

2

) [
b+
j,k+ 1

2

F
(
UN

j,k

)
− b−

j,k+ 1
2

F
(
US

j,k+1

)]
+ sin

(
θj,k+ 1

2

) [
b+
j,k+ 1

2

G
(
UN

j,k

)
− b−

j,k+ 1
2

G
(
US

j,k+1

)]
+ b+

j,k+ 1
2

b−
j,k+ 1

2

(
US

j+1,k − UN
j,k

))
.

Here, F(U) =
(
hu, hu2 + 1

2
gh2, huv

)>
and G(U) =

(
hv, huv, hv2 + 1

2
gh2
)>

are the shallow
water fluxes; `j+ 1

2
,k := |zj+ 1

2
,k+ 1

2
− zj+ 1

2
,k− 1

2
| and `j,k+ 1

2
:= |zj+ 1

2
,k+ 1

2
− zj− 1

2
,k+ 1

2
| are cell edge

lengths and nj+ 1
2
,k =

(
cos(θj+ 1

2
,k), sin(θj+ 1

2
,k)
)>

and nj,k+ 1
2

=
(

cos(θj,k+ 1
2
), sin(θj,k+ 1

2
)
)>

are
unit outward normal vectors as shown in Figure 3.2.

The one-sided local speeds of propagation, a± and b±, are estimated by the maximum
positive and minimum negative eigenvalues of the Jacobian of the corresponding directional
flux:

a+
j+ 1

2
,k

= max
{
uE

j,k · nj+ 1
2
,k +

√
ghEj,k, u

W
j+1,k · nj+ 1

2
,k +

√
ghWj+1,k, 0

}
,

a−
j+ 1

2
,k

= min
{
uE

j,k · nj+ 1
2
,k −

√
ghEj,k, u

W
j+1,k · nj+ 1

2
,k −

√
ghWj+1,k, 0

}
,

b+
j,k+ 1

2

= max
{
uN

j,k · nj,k+ 1
2

+
√
ghNj,k, u

S
j,k+1 · nj,k+ 1

2
+
√
ghSj,k+1, 0

}
,

b−
j,k+ 1

2

= min
{
uN

j,k · nj,k+ 1
2
−
√
ghNj,k, u

S
j,k+1 · nj,k+ 1

2
−
√
ghSj,k+1, 0

}
.

As in the 1-D case, we desingularize the velocities u and v by setting

u =

√
2h2u√

h4 + max{h4, ε}
and v =

√
2h2v√

h4 + max{h4, ε}
at the centers of cell edges. As before, ε is a very small number. Following this, we recompute
the corresponding point values of the discharges by setting q = h · u.

Finally, the source term should be discretized in such a way which will result in a well-
balanced central-upwind scheme. We use the quadrature developed in [22]; see also [2, 6, 33].

The first component of the source term is trivial and S(1)
j,k = 0. The second component of the

discrete source term is
S(2)
j,k =

g

|Cj,k|
[
I
(2)
j,k − II

(2)
j,k

]
,

where

I
(2)
j,k =

`j+ 1
2
,k

2
cos
(
θj+ 1

2
,k

) (
wE

j,k −Bj+ 1
2
,k

)2
−
`j− 1

2
,k

2
cos
(
θj− 1

2
,k

) (
wW

j,k −Bj− 1
2
,k

)2
+
`j,k+ 1

2

2
cos
(
θj,k+ 1

2

) (
wN

j,k −Bj,k+ 1
2

)2
−
`j,k− 1

2

2
cos
(
θj,k− 1

2

) (
wS

j,k −Bj,k− 1
2

)2
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and

II
(2)
j,k = (wj,k −Bj,k)

[
wE

j,k`j+ 1
2
,k cos

(
θj+ 1

2
,k

)
+ wW

j,k`j− 1
2
,k cos

(
θj− 1

2
,k

)
+wN

j,k`j,k+ 1
2

cos
(
θj,k+ 1

2

)
+ wS

j,k`j,k− 1
2

cos
(
θj,k− 1

2

)]
.

