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Abstract: In this paper we propose a new test of heteroscedasticity for para-

metric regression and partial linear regression models in multidimensional spaces.

When the dimension of covariates is large, or even moderate, existing tests of

heteroscedasticity perform badly due to the “curse of dimensionality”. To attack

this problem, we construct a test of heteroscedasticity by using a projection-based

empirical process. We study the asymptotic properties of the test statistic under

the null hypothesis and alternative hypotheses. It is shown that the test can de-

tect local alternatives departure from the null hypothesis at the fastest possible

rate in hypothesis testing. As the limiting null distribution of the test statistic is

not asymptotically distribution free, we propose a residual-based bootstrap. The

validity of the bootstrap approximations is investigated. We present some simu-

lation results to show the finite sample performances of the test. Two real data

analyses are conducted for illustration.

Key words and phrases: Heteroscedasticity testing; Partial linear models; Pro-

jection; U-process.
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1. Introduction

In many regression models the error terms are assumed to have common

variance. Ignoring the presence of heteroscedasticity in regression model-

s may result in inefficient inferences of the regression coefficients, or even

inconsistent estimators of the variance function. Therefore, testing het-

eroscedasticity in regression models should be conducted when the error

terms are assumed to have equal variance. Consider the following regres-

sion model:

Y = m(Z) + ε, (1.1)

where Y is the dependent variable with a p-dimensional covariate Z, m(·) =

E(Y |Z = ·) is the regression function, and the error term ε satisfies E(ε|Z) =

0. Thus the null hypothesis in testing heteroscedasticity for the regression

model (1.1) is that

H0 : V ar(Y |Z) = E(ε2|Z) ≡ C for some constant C > 0,

while the alternative hypothesis is that H0 is totally incorrect:

H1 : V ar(Y |Z) = E(ε2|Z) is a nonconstant function of Z.

Testing heteroscedasticity for the regression model (1.1) has been s-

tudied by many authors in the literature. Cook and Weisberg (1983) con-

structed a score test for heteroscedasticity in parametric regression models

with parametric structure variance functions. Simonoff and Tsai (1994) fur-

ther proposed a modified score test of heteroscedasticity for linear models.
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Muller and Zhao (1995) developed a data-based test for heteroscedastici-

ty in a general semiparametric variance function model with fixed design.

Dette and Munk (1998) proposed a consistent test for heteroscedasticity

in a nonparametric regression setting based on a L2-distance between the

underlying variance function and the constant variance. Zhu, Fujikoshi and

Naito (2001) developed a test of heteroscedasticity based on residual marked

empirical processes. Built on the work of Zheng (1996) for checking the re-

gression function, Dette (2002) and Zheng (2009) respectively proposed two

residual based tests for heteroscedasticity under different regression models.

Su and Ullah (2013) introduced a nonparametric test for conditional het-

eroscedasticity in nonlinear regression models. Recently, following the idea

of Stute, Xu and Zhu (2008), Chown and Müller (2018) proposed a test

of heteroscedasticity based on a weighted residual empirical distribution

function. Lin and Qu (2012) developed a test of heteroscedasticity for non-

linear semi-parametric regression models based on the work of Dette (2002).

Furthermore, Dette, Neumeyer and van Keilegom (2007), Wang and Zhou

(2007), Koul and Song (2010), and Pardo-Fernández and Jiménez-Gamero

(2018) considered a more general problem of checking the parametric form

of the conditional variance function in nonparametric regressions.

To motivate the construction of our test statistic in this paper, we first

give a detailed comment on two representative tests: Zhu, Fujikoshi and

Naito (2001)’s test and Zheng (2009)’s test. Let E(ε2) = σ2 and η = ε2−σ2.
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Then the null hypothesis H0 is tantamount to E(η|Z) = 0. Consequently,

E[ηE(η|Z)f(Z)] = 0,

where f(·) is the density function of Z. Based on a consistent estimator of

E[ηE(η|Z)f(Z)], Zheng (2009) proposed a test statistic as follows:

Tn =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

1

hp
K(

Zi − Zj
h

)η̂iη̂j,

where η̂i = ε̂2i − σ̂2, σ̂2 = (1/n)
∑n

i=1 ε̂
2
i , ε̂i = Yi − m̂(Zi) with m̂(·) being

an estimator of the regression function, K(·) is a p-dimensional multivari-

ate kernel function and h is a bandwidth, which would converge to 0 as n

goes to infinity. As Zheng (2009) used nonparametric smooth estimators

to construct the test statistic, it suffers severely from the “curse of dimen-

sionality”. More specifically, Zheng (2009)’s test can only detect the local

alternatives that converge to the null at a rate of O(1/
√
nhp/2). When p

is large, this rate could be very slow and the power of Zheng (2009)’s test

drops quickly.

Zhu, Fujikoshi and Naito (2001) used residual marked empirical pro-

cesses to construct a test of heteroscedasticity. Note that

E(η|Z) = 0⇔ E[ηI(Z ≤ t)] = 0 for all t ∈ Rp.

