
Statistica Sinica 22 (2012), 000-000

doi:http://dx.doi.org/10.5705/ss.2010.203

ORACLE MODEL SELECTION FOR NONLINEAR MODELS

BASED ON WEIGHTED COMPOSITE

QUANTILE REGRESSION

Xuejun Jiang, Jiancheng Jiang and Xinyuan Song

Zhongnan University of Economics and Law,

University of North Carolina at Charlotte

and The Chinese University of Hong Kong

Abstract: In this paper we propose a weighted composite quantile regression

(WCQR) estimation approach and study model selection for nonlinear models with

a diverging number of parameters. The WCQR is augmented using a data-driven

weighting scheme. With the error distribution unspecified, the proposed estimators

share robustness from quantile regression and achieve nearly the same efficiency

as the oracle maximum likelihood estimator for a variety of error distributions

including the normal, mixed-normal, Student’s t, Cauchy distributions, etc. Based

on the proposed WCQR, we use the adaptive-LASSO and SCAD regularization to

simultaneously estimate parameters and select models. Under regularity conditions,

we establish asymptotic equivalency of the two model selection methods and show

that they perform as well as if the correct submodels are known in advance. We

also suggest an algorithm for fast implementation of the proposed methodology.

Simulations are conducted to compare different estimators, and an example is used

to illustrate their performance.
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1. Introduction

Various techniques have been developed for simultaneous variable selection

and coefficient estimation, based on the penalized likelihood or least squares prin-

ciples. Examples include the nonnegative garrote (Breiman (1995) and Yuan and

Lin (2007)), the LASSO (Tibshirani (1996)), bridge regression (Fu (1998) and

Knight and Fu (2000)), the SCAD (Fan and Li (2001)), the MC+ (Zhang (2010)),

etc. These methods have advantages over traditional stepwise deletion and subset

selection procedures in implementation and in the derivation of sampling prop-

erties, and have been extended by several authors to achieve robustness. For

instance, for linear models, He and Shao (2000) considered M-estimator for gen-

eral parametric models, Wang, Li, and Jiang (2007) considered the LASSO for

least absolute regression (LAD-LASSO), and Zou and Yuan (2008a) studied the
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LASSO for composite quantile regression (CQR-LASSO), among others. These

endeavors have enriched the variable selection theory for different models by us-

ing different regularized estimation methods, with aim at oracle model selection

procedures (see Fan and Li (2006) for a comprehensive overview) and robustness

and efficiency of the estimation (Zou and Yuan (2008a)).

The CQR-LASSO in Zou and Yuan (2008a) is robust and performs nearly like

a CQR-oracle model selector. The CQR they used is a sum of different quantile

regression (QR) (Koenker and Bassett (1978)) at predetermined quantiles, which

uses equal weights for different QR (see Section 2 for details). Intuitively, equal

weights are not optimal in general, and hence a more efficient CQR should exist.

In this article we suggest a “weighted CQR (WCQR)” estimation method and

let the data decide the weights to improve efficiency, while keeping robustness

from the QR. The WCQR method is applicable to various models, but here we

focus on the nonlinear model

yi = f(xi,β) + εi, i = 1, . . . , n, (1.1)

where εi’s are independent random errors with unknown distribution function

G(·) and density g(·), and the function f(·,β) is known up to a p-dimensional

vector of parameters β. Model (1.1) contains many submodels of which linear

models and generalized linear models with continuous responses are specific ex-

amples. The nonlinear model can also be used when the effects of some covariates

are linear and the remaining are nonlinear. Note that the proposed WCQR is

new even for linear models.

Model selection with a fixed number of parameters has been widely pursued

in the last decades. However, to reduce possible modeling biases, many variables

are introduced in practice. As noted in Huber (1973, 1988), Portnoy (1988)

and Donoho (2000), the number of parameters p is often large and should be

modeled as pn, which tends to ∞. Fan and Peng (2004) and Lam and Fan (2008)

advocated that, in most model selection problems, the number of parameters

should be large and grow with the sample size. In a recent seminal paper, Fan

and Lv (2010) also studied model selection for generalized linear models with the

number of parameters much higher than the sample size. We allow p to depend

on the sample size n. To stress dependence on the sample size, we denote the

pn-vector of parameters by βn = (βn1, . . . , βnpn)
′ and rewrite (1.1) as:

yi = f(xi,βn) + εi, i = 1, 2, . . . , n. (1.2)

Without loss of generality, we partition the parameter vector as βn = (βn1
′,βn2

′)′

with βn1 ∈ Rsn and β2n ∈ Rpn−sn , and assume the true regression coefficients

are β∗
n = (β∗

n1
′,0′)′, where the sn components in β∗

n1 do not vanish.
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We address the issue of variable/parameter selection using the penalized

WCQR with the adaptive LASSO and SCAD penalties. Since the weights in the

WCQR are allowed to be negative, the proposed WCQR is different from the

common QR and the CQR (see also Section 2). When the weights are all equal

and the model is linear with a fixed number of parameters, our method reduces

to that of Zou and Yuan (2008a) if the LASSO penalty is employed. Since the

proposed WCQR involves a vector of weights, we develop a data-driven weighting

strategy that maximizes the efficiency of the WCQR estimators. The resulting

estimation is adaptive in the sense that it performs asymptotically the same

as if the theoretically optimal weights were used. The adaptive estimation is

robust against outliers and heavy-tailed error distributions, such as the Cauchy

distribution, and nearly as efficient as the oracle MLE for a variety of error

distributions (see Theorem 4 and Table 1). This is a great advantage of the

proposed estimation method, since the adaptive WCQR estimators does not

require the form of error distribution and achieves nearly the Cramér-Rao lower

bound.

The penalized WCQR estimators admit no close form and involve mini-

mizing complicate nonlinear functions, so it is challenging to derive asymptotic

properties and to implement the methodology. Theoretically, we establish asymp-

totic normality of the resulting estimators and show their optimality, no matter

whether the error variance is finite or not. Practically, we develop an algorithm

for fast implementation of the proposed methodology. This algorithm solves a

succession of (penalized) linearized WCQR problems, each of whose dual prob-

lems is derived. We extend the “interior point algorithm” (Vanderbei, Meketon,

and Freedman (1986) and Koenker and Park (1996)) to solve these dual prob-

lems. The resulting algorithm is easy to implement. Simulations endorse our

discovery.