Similarly, the third component of the discrete source term is

S(3)
j,k =

g

|Cj,k|
[
I
(3)
j,k − II

(3)
j,k

]
,

where

I
(3)
j,k =

`j+ 1
2
,k

2
sin
(
θj+ 1

2
,k

) (
wE

j,k −Bj+ 1
2
,k

)2
−
`j− 1

2
,k

2
sin
(
θj− 1

2
,k

) (
wW

j,k −Bj− 1
2
,k

)2
+
`j,k+ 1

2

2
sin
(
θj,k+ 1

2

) (
wN

j,k −Bj,k+ 1
2

)2
−
`j,k− 1

2

2
sin
(
θj,k− 1

2

) (
wS

j,k −Bj,k− 1
2

)2
and

II
(3)
j,k = (wj,k −Bj,k)

[
wE

j,k`j+ 1
2
,k sin

(
θj+ 1

2
,k

)
+ wW

j,k`j− 1
2
,k sin

(
θj− 1

2
,k

)
+wN

j,k`j,k+ 1
2

sin
(
θj,k+ 1

2

)
+ wS

j,k`j,k− 1
2

sin
(
θj,k− 1

2

)]
.

4 One-Dimensional/Two-Dimensional Coupling

〈bc〉Correctly coupling the reaches to the confluence region is perhaps the crucial part of the pro-
posed method. We follow the ideas from [34, 40]. Recall our notation: A superscript (·)(Ri)

indicates a value corresponds to the ith reach; no superscript indicates a value corresponds to
the confluence region D.

The boundary condition for reach Ri at the end connecting to the confluence region is given
by

U (Ri)
∣∣
∂D

=
1

|∂DRi
|

∫
∂DRi

U ds, (4.1) bc1

where ∂D denotes the boundary of the confluence region D and ∂DRi
denotes the edge that

corresponds to the side on which reach Ri enters the river junction. The boundary condition
for the confluence region on that side is

U |∂DRi
= U (Ri)

∣∣
∂D
. (4.2) bc2

We stress that (4.1) implies that U (Ri) at the end that connects to the confluence region takes
the average value of U along the edge on the side of Ri, while (4.2) sets the value of U all along
the edge of D corresponding to Ri to be the end value of U (Ri).

In addition, along the edge of D that does not correspond to a reach, a solid wall boundary
condition is enforced of u · n = 0.

In the remaining part of this section, we provide details on implementing these connecting
boundary conditions. The description consists of the following three stages: assignment of
ghost cell averages, reconstruction of boundary cells and assignment of ghost cell edge values.
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4.1 Ghost Cell Averages

〈sec41〉For the ghost cells on three sides of D, we assign the cell average values corresponding to the
values found at the end of the corresponding reach connected to D as shown in Figure 2.2. To
this end, one has to be careful about matching the direction of flow in the ghost cells with the
direction of the reach relative to D. Furthermore, the integral in (4.1) will be computed using
the midpoint rule, so it becomes an area-weighted average.

The ghost cell averages for the reaches are then assigned as follows.

1. At the downstream end of R1, we set

U
(R1)

N1+1 =

(∑M
k=1 |C1,k|h1,k∑M

k=1 |C1,k|
,

∑M
k=1 |C1,k|(hu)1,k∑M

k=1 |C1,k|

)>
.

2. At the downstream end of R2, we set

U
(R2)

N2+1 =

(∑M
j=1 |Cj,1|hj,1∑M

j=1 |Cj,1|
,

∑M
j=1 |Cj,1|(hu)j,1∑M

j=1 |Cj,1|
cosφ+

∑M
j=1 |Cj,1|(hv)j,1∑M

j=1 |Cj,1|
sinφ

)>
.

3. At the upstream end of R3, we set

U
(R3)

0 =

(∑M
k=1 |CM,k|hM,k∑M

k=1 |CM,k|
,

∑M
k=1 |CM,k|(hu)M,k∑M

k=1 |CM,k|

)>
.

The ghost cell averages for the confluence region corresponding to inflow or outflow bound-
aries are assigned as follows.