Based on this, Zhu, Fujikoshi and Naito (2001) proposed a residual marked

empirical process as follows:

Rn(t) =
1√
n

n∑
i=1

η̂iI(Zi ≤ t).
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Here I(Zi ≤ t) = I(Zi1 ≤ t1) · · · I(Zip ≤ tp) and Zij and tj are the j-

components of Zi and t respectively. The test statistic of Zhu, Fujikoshi

and Naito (2001) is a functional of Rn(t) such as the Cramér-von Mises or

Kolmogorov-Smirnov functional. It is shown that the test of Zhu, Fujikoshi

and Naito (2001) can detect the local alternatives converging to the null at

the parametric rate 1/
√
n which is the fastest convergence rate in hypothesis

testing. But when the dimension p of the covariates is large, this test also

suffers severely from the dimension problem due to the data sparseness in

multidimensional spaces.

The purpose of this paper is to develop a test of heteroscedasticity

in parametric regression models that would avoid the drawbacks of Zhu,

Fujikoshi and Naito (2001) and Zheng (2009) and be suitable for the case

in which the dimension of covariates is relatively large. We notice that Zhu,

Fujikoshi and Naito’s (2001) test is consistent against local alternatives

converging to the null at the parametric rate 1/
√
n which is not related

to the dimension of covariates. Nevertheless, their test still suffers from

the “curse of dimensionality” in practice. Note that their test statistic is

based on the indictor function I(Zi ≤ t) which is the product of p indictor

functions. This means that the vector (I(Z1 ≤ t), · · · , I(Zn ≤ t))> would be

very sparse for large p. Thus Zhu, Fujikoshi and Naito’s (2001) test cannot

avoid the dimension problem in practice. To overcome this problem, we

suggest to use the projected covariates α>Zi, rather than Zi, to construct a

residual marked empirical process and then the resulting test statistic would
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not involve the product of p indictor functions. Escanciano (2006) and

Lavergne and Patilea (2008, 2012) also adopted this approach to construct

goodness-of-fit tests for parametric regression models. As the test is based

on one-dimensional projections, it behaves as if the dimension of covariates

was one. Thus this method is less sensitive to the dimension p of the

regressors than that in Zhu, Fujikoshi and Naito (2001). On the other

hand, we also use residual marked empirical processes to construct the test

statistic. Thus our test statistic avoids nonparametric estimation of E(η|Z)

as used in Zheng (2009) and can detect local alternatives converging to

the null at the parametric rate 1/
√
n. Besides, the new test is easy to

compute, does not involve multidimensional numerical integrations, and

presents an excellent power performance for large dimension in finite sample

simulations, see Section 4.

We also use this method to check heteroscedasticity in partial linear

regression models. When the dimension of covariate is large, nonparamet-

ric estimation is less accurate due to the “curse of dimensionality”, and

partial linear regression models provide a more flexible substitution if the

researchers already know some of the covariates enter the regression model

linearly. Thus this model is widely used in economics, biology and other

related fields. To construct the test statistic for partial linear regression

models, we need to use locally smoothing methods to estimate the non-

linear part of the regression function. Although it involves nonparametric

estimators, we will show that the limiting distribution has the same for-
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m as that in parametric regression models and the proposed test can also

detect local alternatives converging to the null at a rate 1/
√
n under this

semi-parametric setting.

A procedure similar to ours is that of Chown and Müller (2018), where

they introduced a test of heteroscedasticity by using a weighted empirical

process based on the indictor function I(ε̂j ≤ t) rather than I(α>Zj ≤ t).

This procedure is first proposed by Stute, Xu and Zhu (2008) for checking

parametric regression models in high dimension settings. However, Chown

and Müller (2018)’s test is constructed only for location-scale models. That

is, Y = m(Z) +
√
V ar(Y |Z)e with e being independent with Z. The in-

dependence between e and Z is then employed to construct suitable test

statistics. Same to Chown and Mller (2018), Pardo-Fernandez and Jimenez-

Gamero (2018) also relies on this restriction. Moreover, they only consid-

ered one dimensional covariate. While our proposed test statistic does not

require this restriction. In fact, we only need E(ε|Z) = 0 and ε may depend

on Z in a more general way. Another issue is that the weighted function

ω(Z) of the empirical processes suggested by Chown and Mller (2018) also

relies on nonparametric estimations, regardless of the type of the regression

functions. Then their test still suffers from the curse of dimensionality even

for parametric regression models.

The rest of the paper is organized as follows. In section 2 we define the

test statistic by using a projection-based empirical process. In section 3 we

study the asymptotic properties of the test statistic under the null and al-
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ternative hypotheses in parametric regression and partial linear regression

models, respectively. In section 4, a residual-based bootstrap method is

proposed to approximate the null distribution of the test statistic, simula-

tion results comparing the proposed test with some existing competitors in

the literature are presented, and two real data sets are analyzed to illustrate

the proposed method. Section 5 contains a discussion. Technical proofs are

postponed in the Appendix.

2. Test construction

Recall that the null hypothesis H0 is equivalent to E(η|Z) = 0. Ac-

cording to Lemma 1 of Escanciano (2006) or Lemma 2.1 of Lavergne and

Patilea (2008), we have

E(η|Z) = 0⇐⇒ E(η|α>Z) = 0, ∀ α ∈ Sp,

where Sp = {α : α ∈ Rp and ‖α‖ = 1}. Consequently,

E(η|Z) = 0⇐⇒ E[ηI(α>Z ≤ t)] = 0, ∀ α ∈ Sp, t ∈ R.