The rest of the article is organized as follows. In Section 2 we introduce the

penalized WCQR for model (1.2). In section 3 we suggest a computation method

for the proposed methodology. In Section 4 we conduct simulations and apply

the proposed methods to analyse a dataset. Finally, in the Appendix we give

proofs of the theorems.

2. Oracle Model Selection Based on Weighted Composite Quantile

Regression

Our idea can be well motivated from the linear model,

yi = x′
iβ + εi, for i = 1, . . . , n, (2.1)

where {εi} are i.i.d. noise with unknown distribution G(·) and density g(·).
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By Koenker and Bassett (1978), the τ -th QR estimate of β can be obtained

via minimizing n∑
i=1

ρτ (yi − x′
iβ − bτ )

over β and bτ , where ρτ (u) = u(τ−I(u < 0)) is the check function with derivative

ψτ (u) = τ − I(u < 0) for u ̸= 0. Noticing that the regression coefficients are the

same across different QR estimation methods, Zou and Yuan (2008a) proposed

to estimate β by minimizing

K∑
k=1

n∑
i=1

ρτk(yi − x′
iβ − bτk), (2.2)

over β and bτk and to use the adaptive LASSO penalty (Zou (2006)) for (2.2)

to select variables, where {τk}Kk=1 are predetermined over (0, 1). This is the

aforementioned CQR-LASSO.

Note that the CQR method uses the same weight for different QR mod-

els. Intuitively, it is more effective if different weights are used, which leads to

minimizing
K∑
k=1

ωk

n∑
i=1

ρτk(yi − x′
iβ − bτk),

where ω = (ω1, . . . , ωK)′ is a vector of weights such that ∥ω∥ = 1 with ∥ · ∥
denoting the Euclidean norm. The weight ωk controls the amount of contribution

of the τk-th QR. The components in the weight vector ω are allowed to be

negative, since {
n∑

i=1
ρτk(yi − x′

iβ − bτk)}Kk=1 may not be positively correlated.

Thus, the WCQR is essentially different from the CQR. Applying the weighting

scheme to (1.2), one can estimate βn by minimizing

Ln(βn,b;ω) ≡
K∑
k=1

ωk

n∑
i=1

ρτk(yi − f(xi,βn)− bτk) (2.3)

over β and b = (bτ1 , . . . , bτK )
′. Since this estimation method cannot directly

be used to select variables/parameters, we resort to the penalized estimation by

minimizing

Ln(βn,b;ω) + n

pn∑
j=1

pλn(|βnj |) (2.4)

over (βn,b), where pλn(·) is a penalty function and λn is a non-negative regular-

ization parameter.

For convenience, the minimizer of βn for (2.4) is referred to it as “the pe-

nalized WCQR estimator”. For linear models, the CQR-LASSO method can be
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regarded as an example of the penalized WCQR estimation with ωi = 1/
√
K.

In general, given K, one can use equally spaced quantiles at τk = k/(K + 1)

for k = 1, 2, . . . ,K. In practice, one can choose K = 10 to be efficient for most

situations. See Table 1 for details.

There are various choices for the penalty function pλn(·), as discussed in

the beginning of the article. In the following we focus on only the SCAD and

adaptive-LASSO penalties. The results can be extended to other penalty func-

tions.

2.1. Model selection with SCAD penalty

The SCAD penalty pλ(·) (Fan and Li (2001)) is defined in terms of its first

order derivative and is symmetric about the origin. For θ > 0,

p′λ(θ) = λ
{
I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I(θ > λ)
}
,

where a > 2 and λ > 0 are tuning parameters. We obtain the SCAD penalized

WCQR by solving

(b̂τ1 , . . . , b̂τK , β̂n) = argmin
b,βn

QSC
n (βn,b), (2.5)

where QSC
n (βn,b) = Ln(βn,b;ω) + n

∑pn
j=1 pλn(|βnj |). For convenience, the es-

timation is coined as WCQR-SCAD method.

We establish consistency and asymptotic normality of the SCAD penalized

estimator. For clear exposition on the methodology, all regularity conditions are

relegated to the Appendix.

Theorem 1. [Consistency] Suppose the density g(·) satisfies Condition (C), The

penalty function pλn(·) satisfies Conditions (A2)−(A4), and the regression func-

tion f(xi,βn) satisfies Conditions (B1)−(B2). If p3n/n → 0 as n → ∞, then

there is a local minimizer β̂n in (2.5) such that ∥β̂n − β∗
n∥ = Op(

√
pn/n).

Let np = np−1
n , f∗ni = f(xi,β

∗
ni), ∇f∗

ni = [∂f(xi,βn)/∂βn] |βn=β∗
n
,

cn =
{
p′λn

(|β∗n1|)sgn(β∗n1), . . . , p′λn
(|β∗nsn |)sgn(β

∗
nsn)

}′
,

Σλn = diag
{
p′′λn

(β∗
n1), . . . , p

′′
λn
(β∗

nsn)
}
,

σ2(ω) = {
K∑
k=1

ωkg(b
∗
τk
)}−2

K∑
k,k′=1

ωkωk′ min(τk, τk′)(1−max(τk, τk′)),

where b∗τk is the τk-th quantile of ε. Put g = (g(b∗τ1), . . . , g(b
∗
τK

))′ and Gn =

Var(∇f∗ni). Let Gn11 be the sn×sn sub-matrix of Gn corresponding to βn1, and

let en be a sn × 1 unit vector.
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Theorem 2 (Oracle property). Suppose the conditions in Theorem 1, Condition

(A1), and Condition (B3) hold. If λn → 0,
√
npλn → ∞, and p3n/n → 0 as

n→ ∞, then, with probability tending to 1, the root-np consistent local minimizer

β̂n = (β̂
′
n1, β̂

′
n2)

′ in Theorem 1 satisfies

(i) Sparsity: β̂n2 = 0; and

(ii) Asymptotic normality:”

√
ne′nG

−1/2
n11

(
Gn11+

Σλn

ω′g

)
[(β̂n1−β∗

n1)+
(
Gn11+

Σλn

ω′g

)−1 cn
ω′g

]
D−→ N (0, σ2(ω)).