1. At the left edge of D (corresponding to R1), we set

U0,k =
(
h

(R1)

N1
, q

(R1)
N1

, 0
)>
, k = 1, . . . ,M.

2. At the lower edge of D (corresponding to R2), we set

U j,0 =
(
h

(R2)

N2
, q

(R2)
N2

cosφ, q
(R2)
N2

sinφ
)>
, j = 1, . . . ,M.

3. At the right edge of D (corresponding to R3), we set

UM+1,k =
(
h

(R3)

1 , q
(R3)
1 , 0

)>
, k = 1, . . . ,M.

An example of the assignment of ghost cell averages on the left side of D is shown in Figure
4.1.

For the fourth (upper) edge of D, we enforce a reflecting (solid wall) condition, which results
in the following formulae:

hj,M+1 = hj,M , qj,M+1 = qj,M − 2(qj,M · n)n, (4.3) 4.3

where n is the unit outward normal vector in the direction of the ghost cell. In the coordinate
form, formula (4.3) reads as

U j,M+1 =


hj,M

−(hu)j,M cos(2φ) +(hv)j,M sin(2φ)

(hu)j,M sin(2θj,m+ 1
2
) +(hv)j,M cos(2θj,m+ 1

2
)

 , j = 1, . . . ,M.
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ū
(R1)
N1 ū

(R1)
N1+1

ū0,2 ū1,2

ū0,1 ū1,1

ū0,3 ū1,3

Figure 4.1: Assignment of ghost cells between a reach and the confluence region.

4.2 Boundary Point Values

Equipped with the ghost cell averages obtained in §4.1, we now compute the boundary point
values required to evolve the solution on both sides of ∂D.

To this end, we need to complete the piecewise linear reconstruction in the cells adjusted to
∂D both in the 1-D reached and inside the confluence domain D. We begin with the boundary
cells of the 1-D reaches. It should be observed that the 1-D grid is not uniform there since the
size of the ghost cells is not necessarily equal to ∆x. Therefore, one cannot directly apply the
reconstructed procedure (3.1)–(3.4) as the computation of the slopes in (3.3) must be modified.
This is done in three different reaches as follows.

1. At the downstream end of R1, we set

(Px)
(R1)
N1

= minmod

κ 2
(
V

(R1)

N1+1 −V
(R1)

N1

)
∆x+ ∆x

(R1)
N1+1

,
2
(
V

(R1)

N1+1 −V
(R1)

N1−1
)

3∆x+ ∆x
(R1)
N1+1

, κ
V

(R1)

N1
−V

(R1)

N1−1

∆x

 . (4.4) 4.4

2. At the downstream end of R2, we set

(Px)
(R2)
N2

= minmod

κ 2
(
V

(R2)

N2+1 −V
(R2)

N2

)
∆x+ ∆x

(R2)
N2+1

,
2
(
V

(R2)

N2+1 −V
(R2)

N2−1
)

3∆x+ ∆x
(R2)
N2+1

, κ
V

(R2)

N2
−V

(R2)

N2−1

∆x

 . (4.5) 4.5

3. At the upstream end of R3, we set

(Px)
(R3)
1 = minmod

κV (R3)

2 −V
(R3)

1

∆x
,

2
(
V

(R3)

2 −V
(R3)

0

)
3∆x+ ∆x

(R3)
0

, κ
2
(
V

(R3)

1 −V
(R3)

0

)
∆x+ ∆x

(R3)
0

 . (4.6) 4.6

We then calculate the boundary point values
(
V −

N1+
1
2

)(R1),
(
V −

N2+
1
2

)(R2) and
(
V +

1
2

)(R3) by

substituting (4.4), (4.5) and (4.6), respectively, into (3.1), (3.2) and (3.4), and obtain the

corresponding values of
(
U−

N1+
1
2

)(R1),
(
U−

N2+
1
2

)(R2) and
(
U+

1
2

)(R3) by using the relation h = w−B.