Therefore, the null hypothesis H0 is tantamount to∫
Sp

∫
R
|E[ηI(α>Z ≤ t)]|2Fα(dt)dα = 0, (2.1)

where Fα is the cumulative distribution function of α>Z and dα is the

uniform density on Sp. Then we propose a test statistic for checking het-

eroscedasticity of model (1.1) as

HCMn =

∫
Sp

∫
R

1

n
|

n∑
j=1

η̂jI(α>Zj ≤ t)|2Fn,α(dt)dα, (2.2)
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where Fn,α is the empirical distribution function of the projected covariates

{α>Zj, 1 ≤ j ≤ n}.

Note that the test statistic HCMn involves a multidimensional integral

for large p. Indeed, by some elementary calculations,

HCMn =
1

n

n∑
i,j=1

η̂iη̂j

∫
Sp

∫
R
I(α>Zi ≤ t)I(α>Zj ≤ t)Fn,α(dt)dα

=
1

n2

n∑
i,j,k=1

η̂iη̂j

∫
Sp
I(α>Zi ≤ α>Zk)I(α>Zj ≤ α>Zk)dα.

It is well known that multidimensional numerical integrations are extremely

difficult to handle in practice. However, the following Lemma enables us

to avoid the multidimensional integrations in numerical calculations and

obtain an analytic expression of the test statistic HCMn. Its proof can be

found in Appendix B of Escanciano (2006).

Lemma 1. Let u1, u2 ∈ Rp be two non-zero vectors and Sp be the p-

dimensional unit sphere. Then we have∫
Sp
I(α>u1 ≤ 0)I(α>u2 ≤ 0)dα =

π− < u1, u2 >

2π
,

where dα is the uniform density on Sp and < u1, u2 >= arccos(
u>1 u2
‖u1‖‖u2‖) is

the angle between u1 and u2.

As noted by an anonymous referee, the integral in Lemma 1 can be

considered as a kernel function. Then our test statistic has similar form

as Zheng (2009)’s test. However, we should note that different from Zheng

(2009), our test statistic can be viewed as an U -statistic with a fixed band-

width instead of varying bandwidth. This makes a big difference. From the

9

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



TESTING HETEROSCEDASTICITY BASED ON PROJECTIONS

theories of U-statistics, we know that U-statistics with a fixed bandwidth

have a parametric convergence rate 1/
√
n which is faster than that with a

varying bandwidth. This coincides with the theoretical results we derive

here by using empirical processes. For the references of the U -statistic with

a fixed bandwidth, see Anderson et al. (1994) and Fan (1998).

The proposed test works for all regression models. It avoids some defi-

ciencies of Zhu, Fujikoshi and Naito (2001) and Zheng (2009), namely, the

nonparametric estimation of E(η|Z), multidimensional numerical integra-

tion and the low power performance when the dimension p is large. Note

that the test statistic is based on the residuals ε̂j = Yj − m̂(Zj), i.e., it

involves the estimator of the regression function E(Y |Z = ·). Thus our test

works well if it does not involve multidimensional nonparametric estima-

tions of E(Y |Z). In this paper we only deal with parametric regression and

partial linear regression models, as the test statistic only involves paramet-

ric estimations for parametric regression models and one dimensional kernel

estimations for partial linear regression models. It can also be applied to

nonparametric regression models. Then we have to estimate the unknown

regression function in a nonparametric way. Due to the sparsity of data in

multidimensional spaces, the behavior of nonparametric estimations quickly

deteriorates when the dimension of covariates increases. Then the result-

ing test still suffers from the “curse of dimensionality” for nonparametric

regression models in practice. However, we should note that this is a com-

mon problem for all existing tests of heteroscedasticity for nonparametric
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regression model since all tests require firstly to obtain an estimator for the

unknown regression function. Therefore, how to deal with the dimension

problem in testing heteroscedasticity for nonparametric regression models

is still a challenging problem.

3. Asymptotic results

First we consider a parametric regression model:

Y = m(Z, β) + ε, E(ε|Z) = 0, (3.1)

where β ∈ Rd and m(·, β) = E(Y |Z = ·) is the given regression function.

Let β̂n be a consistent estimator of β and ε̂i = Yi − m(Zi, β̂n). Then

η̂i = ε̂2i − σ̂2 = ε̂2i − (1/n)
∑n

i=1 ε̂
2
i . Define the projected empirical process

as follows,

Vn(α, t) =
1√
n

n∑
i=1

η̂iI(α>Zi ≤ t).

The test statistic becomes

HCMn =

∫
Sp

∫
R
|Vn(α, t)|2Fn,α(dt)dα.

To obtain the asymptotic properties of Vn(α, t) under the null and the

alternatives, we impose some regularity conditions.

(A1) E(ε4) <∞;

(A2)
√
n(β̂n − β) = Op(1);

(A3) The parametric regression function m(z, γ) is twice continuously

differentiable at each γ in a neighbourhood of β. Set

m′(z, γ) =
∂m(z, γ)

∂γ
and m′′(z, γ) =

∂m(z, γ)

∂γ>∂γ
.
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Assume E‖m′(Z, β)‖2 < ∞ and ‖m′′(z, γ)‖ ≤ M(z) with E|M(Z)|2 < ∞

for all γ. Here ‖ · ‖ denotes the Frobenious norm.