Fan and Peng (2004) established the oracle property of the penalized likeli-

hood estimator under the assumption p5n/n→ 0. This condition has been relaxed

to p3n/n→ 0 for the WCQR-SCAD method.

Remark 1. When n is finite and large enough, Σλn = 0 and cn = 0. Hence,

Theorem 2 (ii) becomes
√
ne′nG

1/2
n11(β̂n1 − β∗

n1)
D−→ N (0, σ2(ω)), so β̂n1 enjoys

the same efficiency as the WCQR estimator of βn1 for the submodel with βn2 = 0

known in advance.

As shown in Jennrich (1969) andWu (1981), for a fixed number of parameters

pn = p, the asymptotic variance of the least squares estimator of β is σ2G−1
n ,

where σ2 is the variance of the error. The result can be extended to the case

of a diverging number of parameters pn. It follows that the asymptotic relative

efficiency (ARE) of the WCQR-SCAD estimation with respect to the oracle least

squares (OLS) estimation for the submodel with βn2 = 0 known in advance is

ARE(ω, g) = σ2σ−2(ω).

Since the asymptotic variance matrix depends on ω only through σ2(ω), the

weights should be selected to minimize σ2(ω). Let Ω be a K ×K matrix with

the (k, k′) element

Ωkk′ = min(τk, τk′)(1−max(τk, τk′)).

Then the optimal weight ωopt, which minimizes σ2(ω), is

ωopt = (g′Ω−2g)−1/2Ω−1g,

and with this optimal weight, σ2(ωopt) = (g′Ω−1g)−1. The optimal weight com-

ponents can be very different, and some of them may even be negative, a fact

seen in our simulations. The usual nonparametric density estimation methods,

such as kernel smoothing based on estimated residuals ε̂i, can provide a con-

sistent estimation ĝ(·) of g(·). Let the resulting estimate of g be ĝ. Then

ω̂ = (ĝ′Ω−2ĝ)−1/2Ω−1ĝ is a nonparametric estimator of ω. This leads to an

adaptive estimator of β by minimizing



WEIGHTED COMPOSITE NONLINEAR QUANTILE REGRESSION 7

Ln(βn,b; ω̂) + n

pn∑
j=1

pλn(|βnj |) (2.6)

over bτk and β. Let the resulting estimator of β be β̃n.

Theorem 3. Under the conditions of Theorem 2, with probability tending to 1,

there exists a root-np consistent local minimizer β̃n = (β̃
′
n1, β̃

′
n2)

′ satisfying

(i) Sparsity: β̃n2 = 0; and

(ii) Asymptotic normality:
√
ne′nG

1/2
n11(β̃n1 − β∗

n1)
D−→ N (0, (g′Ω−1g)−1).

Since σ2(ωopt) = (g′Ω−1g)−1, β̃n1 has the same asymptotic variance matrix

as β̂n1, if ωopt were known. That is, the estimator β̃n is adaptive. Therefore,

ω̂ is called the adaptive weight vector. By Theorem 3, the asymptotic relative

efficiency (ARE) of adaptive WCQR estimation with respect to OLS estimation

is e(WCQR,OLS) = σ2g′Ω−1g. It is easy to show that, for the oracle maxi-

mum likelihood (OML) estimator β̂
OML

n1 of βn1,
√
ne′nG

−1/2
n11 [β̂

OML

n1 − β∗
n1] has

asymptotic variance I−1
g , where Ig =

∫
[g′(t)]2/g(t) dt is the Fisher information,

and hence

e(WCQR,OML) = I−1
g g′Ω−1g.

The following theorem demonstrates that, for equally spaced {τk}Kk=1, the adap-

tive estimator β̃n is nearly efficient as the OML estimators for various error

distributions, a great advantage of the proposed methodology.

Theorem 4. Suppose the derivative g′(·) of g(·) is uniformly continuous. Let

τk = k/(K + 1) for k = 1, . . . ,K. Then, for K → ∞, the limiting ARE of the

estimator β̃2 with respect to the OML estimator is

lim
K→∞

e(WCQR,OML) = 1.

For each K, the AREs of the adaptive estimator β̃n with respect to some

common estimators can be calculated. To appreciate how much efficiency is

gained in practice, we investigate the performance of common estimators. Table

1 reports AREs for linear models with various error distributions; it shows β̃n

is highly efficient for all distributions under consideration. For linear models,

Leng (2009) demonstrated that his regularized rank regression estimator (R2)

was quite efficient and robust. Table 1 indicates that the proposed adaptive

estimate dominates R2 for all error distributions and is much more efficient than

it when the error follows the Cauchy or chi-squared distribution. It also suggests

that typically one could choose K = 10 in practice and such efficiency is largely
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Table 1. The relative efficiency of estimators. LAD- Least absolute devia-
tion.

K e(WCQR,R2) e(WCQR,OML) e(WCQR,OLS) e(WCQR,LAD)
10 1.009 0.964 0.964 1.514

Normal 100 1.045 0.998 0.998 1.567
1000 1.047 1.000 1.000 1.571
10 1.003 0.961 1.378 1.380

Mixed 100 1.041 0.998 1.430 1.432
Normal 1000 1.044 1.000 1.434 1.436

10 1.036 0.984 1.967 1.214
t3 100 1.052 0.999 1.998 1.233

1000 1.053 1.000 2.000 1.234
10 1.387 0.585 1.755 2.913

χ2(6) 100 1.904 0.803 2.410 4.001
1000 2.154 0.909 2.726 4.525
10 1.601 0.973 inf 1.201

Cauchy 100 1.644 1.000 inf 1.233
1000 1.645 1.000 inf 1.234

gained, as shown in simulations. Therefore, with K = 10 say, the computational

burden associated with the penalized WCQR is not heavy.