Next, we obtain point values at the boundary cells of the confluence region, namely, we
compute UW

1,k, UE
M,k for k = 1, . . . ,M and US

j,1, UN
j,M for j = 1, . . . ,M , using the piecewise
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linear reconstructions in the 2-D cells along ∂D, which are obtained precisely as explained in
§3.2.

In order to compute the remaining point values, we would need to perform the data exchange
between the 1-D and 2-D settings (similarly to what has been done to compute the ghost cell
averages in §4.1).

The boundary point values for the 1-D reaches are assigned as follows (note that here instead
of using area-weighted averages as was done in §4.1, we use side-length weighted averages).

1. At the downstream end of R1, we set

(
U+

N1+
1
2

)(R1) =

(∑M
k=1 ` 1

2
,kh

W
1,k∑M

k=1 ` 1
2
,k

,

∑M
k=1 ` 1

2
,k (hu)W1,k∑M

k=1 ` 1
2
,k

)>
.

2. At the downstream end of R2, we set

(
U+

N2+
1
2

)(R2) =

(∑M
j=1 `j, 12

hSj,1∑M
j=1 `j, 12

,

∑M
j=1 `j, 12

(hu)Sj,1∑M
j=1 `j, 12

cosφ+

∑M
j=1 `j, 12

(hv)Sj,1∑M
j=1 `j, 12

sinφ

)>
.

3. At the upstream end of R3, we set

(
U−1

2

)(R3) =

(∑M
k=1 `M+ 1

2
,kh

E
M,k∑M

k=1 `M+ 1
2
,k

,

∑M
k=1 `M+ 1

2
,k (hu)EM,k∑M

k=1 `M+ 1
2
,k

)>
.

The point values at the inflow or outflow boundaries of the confluence region are assigned
as follows.

1. At the left edge of D (corresponding to R1), we set

UE
0,k =

((
h−
N1+

1
2

)(R1),
(
q−
N1+

1
2

)(R1), 0
)>

, k = 1, . . . ,M.

2. At the lower edge of D (corresponding to R2), we set

UN
j,0 =

((
h−
N2+

1
2

)(R2),
(
q−
N2+

1
2

)(R2) cosφ,
(
q−
N2+

1
2

)(R2) sinφ
)>

, j = 1, . . . ,M.

3. At the right edge of D (corresponding to R3), we set

UW
M+1,k =

((
h+1

2

)(R3),
(
q+1

2

)(R3), 0
)>

, k = 1, . . . ,M.

Finally, at the fourth (upper) edge of D, corresponding to a reflecting (solid wall) boundary
condition, we set

US
j,M+1 =


hNj,M

− (hu)Nj,M cos(2φ) + (hv)Nj,M sin(2φ)

(hu)Nj,M sin(2θj,m+ 1
2
) + (hv)Nj,M cos(2θj,m+ 1

2
)

 , j = 1, . . . ,M.
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5 Numerical Examples

〈sec6〉 In this section, we test the developed 1-D/2-D coupling approach on a number of numerical
examples in which the semi-discrete systems (3.5) and (3.8) are integrated in time using the
three-stage third-order strong-stability preserving (SSP) Runge-Kutta solver; see, e.g., [12, 13].
In the following tests, we take the parameters:

g = 1, κ = 1.5, ε = (∆x)4

unless specified otherwise. The results obtained using the 1-D/2-D coupling model are compared
with reference solutions computed by a fully 2-D numerical method from [26] over triangular
meshes.

Example 1—Shock wave through T-shaped junction

In this example, we consider the case where the tributary perpendicularly (φ = π/2) enters the
principal river with constant width. The confluence region is thus rectangular. The width of
upstream (R1) and downstream (R3) reaches are b1 = b3 = 0.2, while the width of the tributary
(R2) is b2 = 0.1. The nonflat bottom topography is defined by

B (x, y) =


0.099− 0.02(x+ 5), if x < −0.05 in R1,

0.1e−1.2(x−2.5)
2

, if x > 0.05 in R3,

0, otherwise.