Conditions (A1) and (A3) are commonly used in the heteroscedasticity

testing literature, see, e.g., Zheng (2009). Condition (A2) is satisfied, e.g.,

for the ordinary least square estimator and its robust modifications see,

e.g., Chapters 5 and 7 in Koul (2002).

Theorem 1. Assume that the regularity conditions A1-A3 hold. Under H0,

we have

Vn(α, t) −→ V∞(α, t) in distribution,

where V∞(α, t) is a zero-mean Gaussian process with a covariance function

K{(α1, t1), (α2, t2)} = E{η2[I(α>1 Z ≤ t1)−Fα1(t1)][I(α>2 Z ≤ t2)−Fα2(t2)]}.

Furthermore,

HCMn −→
∫
Sp

∫
R
V∞(α, t)2Fα(dt)dα in distribution.

Next we apply this approach to check heteroscedasticity for partial lin-

ear regression models. Consider

Y = β>X + g(T ) + ε, E(ε|X,T ) = 0, (3.2)

where T ∈ R, β ∈ Rq, and g(·) is an smooth function. As the nonlinear part

g(T ) in equation (3.2) is unknown, it has to be estimated in a nonparametric

way. Thus, in theoretical investigations, the decomposition of the proposed

projected empirical process involves an U-process. With the help of the
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theory of U-process in the literature, see, e.g. Nolan and Pollard (1987),

we will obtain the same asymptotical property as that in Theorem 1 for

partial linear regression models.

We now use the kernel method to give the estimators of β and g(T ).

Note that

Y − E(Y |T ) = β>[X − E(X|T )] + ε.

Set Ỹ = Y − E(Y |T ) and X̃ = X − E(X|T ). It is easy to see that

β = [EX̃X̃>]−1E(X̃Ỹ ).

Let {(Xi, Ti, Yi)}ni=1 be an i.i.d. sample from the distribution of (X,T, Y ).

The resulting estimator of β is given by

β̂n =

(
1

n

n∑
i=1

[Xi − Ê(X|Ti)][Xi − Ê(X|Ti)]>
)−1(

1

n

n∑
i=1

[Xi − Ê(X|Ti)][Yi − Ê(Y |Ti)]

)
,

(3.3)

where

Ê(X|Ti) =
1

n

n∑
j=1,j 6=i

XjKh(Ti − Tj)/f̂i(Ti),

Ê(Y |Ti) =
1

n

n∑
j=1,j 6=i

YjKh(Ti − Tj)/f̂i(Ti),

and f̂i(Ti) = (1/n)
∑n

j=1,j 6=iKh(Ti − Tj). Here Kh(t) = (1/h)K(t/h) and

K(·) is a kernel function satisfying the regularity conditions (B3) that will

be specified below. To obtain the estimator of g(·), we notice that g(T ) =

E(Y −β>X|T ). Thus the kernel estimator of g(T ) have the following form:

ĝ(Ti) =
1

n

n∑
j=1,j 6=i

[Yj − β̂>nXj]Kh(Ti − Tj)/f̂i(Ti). (3.4)
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The following regularity conditions are needed for deriving the asymp-

totic distribution of HCMn in partial linear regression models. In the

following, C always stands for a constant that may be different from place

to place.

(B1) Let E ′(Y |T = t) be the derivative of E(Y |T = t) and let F (x|t)

be the conditional distribution function of X given T = t. Suppose that

there exists an open neighborhood Θ1 of 0 such that for all t and x,

|E(X|T = t+ u)− E(X|T = u)| ≤ C|u|, ∀ u ∈ Θ1;

|E ′(X|T = t+ u)− E ′(X|T = u)| ≤ C|u|, ∀ u ∈ Θ1;

|F (x|t+ u)− F (x|t)| ≤ C|u|, ∀ u ∈ Θ1.

(B2) E(Y 4) < ∞, E(‖X‖4) < ∞, and there exists a constant C such

that |E(ε2|T = t,X = x)| ≤ C for all t and x.

(B3) The kernel function K(·) is bounded, continuous, symmetric about

0 and satisfies: (a) the support ofK(·) is the interval [−1, 1]; (b)
∫ 1

−1K(u)du =

1 and
∫ 1

−1 |u|K(u)du 6= 0.

(B4) nh4 → 0 and nh2 →∞, as n→∞.

The conditions (B1), (B2) and (B3) are commonly used in deriving

the asymptotic properties of the nonparametric estimators, see, e.g., Schick

(1996) and Zhu and Ng (2003). Condition (B4) is necessary to obtain the

limiting distribution of the test statistic.
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Lemma 2. Under the regularity conditions B1-B4, we have

√
n(β̂n − β) = [EX̃X̃>]−1

1√
n

n∑
i=1

X̃iεi +Op(
1√
nh

+
√
nh2)1/2. (3.5)

Lemma 2 can be found in Zhu and Ng (2003). It indicates that, under

the regularity condition (B4), β̂n is root-n consistent. Now we can obtain

the asymptotic properties of HCMn in partial linear regression models. Set

p = q+ 1 and Zi = (X>i , Ti)
>. The proposed empirical process and the test

statistic have the same form as before,

Vn(α, t) =
1√
n

n∑
i=1

η̂iI(α>Zi ≤ t),

HCMn =

∫
Sp

∫
R
|Vn(α, t)|2Fn,α(dt)dα.