2.2. Model selection with adaptive-LASSO

As a variable selection method, LASSO was proposed by Tibshirani (1996)

using the L1 penalty. Zou (2006) introduced the adaptive LASSO by penalizing

different parameters with adaptive weights, which makes the LASSO an oracle

method. In what follows we develop the adaptive LASSO theory for the WCQR

estimation of model (1.2). Denote by β̃n the solution to minβn,b Ln(βn,b;ω).

Then using the same argument as for Theorem 1, β̃n is
√
np-consistent. Thus,

we can use β̃n to construct the adaptive LASSO penalty. Let w̃nj = |β̃nj |−γ for

some γ > 0, and take the adaptive LASSO penalized WCQR estimator to be

(b̂τ1, . . . , b̂τK , β̂
AL

n ) = argmin
b,βn

QAL
n (βn,b), (2.7)

where QAL
n (βn,b) = Ln(βn,b;ω) + nhn

∑pn
j=1 w̃nj |βnj |, and hn is a non-

negative regularization parameter. The estimation approach is referred to as the

adaptive WCQR-LASSO, for convenience.

Theorem 5 (Consistency). Suppose the density g(·) satisfies Condition (C) and

the regression function f(xi,βn) satisfies Conditions (B1)−(B2). If p3n/n → 0

and
√
nhn → 0 as n → ∞, then there is a local minimizer β̂

AL

n of QAL
n (βn,b)

such that ∥β̂AL

n − β∗
n∥ = Op(n

−1/2
p ).
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Let dn = (sgn(β∗n1)/|β̃n1|γ , . . . , sgn(β∗nsn)/|β̃nsn |
γ)′.

Theorem 6 (Oracle property). Suppose the conditions of Theorem 5 and con-

dition (B4) hold. If hnn
(γ+1)/2
p → ∞, then, with probability tending to 1, the

√
np-consistent local minimizer β̂

AL

n = ({β̂AL

n1 }′, {β̂
AL

n2 }′)′ in Theorem 5 satisfies

(i) Sparsity: β̂
AL

n2 = 0; and

(ii) Asymptotic normality:

√
ne′nG

1/2
n11

[
(β̂

AL

n1 − β∗
n1) +

G−1
n11hndn

ω′g

]
D−→ N (0, σ2(ω)).

Note that dn is not zero when n is finite and large enough, hence the bias

term for the WCQR-LASSO in Theorem 6 cannot be ignored. By Condition (B4),√
nhndn → 0, as n → ∞. Therefore, Theorem 6(ii) becomes

√
ne′nG

1/2
n11(β̂

AL

n1 −
β∗
n1)

D−→ N (0, σ2(ω)). This combined with Remark 1 demonstrates that the

adaptive WCQR-LASSO and WCQR-SCAD estimators enjoy the same oracle

properties.

Remark 2. For model (2.1) with a fixed number of parameters, we have Gn ≡
G = var(x1). If all ωk are equal, Theorem 6 reduces to the asymptotic normality

of the adaptive lasso penalized CQR estimator in Zou and Yuan (2008a).

For the above model selection methods we require p3n/n→ 0. This condition

is not the best available in the literature and is chosen partly for simplicity in

proofs. He and Shao (2000) derived asymptotic normality of their M-estimator

under p3(log p)2 = o(n) using a different argument (see Corollary 2.1 therein);

this condition is weaker than ours. Recently, Belloni and Chernozhukov (2011)

studied L1-penalized quantile regression for high-dimensional sparse linear mod-

els and established nonasymptotic results and convergence rates of their estima-

tors. We believe that our condition can be further relaxed to pn = O(exp(nδ)) for

0 < δ < 1 (NP-dimensionality; see Fan and Lv (2010) and Lv and Fan (2009)).

However, establishing results for the WCQR under the current model with NP-

dimensionality requires much more complicated techniques. We intend to study

this in the future.

3. Numerical Implementation

We introduce a fast algorithm for computation. This algorithm solves a

succession of penalized linearized WCQR problems, each of which is solved by

extending the interior point algorithm (see Osborne and Watson (1971) and

Koenker and Park (1996)). Matlab codes are available upon request for the

proposed methods.
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Minimization at (2.5) can be done using a similar method as for (2.7), so we

first consider the minimization of (2.7). This is equivalent to

min
θ

K∑
k=1

ωk

n∑
i=1

ρτk(yi − lik(θ)) + nhn

pn∑
j=1

w̃nj |βnj |, (3.1)

where lik(θ) = f(xi,βn)+bτk with θ = (b′,β′
n)

′. Following Osborne and Watson

(1971), we solve (3.1) using the following algorithm.

(1) Given the current value, θ(r), of θ, calculate t to minimize

K∑
k=1

ωk

n∑
i=1

ρτk{yi − lik(θ
(r))−∇lik(θ

(r))t}+ nhn

pn∑
j=1

w̃nj |βnj |, (3.2)

where ∇lik(θ
(r)) = ∂lik(θ)

∂θT

∣∣
θ=θ(r) and βnj is the (K + j)th component of

θ(r) + t. Let the minimizer be t = t(r) = (t
(r)
1 , . . . , t

(r)
K+pn

)′.

(2) Calculate λ ∈ [0, 1] to minimize

K∑
k=1

ωk

n∑
i=1

ρτk{yi − lik(θ
(r) + λt(r))}+ nhn

pn∑
j=1

w̃nj |β(r)nj + λt
(r)
K+j |. (3.3)

Let the minimizer be λ = λ(r).

(3) Put θ(r+1) = θ(r) + λ(r)t(r). Update the current value of θ by θ(r+1), and

repeat the above procedure until convergence.