(5.1) testbt1

The initial conditions corresponding to a dam-break flow are given by

w (x, y, 0) =

{
1.0, if x < −0.5 in R1,

0.5, otherwise,
u(x, y, 0) = v(x, y, 0) = 0. (5.2) ic1

We set outflow boundary conditions at every reach end not connected to the river junction.
The computational domain, the initial water level w(x, y, t = 0) as well as the water level
w(x, y, t = 4) computed by the fully 2-D scheme over a fine triangular mesh with 58818 cells
are shown in Figure 5.1.
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0.5
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Figure 5.1: Example 1: Initial (left) and simulated (right) water surface w.

Using the proposed numerical model, each reach is discretized by 1-D cells with the mesh
size ∆x = 0.1 and the confluence region is discretized using M ×M cells. In Figures 5.2 and
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5.3, we compare the water surface w and discharge hu computed at t = 4 in all three reaches
using the proposed 1-D/2-D coupling approach (with M = 4 and 16) with the corresponding
horizontal cross-section averaged quantities estimated using the 2-D model. One can see that
despite the discrepancy near the conjunction area, the 1-D/2-D results are in a good agreement
with the fully 2-D results in all three reaches in terms of water levels and front positions of
the waves. One can also clearly observe that using the finer mesh in the confluence region
(M = 16) in the 1-D/2-D coupling model will lead to a better agreement with the 2-D results.
In addition, one may observe larger differences between the presented results in the confluence
region. In order to further investigate this, we show Figure 5.4 in which we plot the water
surface contours and velocity vectors computed using the fully 2-D scheme. One can clearly see
that when the dam-break flow enters the confluence region, strong 2-D features are generated
there. Moreover, a vortex is clearly formed in the tributary R2 so that the 2-D features in reach
R2 are stronger than in the main river (reaches R1 and R3).
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Figure 5.2: Example 1: Comparison of the water surface w in reaches R1, R2 and R3 computed
at t = 4 using the proposed 1-D/2-D coupling model with the averaged water levels from the 2-D
computations.

〈rFig2〉

Example 2—Shock wave through junction with φ = π/3 tributary angle

In the second example, we consider a different geometrical setting, in which the tributary
enters the principal river at angle φ = π/3 and the side lengths are b1 = 0.2, b2 = 0.1/ sinφ,
and b3 = 0.2(1+cotφ). The bottom topography function and initial data are still given by (5.1)
and (5.2), respectively. As in Example 1, we set outflow boundary conditions at every reach
end not connected to the river junction. In Figure 5.5, we plot the computational domain, the
initial water level w(x, y, t = 0) and the water level w(x, y, t = 4) computed by the fully 2-D
scheme over a fine triangular mesh with 91729 cells.

Once again, each reach is discretized by 1-D cells with the mesh size ∆x = 0.1 and the
confluence region is discretized using M ×M cells. In Figures 5.6 and 5.7, we compare the
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Figure 5.3: Example 1: Comparison of the flow discharge hu in reaches R1, R2 and R3 computed at
t = 4 using the proposed 1-D/2-D coupling model with the corresponding averaged flow discharges
from the 2-D computations.

〈rFig3〉
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Figure 5.4: Example 1: Velocity vectors and contour lines of w computed at times t = 0.8 (left)
and 4 (right) by the fully 2-D scheme—zoom at the confluence region.

〈rFig4〉

water surface w and discharge hu computed at t = 4 in all three reaches using the proposed
1-D/2-D coupling approach (with M = 4, 16 and 32) with the corresponding horizontal cross-
section averaged quantities estimated using the 2-D model. As one can see, the use of a finer
mesh in the confluence region leads to a better agreement between the 1-D/2-D results and the
fully 2-D results in all three reaches in terms of water levels and front positions of the waves.
As before, one may observe larger differences between the presented results in the confluence
region due to strong 2-D features and vortices are generated when the dam-break flow enters
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Figure 5.5: Example 2: Initial (left) and simulated (right) water surface w.

there; see Figure 5.8, where we plot the water surface contours and velocity vectors computed
using the fully 2-D scheme.
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Figure 5.6: Example 2: Comparison of the water surface w in reaches R1, R2 and R3 computed
at t = 4 using the proposed 1-D/2-D coupling model with the averaged water levels from the 2-D
computations.