Here η̂i = ε̂2i − σ̂2, σ̂2 = (1/n)
∑n

i=1 ε̂
2
i , and ε̂i = Yi − β̂>nXi − ĝ(Ti).

Theorem 2. Suppose that the regularity conditions B1-B4 hold. Then un-

der partial linear models 3.2 and the null hypothesis H0, the results in The-

orem 1 continue to hold.

It is worth mentioning that existing tests of heteroscedasticity for par-

tial linear models in the literature usually assumed that the variance func-

tion V ar(Y |X,T ) only depends on T . This condition is not necessary for

our test. Under this condition, we can construct a much simpler test us-

ing the covariate T , rather than the projected covariate α>(X>, T )>. As

V ar(Y |X,T ) is a function of T , it follows that V ar(Y |X,T ) = E(ε2|T ).

Thus the null hypothesis H0 is tantamount to E(η|T ) = 0. The resulting
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test statistic is given as follows,

CM (1)
n =

∫
R
| 1√
n

n∑
i=1

η̂iI(Ti ≤ t)|2dt.

More generally, if T ∈ Rd is a multiple random variable, we also encounter

the dimension problem for large d. Then we can use the projected covariates

α>T to construct a test of heteroscedasticity. The test statistic becomes

CM (2)
n =

∫
Sd

∫
R
| 1√
n

n∑
i=1

η̂iI(α>Ti ≤ t)|2Fn,α(dt)dα,

where Fn,α is the empirical distribution function of projected covariates

{α>Ti : i = 1, · · · , n}. The limiting distributions of CM
(1)
n and CM

(2)
n are

similar as that of HCMn we derive here.

Now we investigate the sensitivity of the proposed test to alternative

hypotheses. Consider a sequence of local alternatives converging to the null

at a convergence rate cn

H1n : E(ε2|Z) = σ2 + cns(Z), (3.6)

where s(Z) is not a constant function of Z with E[s(Z)] = 0 and E[s2(Z)] <

∞. The following Theorem shows that the proposed test is consistent a-

gainst all global alternatives and it can detect the local alternatives con-

verging to the null at a parametric convergence rate 1/
√
n.

Theorem 3. Suppose that the regularity conditions in Theorem 1 or The-

orem 2 hold. Then

(1) under the alternatives H1n with
√
ncn → ∞, we have HCMn → ∞ in
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probability;

(2) under the alternatives H1n with cn = 1/
√
n, we have

HCMn −→
∫
Sp

∫
R
[V∞(α, t) + S(α, t)]2Fα(dt)dα in distribution,

where S(α, t) = E{s(Z)[I(α>Z ≤ t)− Fα(t)]} is a non-random shift term.

The proofs of Theorems 1-3 are presented in Appendix. These theorems

confirm the claims that we made in the introduction.

4. Numerical studies

4.1. Simulation studies

In this subsection we conduct several simulation studies to investigate

the performance of our test. As the test is not asymptotically distribution

free, we suggest a residual-based bootstrap to approximate the distribution

of the test statistic. This method has been previously adopted by Hsiao

and Li (2001), Wang and Zhou (2007), Su and Ullah (2013), and Guo et al.

(2019). The procedure of the residual-based bootstrap is given as follows:

(1). For a given random sample {(Yi, Zi) : i = 1, · · · , n}, obtain the resid-

ual ε̂i = Yi − m̂(Zi) with m̂(·) being an estimator of the regression

function.

(2). Obtain the bootstrap error ε∗i by randomly sampling with replace-

ment from the center variables {ε̂i − ¯̂ε : i = 1, · · · , n} where ¯̂ε =

(1/n)
∑n

i=1 ε̂i. Then define Y ∗i = m̂(Zi) + ε∗i .

(3). For the bootstrap sample {(Y ∗i , Zi) : i = 1, · · · , n}, obtain the estima-

tor m̂∗(Zi) and then define the bootstrap residual ε̂∗i = Y ∗i − m̂∗(Zi).
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Let η̂∗i = ε̂∗2i − σ̂∗2i and σ̂∗2i = (1/n)
∑n

i=1 ε̂
∗2
i . Thus the bootstrap test

statistic HCM∗
n is calculated based on {(η̂∗i , Zi) : i = 1, · · · , n}.

(4). Repeat step (2) and (3) a large number of times, say, B times. For a

given significant level τ , the critical value is determined by the upper

τ quantile of the bootstrap distribution {HCM∗
n,j : j = 1, · · · , B} of

the test statistic.

Note that m̂(Zi) = m(Zi, β̂n) for a parametric regression model (3.1) and

m̂(Zi) = β̂>nXi + ĝ(Ti) with Zi = (Xi, Ti) for a partial linear regression

model (3.2). The bootstrap estimators m̂∗(Zi) are defined similarly.

The next theorem establishes the validity of the proceeding residual-

based bootstrap.