Here the problem (3.3) can easily be solved by line search in the resulting

direction t = t(r), but one has to solve a succession of penalized linearized WCQR

problems in (3.2). Let y∗ik = yi−lik(θ(r)) and a′ik = ∇lik(θ(r)). Then the problem

(3.2) becomes

min
t

{
K∑
k=1

ωk

n∑
i=1

ρτk(y
∗
ik − a′ikt) + nhn

pn∑
j=1

w̃nj |βnj |}. (3.4)

For j = 1, . . . , pn and k = 1, . . . ,K, let y∗(n+j)k = 0 and a(n+j)k = nhnw̃njeK+j ,

where eK+j is a (K + pn) × 1 vector with the (K + j)th entry being one and

others being zeros. Then (3.4) ss the linear programming problem:

min
t

K∑
k=1

ωk

{ n∑
i=1

ρτk(y
∗
ik − a′ikt) +

n+pn∑
i=n+1

ωk|y∗ik − a′ikt|
}
. (3.5)
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For k = 1, . . . ,K, let y∗
k = (y∗1k, . . . , y

∗
n+pn,k

)′, uk = vec(y∗
k,0pn×1), u = (u′

1, . . .,

u′
k)

′, Ak = (a1k, . . . ,an+pn,k)
′, and A = (A′

1, . . . ,A
′
K)′. Then the dual problem

of (3.5) is

max
d

{u′d |A′d = 0}, (3.6)

where d = vec(d1, . . . ,dK), dk = vec(d
(1)
k ,d

(2)
k ), d

(1)
k = (d1k, . . . , dnk)

′ ∈ [ωk(τk−
1), ωkτk]

n, and d
(2)
k = (dn+1,k, . . . , dn+pn,k)

′ ∈ [−ω2
k, ω

2
k]

pn .

There are two methods, the simplex and the interior point, for solving (3.6).

Here we opt for the latter due to its advantages (Bassett and Koenker (1992)

and Koenker and Park (1996)): computational simplicity and natural extensions

to nonlinear problems; unlike the simplex-based method, the interior point algo-

rithm converges to the correct solution. Algorithmic details for the dual problem

(3.6) proceed as follows.

1. For any initial feasible d, e.g., d = 0, following Vanderbei, Meketon, and

Freedman (1986), take a n×n diagonal matrixD
(1)
k with (i, i) entry min{ωkτk−

dik, dik − ωk(τk − 1)}, and a pn × pn diagonal matrix D
(2)
k with (i, i) entry

min{ω2
k − dik, dik + ω2

k}. Let Dk = diag(D
(1)
k ,D

(2)
k ), D = diag(D1, . . . ,DK),

s = D2(I−A(A′D2A)−1A′D2)u, and t = (A′D2A)−1A′D2u.

2. Set d∗ = d + (a0/γ)s, where s = vec(s1, . . . , sK), sk = (s1k, . . . , sn+pn,k)
′,

γ = max(γ1, . . . , γK), γk = max(γ
(1)
k , γ

(2)
k ),

γ
(1)
k = max

1≤i≤n

(
max

{ sik
ωkτk − dik

,− sik
dik − ωk(τk − 1)

})
,

γ
(2)
k = max

n+1≤i≤n+pn

(
max

{ sik
ω2
k − dik

,− sik
dik + ω2

k

})
,

for k = 1, . . . ,K, and a0 ∈ (0, 1) is a constant chosen to insure feasibility. As

suggested by Koenker and Park (1996), we take a0 = 0.97.

3. Set d = d∗. Updating D, s and d continues the iteration.

After solving (3.6) using this interior point algorithm, we arrive at the next

loop that uses the current value θ = θ(r+1) for the primal problem in (3.5). This

leads to the updated dual problem (3.6) with y∗ik = yi − lik(θ
(r+1)) and a′ik =

∇lik(θ(r+1)) for i = 1, . . . , n. The current d should be adjusted to ensure that it

is feasible for the new value of A. Similar to Koenker and Park (1996), we project

the current d onto the null space of the new A, d̂ = (I −A(A′A)−1A′)d, and

then shrink it to insure that d
(1)
k ∈ [ωk(τk−1), ωkτk]

n and d
(2)
k ∈ [−ω2

k, ω
2
k]

pn . The

adjusted d is d = d̂/(m+ δ) for some δ > 0, where m = max(m1,m2, . . . ,mK),

with mk = max(m
(1)
k ,m

(2)
k ), m

(1)
k = max1≤i≤n{max(d̂ik/ωk(τk − 1), d̂ik/ωkτk)},

and m
(2)
k = maxn+1≤i≤n+pn{|d̂ik/ω2

k|}.
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As noted by Koenker and Park (1996), the difficulty with the above method

is twofold: one must solve a linearized problem (3.2) or equivalently (3.5) at each

iteration; the resulting search directions may be inferior to directions determined

by incomplete solutions to the sequence of linearized problems. As they suggest,

when f(xi,βn) is nonlinear there is no longer a compelling argument for fully

solving (3.2), using only a few iterations to refine the dual vector is preferable.

This reduces the computational burden.

Next, we consider (2.5). By Taylor’s expansion for the SCAD penalty at an

initial consistent estimate β0
n (for example the common L1-norm estimate), we

have
pλn(|βnj |) ≈ p′λn

(|β0nj |)|βnj |+ {pλn(|β0nj |)− p′λn
(|β0nj |)|β0nj |},

where pλn(|β0nj |)− p′λn
(|β0nj |)|β0nj | is a constant. Therefore, (2.5) is reduced to

min
θ

K∑
k=1

ωk

n∑
i=1

ρτk(yi − lik(θ)) + n

pn∑
j=1

p′λn
(|β0nj |)|βnj |,

which can be solved using the same algorithm as for (3.1). Update the initial

value for βn and do iterations until convergence, where a few steps can lead to

convergence since β0
n is close to the true parameter.

4. Numerical Studies

4.1. Choice of the tuning parameters

For the penalized WCQR estimators, one has to select tuning parameters λn
and hn, respectively, for the SCAD and LASSO penalties. The two parameters

can be chosen using the same method. We focus on the choice of λn.

There are several methods for selecting λn, including the generalized cross-

validation (GCV) criterion (Wang, Li, and Tsai (2007)) and the Schwartz Infor-

mation Criterion (SIC) (see Koenker, Ng, and Portnoy (1994) and Zou and Yuan

(2008b)). Since the resulting estimators depend on λn, we denote the estimators

by (β̂λn
, b̂λn) to stress such dependence. Applying the SIC method, we propose

to select λn by minimizing

SIC(λn) = log
{ 1

nK
Ln(β̂λn

, b̂λn)
}
+

log(nK)

2nK
df(λn)

over λn, where df(λn) is the effective degrees of freedom of the fitted model that

calibrates the complexity of model.