〈t2Fig2〉

Example 3—Steady flow through junction with φ = π/3 tributary angle

In this test, we consider steady flows in the same computational domain as in Example 2. The
nonflat bottom topography is defined by

B (x, y) =


0.04e−2(x+2.5)2 , if x < −0.05 in R1,

0.05e−2(x−2.5)
2

, if x > 0.05 in R3,

0, otherwise,

and the initial data are

w(x, y, 0) ≡ 0.5, u(x, y, 0) = v(x, y, 0) ≡ 0.
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Figure 5.7: Example 2: Comparison of the flow discharge hu in reachesR1, R2 and R3 computed at
t = 4 using the proposed 1-D/2-D coupling model with the corresponding averaged flow discharges
from the 2-D computations.

〈t2Fig3〉
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Figure 5.8: Example 2: Velocity vectors and contour lines of w computed at times t = 0.8 (left)
and 4 (right) by the fully 2-D scheme—zoom at the confluence region.

〈t2Fig4〉

The inflow boundary condition is given by hu = 0.2 for the R1 reach, hu = 0.1 for the R2 reach
(tributary), and the outflow boundary condition is set to be w = 0.48 for the R3 reach. The
gravitational acceleration g = 9.81 is used in this experiment.

We run both the 1-D/2-D and fully 2-D simulations until the final time t = 800 when the
flow reaches the steady state. The 1-D/2-D results are obtained using a uniform mesh with
∆x = 0.1 in each reach and M×M cells in the confluence region (with M = 4, 16 and 32). The
fully 2-D simulations are performed on a triangular mesh with 11983 cells. The obtained results
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are compared in Figures 5.9 and 5.10 demonstrating that both models approach similar steady
states as expected. In Figure 5.9, one can clearly observe that the steady state solutions in R1

and R2 are affected by the 2-D flow structures in the confluence region and a higher resolution
within the confluence region (larger M) leads to a better agreement with the fully 2-D model.
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Figure 5.9: Example 3: Comparison of the water surface w in reaches R1, R2 and R3 computed at
t = 800 using the proposed 1-D/2-D coupling model with the averaged water levels from the 2-D
computations.

〈t3Fig1〉

Example 4—Accuracy test

In this example, we investigate the experimental convergence order of the proposed numerical
method. We use the following settings. The width of upstream (R1) and downstream (R3)
reaches are b1 = 0.2 and b3 = 0.3, while the width of the tributary (R2) is b2 = 0.1 and the
tributary angle is φ = π/3. Each reach has a length of 5. A flat bottom B(x, y) ≡ 0 is used
over the entire domain and the smooth initial water surface and velocities are given by

w(x, 0) =

1 + 0.01
[
1− cos

(
10π(x+ 0.4)

)]
, if − 0.4 < x < −0.2 in R1,

1, otherwise,

u(x, y, 0) = v(x, y, 0) ≡ 0.

Each reach is discretized using N1 = N2 = N3 = N grid cells and the confluence region is
discretized by M ×M cells. The area of the confluence region scales depending on ∆x = 5/N .
We set outflow boundary conditions at every reach end not connected to the river junction and
compute the solution until the final time t = 0.7.

Tables 5.1 and 5.2 show the L1-errors and experimental convergence rates of water surface
w computed by the proposed numerical model with M = 4 and M = 8, respectively. The result
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Figure 5.10: Example 3: Comparison of the flow discharge hu in reachesR1, R2 and R3 computed
at t = 800 using the proposed 1-D/2-D coupling model with the corresponding averaged flow
discharges from the 2-D computations.

〈t3Fig2〉

computed with N = 12800 and M = 8 is used as a reference solution. One can observe that
the proposed numerical method achieves the desired second order of accuracy in each reach as
well as in the entire domain. In Figure 5.11, we illustrate the computed wave in each of the
reaches for different values of N . One can clearly observe the self-convergence of the computed
solution as the mesh is refined.