Theorem 4. Suppose the regularity conditions in Theorem 1 or Theorem

2 hold. Then

(1) under the null H0 and the local alternative H1n, the distribution of

HCM∗
n given {(Yi, Zi) : i = 1, · · · , n} converges to the limiting null distri-

bution of HCMn in Theorem 1.

(2) under the alternative H1, the distribution of HCM∗
n given {(Yi, Zi) :

i = 1, · · · , n} converges to a finite limiting distribution.

Theorem 4 indicates that the proceeding bootstrap is asymptotical-

ly valid. Under the null hypothesis, the bootstrap distribution gives an

asymptotically approximation to the limiting null distribution of HCMn.

Under the local alternatives H1n and the global alternative H1, the proposed
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test based on the bootstrap critical values is still consistent.

Next we report some simulation results to show the finite sample per-

formances of the proposed test. We also make a comparison with Zhu,

Fujikoshi and Naito (2001)’s test TZFNn , Zheng (2009)’s test TZHn and Guo

et al. (2019)’s test TGn under different settings of dimensions. Note that

Guo et al. (2019) used the characteristic function to construct a test of het-

eroscedasticity, which is also based on one-dimensional projections. Thus

their test is also less sensitive to the dimension of covariates. More con-

cretely, their test statistic is based on the fact that the null hypothesis H0

is tantamount to E[η exp(it>Z)] = 0 for all t ∈ Rp. The test statistic of

Guo et al. (2019) is given as follows,

TGn =

∫
Rp

| 1
n

n∑
j=1

η̂j exp(it>Zj)|2fδ,p(t)dt,

where fδ,p(t) denotes the density of a spherical stable distribution in Rp

with characteristic exponent δ ∈ (0, 2]. Note that∫
Rp

cos(t>z)fδ,p(z)dz = exp(−‖t‖δ).

Thus Guo et al. (2019)’s test statistic has a closed form as follows,

TGn =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

η̂iη̂j exp(−‖Zi − Zj‖δ).

In the following studies, a = 0 corresponds to the null and a 6= 0 to the

alternatives. The sample sizes are 100 and 200. The empirical sizes and

powers are calculated through 1000 replications at a nominal level 0.05.
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The number of the bootstrap sample is set to be B = 500. We choose

δ = 1.5 in TGn , as suggested by Guo et al. (2019).

Study 1. The data are generated from the following parametric re-

gression models:

H11 : Y = β>Z + |a× β>Z + 0.5| × ε;

H12 : Y = β>Z + exp(a× β>Z)× ε;

H13 : Y = β>Z + |a× sin(β>Z) + 1| × ε;

H14 : Y = exp(−β>Z) + |a× β>Z + 0.5| × ε;

where Z ∼ N(0, Ip), independent of the standard normal error ε and β =

(1, · · · , 1)>/
√
p. To show the impact of the dimension, p is set to be 2, 4,

and 8 in each model. Note that model H13 is a high frequency model and

the other three are low frequency models. To see whether the regression

function can affect the performance of the tests, we consider a nonlinear

regression function in model H14.

The simulation results for the models H11 and H12 are presented in

Table 1. The rest simulation results are put in the Supplement for saving

space. It can be observed that when p = 2, Zheng (2009)’s test TZHn and

Guo et al. (2019)’s test TGn cannot maintain the significance level for some

cases, while the other two perform better. For the empirical power, all

these tests work well. But the proposed test HCMn and Zhu, Fujikoshi

and Naito (2001)’s test TZFNn grow faster than the other two as a increases.

When the dimension p becomes large, the tests HCMn and TZFNn can still
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control the empirical sizes. In contrast, the empirical sizes of TZHn and

TGn are slightly away from the significant level. For the empirical power,

the tests HCMn and TGn work much better than the other two and TZFNn

becomes the worst one as it almost has no empirical powers when p = 8.

These phenomena validate the theoretical results that the proposed test

HCMn is little affected by the dimension of covariates and the tests TZHn

and TZFNn suffer severely from the dimensionality. In the high frequency

model H13, we can observe that the locally smoothing test TZHn performs

much worse than the other tests. This is different from the case in model

checking where locally smoothing tests usually perform better than globally

smoothing tests in high frequency models. Further, we found no significant

difference in empirical sizes and powers from different regression functions

in models H11 and H14.

Tables 1 are about here

In the next simulation study we further investigate the performance

of the proposed test in partial linear regression models. We focus on two

different cases: (1) V ar(ε|X,T ) is a function of (X,T ) and (2) V ar(ε|X,T )

is a function of T .
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Study 2. The data are generated from the following models:

H21 : Y = β>X + T 2 + |a(β>X + T ) + 0.5| × ε;

H22 : Y = β>X + T 2 + exp{a(β>X + T )} × ε;

H23 : Y = β>X + T 2 + |a sin(β>X + T ) + 1| × ε;

H24 : Y = β>X + exp(T ) + |a(β>X + T ) + 0.5| × ε;

H25 : Y = β>X + exp(T ) + |a sin(β>X + T ) + 1| × ε;

H26 : Y = β>X + T 2 + exp(4aT )× ε;

where X ∼ N(0, Iq), T ∼ U(0, 1), ε ∼ N(0, 1) and β = (1, · · · , 1)>/
√
q.