Following Koenker, Ng, and Portnoy (1994), for each given λn we take

Eλn = {(k, i) : yi − f(xi, β̂λn
)− b̂λn,τk = 0}

and use the size |Eλn | of Eλn to estimate df(λn). Nychka et al. (1995) and Yuan

(2006) proposed to use Stein’s (1981) SURE divergence formula
∑n

i=1 ∂f̂(xi)/∂yi
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to estimate df , where f̂(xi) is a fitted model. For the linear models yi = x′
iβ+εi,

it is easy to see that
∑n

i=1 ∂f̂(xi)/∂yi is the dimension of β if the least squares

estimation method is used. Li, Liu, and Zhu (2007) and Li and Zhu (2008)

showed that, for quantile regression,
∑n

i=1 ∂f̂(xi)/∂yi = |Eλn |. Therefore, it is

reasonable to use |Eλn | to estimate df(λn). This leads to the tuning-parameter

estimate

λ̂n = argmin
λn

{
log

( 1

nK
Ln(β̂λn

, b̂λn)
)
+

log(nK)

2nK
|Eλn |

}
.

4.2. Simulations

In this section we report on simulations to investigate finite sample perfor-

mance of the WCQR estimation and the associated model selection. An expo-

nential regression model was used:

y = 1 + b exp(c′x) + ε,

where b and c = (c1, c2, c3)
′ are parameters, ε is the error. The true values of

parameters were set as b = 1.5, and c = (−0.6,−0.8,−0.7)′.

When the penalized WCQR methods were considered, we allowed the lengths

of c and the relevant x to increase with the sample size, setting c = (−0.6,−0.8,

−0.7, 0, . . . , 0)′. Two penalties were employed: the adaptive LASSO penalty

with γ = 1, defined by nhn
∑pn

j=1 |βj |/|β̃j |; the SCAD penalty, defined by n
∑pn

j=1

pλn(|βj |)/|β̃j |, where hn and λn are tuning parameters and β̃j ’s are consistent

estimators of βj ’s. For simplicity, we used the LASSO with γ = 1 that closely

relates to the nonnegative garotte (Breiman (1995)) as shown in in Zou (2006).

Other values for γ are possible, since there is no optimal theoretical values for

it. The tuning parameters were determined by SIC method, and the number

of quantiles K was 10, as suggested in Section 2. Since the WCQR estimator

involves a weighting scheme and the density of error is known in simulations, we

took the optimal weight ωopt (see Section 2) for all simulations.

Following the suggestion of the AE, we compared the performance of the

above penalized methods with the “naive” method that simply sets zero penalty

for coefficients and hard-thresholds the resulting estimator. Specifically, we used

the hard thresholding rule β̂j(λn) = β̂jI(|β̂j | > λn), where β̂j was the resulting

estimate of βj using the L1 or CQR orWCQRmethods, and λn was the threshold

parameter selected by SIC based on the naive estimator.

With βn = (b, c′)′ as the pn × 1 vector of parameters in the working model,

we drew from the working model 400 samples of sizes 200 and 400 with pn =

[n1/3] + 3. In each simulation, the first component of x was U [−1, 1], and the

remaining components of x were jointly normal distributed with the pairwise
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correlation coefficient 0.5 and standard normal as marginals. We considered four

sets of errors: N(0, 1), t(5), 0.1N(0, 1)+0.9N(0, 32) and χ2(4). All of them were

centralized and scaled so that the medians of the absolute errors were ones.

We compared five estimation methods: the penalized L1, CQR, and WCQR

estimation, naive estimation, and OML estimation. In each simulation the “root

of mean squared errors (RMSE)” for different coefficient estimators were calcu-

lated, and their average over simulations is reported in Tables 2−5, where Σ

denotes the sum of RMSE for all components in β. Clearly, the OML estima-

tor performed best, the penalized WCQR performed comparably to the oracle

estimator, and the naive method was the worst. This is expected, since the

hard-thresholding rule is discontinuous and creates unnecessary bias when the

regression coefficients are large. The SCAD penalty function leaves large values

of βj not excessively penalized and makes the resulted solution continuous, and

hence does not create excessive biases when βj ’s are large (see Fan and Li (2001)).

This exemplifies the theory about the penalized WCQR estimation: asymptot-

ically the penalized WCQR estimation performed as well as if the correct sub-

model were known and had almost the same efficiency of OML estimation; the

penalized WCQR performed much better than the penalized CQR and L1 when

the error was chi-squared, but the two methods were comparable when the errors

were symmetric, such as normal, mixed normal and t(5). In Table 6 we report

the frequency that zero coefficients were set to zero correctly if their estimates

were less than 10−8; it shows that the frequency was higher for larger sample

size. In this example, all non-zero coefficients were set to non-zero correctly.

As noted by the AE, it is not clear that SIC picks the best penalty level

for model selection and the estimation of coefficients. We explored this is-

sue in simulations and tested the limit of the algorithm by using larger pn,

pn = [n1/2], [n2/3], andn. Our experience suggests that it works for pn = [n1/2]

but fails for the other two scenarios. The results here do not really support the

conjecture in the last paragraph of Section 2, but the asymptotically weak corre-

lation condition between the important variables and the unimportant variables

did not hold in our simulations (see also Condition 2 of Fan and Lv (2010)). To

save space we report only the results under normal error in Tables 7−8. Com-

pared to other penalized estimators, the penalized WCQR still performed the

best. However, the frequency of correctly identifying zero coefficients was not

higher for larger sample size. Following the suggestion of a referee, we stud-

ied the effect of estimating optimal weights for the proposed estimators. Table

9 reports the results with chi-squared error. Compared with Table 5, it can be

seen that, for large sample size, our estimators with estimated weights performed

nearly as well as the estimators with optimal weights. This is expected from our

theoretical results.
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Table 2. RMSE(multiplied by 103) of penalized estimators under the normal
error. SC- SCAD, LA - LASSO, NA - Naive.