N R1 R2 R3 Entire Domain

L1-error Rate L1-error Rate L1-error Rate L1-error Rate

200 2.63e-04 – 7.09e-05 – 1.84e-04 – 5.18e-04 –

400 6.33e-05 2.05 2.22e-05 1.68 5.91e-05 1.64 1.45e-04 1.84

800 1.23e-05 2.36 4.80e-06 2.21 1.36e-05 2.12 3.07e-05 2.24

1600 3.21e-06 1.94 1.22e-06 1.98 3.37e-06 2.02 7.80e-06 2.11

3200 5.32e-07 2.59 2.71e-07 2.17 7.51e-07 2.16 1.56e-06 2.32

Table 5.1: Example 4: L1-errors and convergence rates for water surface w with M = 4.

Example 5—Supercritical shock wave through T-shaped junction

In this last example, we consider the case where the tributary perpendicularly (φ = π/2) enters
the principal river with constant width. The confluence region is thus rectangular. The width
of upstream (R1) and downstream (R3) reaches are b1 = b3 = 0.1, while the width of the
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Number of R1 R2 R3 Entire Domain

cells L1-error Rate L1-error Rate L1-error Rate L1-error Rate

200 2.72e-04 – 1.07e-04 – 2.55e-04 – 6.34e-04 –

400 6.63e-05 2.04 4.05e-05 1.40 1.01e-04 1.34 2.08e-04 1.61

800 1.48e-05 2.16 1.25e-05 1.70 2.93e-05 1.79 5.66e-05 1.88

1600 3.50e-06 2.09 3.31e-06 1.92 7.29e-06 2.01 1.41e-05 2.01

3200 7.03e-07 2.31 7.27e-07 2.19 1.64e-06 2.15 3.07e-06 2.20

Table 5.2: Example 4: L1-errors and convergence rates for water surface w with M = 8.
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Figure 5.11: Example 4: Water surface w computed using the proposed model in each reach with
M = 4 computed at t = 0.7.

〈t4Fig1〉

tributary (R2) is b2 = 0.2. The flat bottom B(x, y) ≡ 0 is used in this test and the initial
conditions, which correspond to an isolated supercritical shock wave with the Froude number
1.135 initially propagating in the y-direction (u(x, y, 0) ≡ 0) in the tributary (R2), are given by

w(x, y, 0) =

{
0.377, if y < −1.5 in R2,

0.1, otherwise,
v(x, y, 0) =

{
2.184, if y < −1.5 in R2,

0, otherwise.

We set an inflow boundary conditions with h = 0.377 and v = 2.184 in reach R2 at y = −5
and outflow boundary conditions at the ends of reaches R1 and R3 not connected to the river
junction. The gravitational acceleration g = 9.81 is used in this test. The computational
domain, the initial water level w(x, y, t = 0) as well as the water level w(x, y, t = 2) computed
by the fully 2-D scheme over a fine triangular mesh with 41818 cells are shown in Figure 5.12.
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Figure 5.12: Example 5: Initial (left) and simulated (right) water surface w.

Using the proposed numerical model, each reach is discretized by 1-D cells with the mesh
size ∆x = 0.1 and the confluence region is discretized using M ×M cells. In Figures 5.13 and
5.14, we compare the water surface w and discharge hu computed at t = 2 in reach R3 using the
proposed 1-D/2-D coupling approach (with M = 16 and 64) with the corresponding horizontal
cross-section averaged quantities estimated using the 2-D model (we do not show the solutions
in reaches R1 and R2 as the former one is symmetric to the solution in R3 and the latter one
is flat). Once again, despite quite large discrepancy near the conjunction area, the 1-D/2-D
results are in a reasonably good agreement with the fully 2-D results in terms of water levels
and front positions of the waves.
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Figure 5.13: Example 5: Comparison of the water surface w in reach R3 computed at t = 2 using
the proposed 1-D/2-D coupling model with the averaged water levels from the 2-D computations.