The error term ε is independent of (X,T ). The dimension q of covariates

X is also set to be 2, 4 and 8.

We use the kernel function K(u) = (1/
√

2π) exp(−u2/2). Another is-

sue is the selection of the bandwidth h. There are a number of data-driven

procedures available to select the bandwidth automatically in estimation

problems, such as the generalized cross validation (GCV). In hypothesis

testing, how to select a bandwidth is still an open problem. Note that the

underlying regression models are different under the null and alternatives.

Eubank and Hart (1993) stated that the GCV method works well for choos-

ing the bandwidth in homoscedastic models while it may not be useful with

heteroscedastic models. Thus it is unknown whether there exists a data-

driven procedure for selecting the bandwidth in hypothesis testing. On the

other hand, Theorems 2 and 3 show that the asymptotic property of the

test statistic HCMn does not rely on the choice of h when the regularity
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condition (B4) is satisfied. Thus it may be said that the proposed test is

not very sensitive to the choices of the smoothing parameter h. Thus we

consider several values of h in a considerable wide range and empirically

choose one as the bandwidth. This strategy is also adopted by many au-

thors, such as Zhu, Fujikoshi and Naito (2001) and Sun and Wang (2009).

Let h = j/100 for j = 10, 15, 20, · · · , 100. The empirical sizes and powers

for different dimensions are presented in Figure 1 and 2.

Figures 1− 2 is about here

From these two figures, we can see that when the bandwidth h is too

small, HCMn cannot maintain the significant level. When the bandwidth

h is large than 0.5, the test statistic HCMn seems robust against different

bandwidths. Thus we recommend the bandwidth h = 0.65 in the following

simulation studies.

The empirical sizes and powers are presented in the Supplement. We

can observe that the results are similar to the case in Study 1 for the first

five models. The proposed test HCMn still performs the best. It seems

the nonlinear part g(·) in partial linear regression models does not impact

the performance of the test. The situation becomes different in model

H26. When the dimension q of the covariate X is relatively large, all tests

perform very bad. This can be explained that when q is large, the weight

of T contributed to the test statistics becomes small.

4.2. Real data analysis
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In this subsection we analyze two data sets for illustrations. The first

one is the well-known baseball salary data set that can be obtain through

the website http://www4.stat.ncsu.edu/~boos/var.select/baseball.

html. It contains 337 Major League Baseball players on the salary Y and

16 performance measures during both the 1991 and 1992 seasons. More

descriptions of the variables in the salary data set can be found in the

above website. Recently, Tan and Zhu (2018) analysed the data set and

suggest to fit the data set by a parametric single-index model as following:

Y = a+ b(β>X) + c(β>X)2 + ε.

Here we further investigate whether there exists a heteroscedasticity struc-

ture in the present model. We first plot the residuals ε̂ against the fit-

ted values Ŷ in Figure 3, where ε̂ = Y − â − b̂(β̂>nX) − ĉ(β̂>nX)2 and

Ŷ = â + b̂(β̂>nX) + ĉ(β̂>nX)2. This plot shows that the heteroscedasticity

structure may exist. When the proposed test is applied, we found the p-

value is about 0. This indicates the existence of heteroscedasticity. Thus

a parametric single index model with heteroscedasticity is plausible for the

salary data set.

Figures 3 is about here

In the next example we consider the ACTG315 data set which is ob-

tain from an AIDS clinical trial group study. This study tries to find the

relationship between virologic and immunologic responses in AIDS clinical

trials. The data set has been studied by Wu and Wu (2001, 2002) and
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Yang, Xue and Cheng (2009). Generally speaking, the virologic response

RNA (measured by viral load) and immunologic response (measured by CD

cell counts) have a negative correlation during the clinical trials. Let vi-

ral load be the response variable and CD4+cell counts and treatment time

be the covariates variables. Liang et al. (2004) find that there is a lin-

ear relationship between viral load and CD4+ cell count, but a nonlinear

relationship between viral load and treatment time. Base on this, Yang,

Xue and Cheng (2009) suggested a partial linear regression model to fit the

data. Xu and Guo (2013) further confirmed this by using a goodness of fit

test. There are totally 317 observations available in the data set with 64

CD4+ cell counts missing. To illustrate our test, we clear the observations

with missing variables. Let Y be viral load, T be treatment time and X be

CD4+cell counts. Yang, Xue and Cheng (2009) uses the following model

for data fitting:

Y = βX + g(T ) + ε.

We further use the proposed test to check the existence of heteroscedas-

ticity in the above models. When the normal kernel and the bandwidth

h = 0.65 are used, the p-value is about 0.246. Thus we cannot reject the

homoscedasticity assumption in the partial linear regression model. The

scatter plot of the residuals ε̂ against the fitted values Ŷ is presented in

Figure 4, where ε̂ = Y − β̂nX − ĝ(T ) and Ŷ = β̂nX + ĝ(T ). This plot also

shows that a partial linear model with homoscedasticity is appropriate for
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the data set.