n = 200 n = 400

Estimates b̂ ĉ1 ĉ2 ĉ3 Σ b̂ ĉ1 ĉ2 ĉ3 Σ
SC-L1 233 67 55 50 411 140 44 33 31 248

SC-CQR 194 57 47 42 351 120 38 27 27 213
SC-WCQR 192 57 46 41 342 119 38 27 26 210

LA-L1 227 67 55 49 410 140 43 34 31 248
LA-CQR 191 57 47 41 350 120 38 27 27 214

LA-WCQR 188 57 46 41 341 119 39 27 26 213
L1-NA 259 80 63 59 696 158 47 39 36 457

CQR-NA 211 69 54 50 576 130 41 32 30 377
WCQR-NA 210 68 53 50 569 128 41 31 29 372

WCQR-Oracle 191 57 46 41 336 120 39 27 26 213
OML 188 57 46 41 333 118 38 27 26 209

Table 3. RMSE (multiplied by 103) of penalized estimators under the
normalized t(5) error. SC- SCAD, LA - LASSO, NA - Naive.

n = 200 n = 400

Estimates b̂ ĉ1 ĉ2 ĉ3 Σ b̂ ĉ1 ĉ2 ĉ3 Σ
SC-L1 223 69 56 47 407 146 47 34 31 258

SC-CQR 212 62 51 45 382 133 43 31 28 238
SC-WCQR 211 62 51 45 379 133 42 31 27 238

LA-L1 217 71 56 47 407 147 46 34 31 258
LA-CQR 209 61 51 45 386 132 42 31 28 240

LA-WCQR 210 62 51 45 386 131 43 31 27 237
L1-NA 259 80 63 59 696 158 47 39 36 457

CQR-NA 211 69 54 50 576 130 41 32 30 377
WCQR-NA 210 68 53 50 569 128 41 31 29 372

WCQR-oracle 212 62 52 46 372 131 41 31 28 232
OML 210 62 51 45 367 131 41 31 27 231

4.3. A data example

Patients in hospitals are at risk of infection. To study Efficacy of Nosocomial

Infection Control (SENIC), the Hospital Infections Program was conducted by

Robert W. Haley and his collaborators, Center for Infectious Diseases, Centers

for Disease Control, Atlanta, Georgia 30333. This resulted in the SENIC dataset

for the 1975-76 study period, consisting of a random sample of 113 hospitals

selected from the original 338 hospitals surveyed (see Kutner et al. (2005)). For

each hospital there are 11 variables.

• Infection risk (y): Average estimated probability of acquiring an infection in

the hospital.
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Table 4. RMSE (multiplied by 103) of penalized estimators under the mixed
normal error. SC- SCAD, LA - LASSO, NA - Naive.

n = 200 n = 400

Estimates b̂ ĉ1 ĉ2 ĉ3 Σ b̂ ĉ1 ĉ2 ĉ3 Σ
SC-L1 256 73 58 54 456 150 45 35 32 265

SC-CQR 208 60 49 45 377 129 38 30 27 228
SC-WCQR 204 59 48 44 364 128 38 30 27 226

LA-L1 250 71 58 54 451 147 44 35 32 263
LA-CQR 209 60 49 46 384 129 38 30 27 231

LA-WCQR 203 59 48 44 370 128 38 30 27 228
L1-NA 285 82 69 66 740 165 48 39 36 466

CQR-NA 235 67 59 54 610 136 42 33 30 389
WCQR-NA 232 67 58 53 602 135 42 33 30 388

WCQR-oracle 205 59 49 44 357 130 38 30 28 227
OML 204 59 48 45 356 129 38 30 28 225

Table 5. RMSE (multiplied by 103) of penalized estimators under the nor-
malized χ2(4) error. SC- SCAD, LA - LASSO, NA - Naive.

n = 200 n = 400

Estimates b̂ ĉ1 ĉ2 ĉ3 Σ b̂ ĉ1 ĉ2 ĉ3 Σ
SC-L1 198 60 47 45 356 131 41 31 25 229

SC-CQR 156 49 38 36 289 98 32 23 20 179
SC-WCQR 121 40 30 29 219 79 27 19 17 141

LA-L1 197 60 48 44 359 130 42 31 26 231
LA-CQR 155 48 38 36 296 98 32 23 20 183

LA-WCQR 121 39 31 29 224 78 26 19 17 140
L1-NA 225 70 59 53 623 149 46 35 31 421

CQR-NA 175 55 46 43 492 112 36 28 24 328
WCQR-NA 139 45 39 35 401 90 28 23 21 267

WCQR-oracle 125 39 32 30 226 79 24 19 17 139
OML 99 34 28 25 185 60 20 15 14 108

• Length of stay (x1): Average length of stay of all patients in the hospital (in

days).

• Age (x2): Average age of patients (in years).

• Routine culturing ratio (x3): Ratio of number of cultures performed to number

of patients without signs or symptoms of hospital-acquired infection, times

100.

• Routine chest X-ray ratio (x4): Ratio of number of X-rays performed to num-

bers of patients without signs or symptoms of pneumonia, times 100.

• Number of beds (x5): Average number of beds in the hospital during the

study period.



WEIGHTED COMPOSITE NONLINEAR QUANTILE REGRESSION 17

Table 6. The frequency of correctly identifying zero coefficients.

n = 200 n = 400
Error\Method Naive LASSO SCAD Naive LASSO SCAD

L1 0.226 0.698 0.784 0.222 0.876 0.875
N(0, 1) CQR 0.266 0.725 0.768 0.267 0.937 0.930

WCQR 0.265 0.845 0.857 0.275 0.933 0.935
L1 0.227 0.610 0.680 0.219 0.814 0.830

t(5) CQR 0.250 0.878 0.889 0.257 0.841 0.853
WCQR 0.246 0.836 0.894 0.259 0.854 0.885

mixed
L1 0.227 0.619 0.699 0.225 0.791 0.835

normal
CQR 0.275 0.678 0.729 0.258 0.865 0.881

WCQR 0.276 0.734 0.761 0.255 0.881 0.906
L1 0.244 0.692 0.746 0.225 0.738 0.800

χ2(4) CQR 0.285 0.695 0.733 0.272 0.796 0.834
WCQR 0.251 0.880 0.936 0.252 0.978 0.991

Table 7. RMSE (multiplied by 103) of penalized estimators when the error
is normal and pn = [n1/2]. SC- SCAD, LA - LASSO, NA - Naive.