〈t5Fig2〉
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Figure 5.14: Example 5: Comparison of the flow discharge hu in reach R3 computed at t = 2 using
the proposed 1-D/2-D coupling model with the averaged flow discharge from the 2-D computations.

〈t5Fig3〉
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Example 6—Dam-break wave transportation over steady flow through junction
with φ = π/3 tributary angle

In this test, we consider a large scale of the computational domain with a φ = π/3 tributary
angle. The nonflat bottom topography is defined by

B (x, y) =


0.002(x+ 1.299), if x < −1.299 in R1,

0.01(y + 4), if y < −4 in R2,

0.004(x− 1.299), if x > 1.299 in R3,

0, otherwise,

and the initial data are

w(x, y, 0) ≡ 4, u(x, y, 0) = v(x, y, 0) ≡ 0.

The inflow boundary conditions are given by hu = −0.1 for the R3 reach and w = 4 for the R2

reach (tributary), and the outflow boundary condition is set to be w = 4 for the R1 reach. The
gravitational acceleration g = 9.81 is used in this experiment.

The width of upstream (R3) and downstream (R1) reaches are b3 = 8 and b1 = 5, respec-
tively, while the width of the tributary (R2) is b2 = 3. We run both the 1-D/2-D and fully 2-D
simulations until the final time t = 5000, by which the flow converges to the steady state. The
1-D/2-D results are obtained using a uniform mesh with ∆x = 2.5 in each reach and M ×M
cells in the confluence region with M = 12. The fully 2-D simulations are performed on a
triangular mesh with 38080 cells.

The obtained steady state solutions are shown in Figures 5.15 and 5.16 demonstrating that
both models approach similar steady states as expected.

Once the steady state results are obtained at t = 5000, we introduce a dam-break wave
from the inflow boundary of the R3 reach by setting hu = −0.5, and then simulate the wave
transport until t = 5023. The results plotted in Figures 5.17 and 5.18 clearly indicate that the
wave location computed by proposed numerical scheme agree well with those obtained by the
full 2-D simulations. However, due to the strong 2-D flow structure in the conjunction area,
some discrepancy of water height and discharge are observed in the tributary after the dam
break wave passes the area.

6 Conclusion
〈sec7〉

In this paper, we have proposed a new 1-D/2-D coupling approach for modeling river systems.
In the developed model, the flow in each reach of the river is governed by the 1-D Saint-
Venant system of shallow water equations, while the full 2-D system is used in the confluence
region, which is represented by a trapezoidal domain, whose dimensions are determined by the
widths of the corresponding reaches, which are assumed to be constant for each reach. Both
1-D and 2-D systems are numerically solved by the well-balanced positivity preserving central-
upwind schemes. The efficiency of the presented approach hinges upon the ability of using very
coarse meshes inside the 2-D confluence region. A number of numerical experiments have been
conducted to illustrate the robustness of the proposed modeling strategy.

Considering reaches of constant widths is somehow unrealistic and imposes certain limita-
tions to the applicability of our model to the large scale river system computations. In the
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Figure 5.15: Example 6: Comparison of the water surface w in reaches R1, R2 and R3 computed
at t = 5000 using the proposed 1-D/2-D coupling model with the averaged water levels from the
2-D computations.
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Figure 5.16: Example 6: Comparison of the flow discharge hu in reaches R1, R2 and R3 computed
at t = 5000 using the proposed 1-D/2-D coupling model with the averaged flow discharge from the
2-D computations.

〈t6Fig2〉
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Figure 5.17: Example 6: Comparison of the water surface w in reaches R1, R2 and R3 computed
at t = 5023 using the proposed 1-D/2-D coupling model with the averaged water levels from the
2-D computations.
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Figure 5.18: Example 6: Comparison of the flow discharge hu in reaches R1, R2 and R3 computed
at t = 5023 using the proposed 1-D/2-D coupling model with the averaged flow discharge from the
2-D computations.
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future, we plan to extend our 1-D/2-D coupling approach to more realistic situations, in which
the cross-sectional area variation is taken into account in the 1-D shallow water system used to
model the flow in each of the reaches.
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