Figures 4 is about here

5. Conclusions and discusses

In this paper we propose a test of heteroscedasticity by using a project-

ed empirical process. The proposed test can be viewed as a generalization

of Zhu, Fujikoshi and Naito (2001)’s test. When the dimension of covari-

ate is one, the proposed test reduces to Zhu, Fujikoshi and Naito (2001)’s

test. Thus they share some common desirable feathers: both of them are

consistent for all global alternatives; the convergence rate does not relate

to the dimension of covariates; they can detect local alternatives departing

from the null at a parametric rate 1/
√
n, that is the fastest convergence

rate in hypothesis testing. Nevertheless, we use the projection of covariates

rather than covariates themselves to construct the residual marked empiri-

cal process. As the proposed test is based on one-dimensional projections,

it performs as if the dimension of covariates was one. Thus our test can

significantly alleviate the impact of the “curse of dimensionality”. The sim-

ulation results validate these theoretical results. Further, our method can

be easily extended to a more generalized problem of testing the parametric

form of the variance function. But the limiting distributions of the empir-

ical processes may have a more complicated structure which may lead the

asymptotic test not available. This is beyond the scope of this paper and

deserves a further study.
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Supplementary Material

The online Supplementary Material contains two parts with the proofs

of the main results and the additional simulation results.
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Figure 1: The empirical size curves of HCMn against the different bandwidths

and sample size 100 and 200 with a = 0 in Model H21.
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Figure 2: The empirical power curves of HCMn against the different bandwidths

and sample size 100 and 200 with a = 0.2 in Model H21.
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Table 1: Empirical sizes and powers of HCMn, TGn , TZHn , and TZFNn for H11

and H12 in Example 1.

a HCMn TG
n TZH

n TZFN
n

n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200

H11, p = 2 0.0 0.045 0.051 0.058 0.062 0.042 0.033 0.052 0.049

0.1 0.528 0.895 0.391 0.751 0.123 0.286 0.503 0.889

0.2 0.966 1.000 0.921 1.000 0.468 0.889 0.961 1.000

0.3 0.998 1.000 0.990 1.000 0.779 0.990 0.985 1.000

0.4 0.998 1.000 0.999 1.000 0.885 0.998 0.974 1.000

0.5 0.994 1.000 0.999 1.000 0.928 1.000 0.965 0.998

H11, p = 4 0.0 0.055 0.053 0.050 0.057 0.031 0.022 0.063 0.051

0.1 0.398 0.767 0.233 0.481 0.049 0.095 0.131 0.593

0.2 0.874 0.997 0.669 0.958 0.145 0.347 0.426 0.956

0.3 0.963 1.000 0.857 0.999 0.306 0.621 0.541 0.964

0.4 0.970 0.999 0.943 1.000 0.430 0.821 0.419 0.916

0.5 0.944 0.998 0.958 1.000 0.492 0.876 0.297 0.809

H11, p = 8 0.0 0.049 0.049 0.053 0.065 0.045 0.036 0.050 0.049

0.1 0.289 0.600 0.151 0.257 0.055 0.055 0.004 0.004

0.2 0.755 0.980 0.352 0.688 0.108 0.132 0.004 0.010

0.3 0.883 0.997 0.526 0.892 0.138 0.187 0.004 0.010

0.4 0.874 0.990 0.623 0.946 0.167 0.254 0.009 0.009

0.5 0.853 0.988 0.647 0.966 0.247 0.324 0.023 0.014

H12, p = 2 0.0 0.054 0.046 0.043 0.068 0.032 0.056 0.052 0.045

0.1 0.183 0.347 0.138 0.262 0.059 0.080 0.153 0.327

0.2 0.564 0.892 0.440 0.753 0.121 0.295 0.502 0.878

0.3 0.882 0.996 0.747 0.967 0.281 0.692 0.810 0.993

0.4 0.973 0.999 0.927 0.999 0.514 0.900 0.919 0.997

0.5 0.987 0.999 0.983 1.000 0.650 0.964 0.944 0.986

H12, p = 4 0.0 0.050 0.046 0.058 0.048 0.028 0.023 0.057 0.056

0.1 0.127 0.270 0.103 0.157 0.034 0.038 0.040 0.110

0.2 0.424 0.789 0.264 0.479 0.048 0.075 0.104 0.529

0.3 0.702 0.976 0.488 0.856 0.114 0.208 0.210 0.804

0.4 0.862 0.993 0.727 0.976 0.163 0.436 0.294 0.857

0.5 0.910 0.993 0.849 0.996 0.272 0.651 0.317 0.802

H12, p = 8 0.0 0.050 0.046 0.085 0.062 0.039 0.037 0.054 0.047

0.1 0.112 0.193 0.083 0.111 0.055 0.053 0.014 0.001

0.2 0.274 0.618 0.156 0.266 0.063 0.057 0.002 0.003

0.3 0.549 0.919 0.252 0.526 0.089 0.086 0.002 0.000

0.4 0.757 0.973 0.372 0.727 0.113 0.154 0.001 0.002

0.5 0.836 0.972 0.494 0.865 0.140 0.207 0.001 0.002
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Figure 3: The scatter plot of the residuals ε̂i against the fitted values Ŷi for the

baseball salary data set.
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Figure 4: The scatter plot of the residuals ε̂i against the fitted values Ŷi for the

ACTG 315 data set.
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