n = 200 n = 400

Estimates b̂ ĉ1 ĉ2 ĉ3 Σ b̂ ĉ1 ĉ2 ĉ3 Σ
SC-L1 239 66 57 50 418 139 46 30 30 251

SC-CQR 190 55 46 43 363 115 38 25 25 226
SC-WCQR 184 53 44 43 343 116 38 25 25 217

LA-L1 230 64 56 50 410 134 45 29 30 253
LA-CQR 191 56 46 43 379 116 38 26 26 250

LA-WCQR 184 53 45 43 350 116 38 25 25 227
L1-NA 303 85 78 72 1073 175 56 43 40 855

CQR-NA 235 69 61 58 870 140 46 35 34 709
WCQR-NA 230 68 60 57 855 140 45 35 33 702

WCQR-Oracle 191 57 46 41 336 120 39 27 26 213
OML 188 57 46 41 333 118 38 27 26 209

Table 8. The frequency of correctly identifying zero coefficients when the
error is normal and pn = [n1/2].

n = 200 n = 400
Method\Penalty Naive LASSO SCAD Naive LASSO SCAD

L1 0.125 0.810 0.862 0.100 0.736 0.800
CQR 0.159 0.655 0.747 0.134 0.650 0.758

WCQR 0.166 0.733 0.810 0.133 0.761 0.805

• Medical school affiliation (x6): 1=Yes, 2=No.

• Region (x7-x9): Geographic region: 1=NE, 2=NC, 3=S, 4=W.

• Average daily census (x10): Average number of patients in the hospital per
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Table 9. RMSE (multiplied by 103) of penalized estimators with estimated
weights under the normalized χ2(4) error. SC- SCAD, LA - LASSO, NA -
Naive.

n = 200 n = 400

Estimates b̂ ĉ1 ĉ2 ĉ3 Σ b̂ ĉ1 ĉ2 ĉ3 Σ
SC-WCQR 133 41 34 30 242 81 26 19 17 143
LA-WCQR 133 40 34 31 246 80 26 19 17 142
WCQR-NA 146 47 39 37 422 92 29 23 21 273

WCQR-oracle 129 40 33 30 233 80 26 19 17 142

day during the study period.

• Number of nurses (x11): Average number of full-time equivalent registered

and licensed practical nurses during the study period (number full time plus

one half the number part time).

• Available facilities and services (x12): Percent of 35 potential facilities and

services that are provided by the hospital.

We study whether the infection risk depends on the possible influential fac-

tors and target a good estimate for infection risk, after adjusting for contributions

from confounding factors. Since the medical school affiliation and region are cat-

egorical, we introduced a dummy variable x6 for the medical school affiliation

and three dummy variables (x7, x8, x9) for the region as covariates. Note that

the response y (infection risk) is the average estimated probability of acquiring

an infection in the hospital. It is sensible to use a logistic model with all of

covariates,

yi =
exp(β0 +

∑12
i=1 βixi)

1 + exp(β0 +
∑12

i=1 βixi)
+ εi, i = 1, . . . , 113,

to model the relationship between the infection risk and all possible infection

factors, where all of covariates are used to reduce possible modeling biases and

the number of non-zero parameters is assumed to depend on the sample size.

We applied the L2-penalized least squares estimation (LSE) and the penal-

ized CQR and WCQR methods with adaptive LASSO and SCAD penalties to

select the non-zero parameters or significant variables. We employed classic ker-

nel smoothing over the residuals from CQR-estimation to estimate the density of

error. The estimator takes the form ĝ(x) = (1/nh)
∑n

i=1K((ε̂i−x)/h), where K
is a density kernel, h is the bandwidth controlling the amount of smoothing, and

the ε̂i’s are residuals from the CQR method. Then we obtained the data-driven

weight vector ω̂. The SIC criterion (Section 5.1) was applied to choose the tuning

parameters. The results of variable selection are presented in Table 10. From
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Table 10. Estimates and standard errors (multiplied by 104).

Penalty L2 LASSO SCAD
Method LSE CQR WCQR CQR WCQR
x1 574 (335 ) 0 (-) 0 (-) 0 (-) 0 (-)
x2 667 (105) 743 (113) 705 (102) 745 (114) 713 (103)
x3 55 (40) 0 (-) 0 (-) 0 (-) 0 (-)
x4 -31 (23) -25 (36) -32 (33) -25 (37) -23 (32)
x5 -18 (12) -12 (17) -5 (16) -10 (17) -5 (16)
x6 229 (1302) 0 (-) 0 (-) 0 (-) 0 (-)
x7 66 (1512) 0 (-) 0 (-) 0 (-) 0 (-)
x8 -100 (1359) 0 (-) 0 (-) 0 (-) 0 (-)
x9 250 (1343) 0 (-) 0 (-) 0 (-) 0 (-)
x10 15 (14) 23 (21) 12 (21) 21 (21) 12 (20)
x11 9 (7) 0 (-) 0 (-) 0 (-) 0 (-)
x12 -14 (46) 0 (-) 0 (-) 0 (-) 0 (-)

Table 10, we can see that penalized SCAD and penalized LASSO methods both

selected four variables: age (x2), routine chest X-ray ratio (x4), number of beds

(x5), and average daily census (x10), but the penalized LSE selected all variables

(note that x7-x9 together represent the region). Similar to ridge regression for

linear models, the LSE with L2-penalty failed to shrink any coefficients directly

to zero for the nonlinear model.

Since the estimated coefficients were negative for x4 and x5 and positive for

x2 and x10, the above analysis indicates that, during the study period, infection

risk (y) increases with the average age of patients (x2) and the average number

of patients in hospital per day (x10), and decreases with the routine chest X-ray

ratio (x4) and average number of beds in hospital (x5). This is expected, since

elderly patients tend to have a weak resistance to infection, and a larger x10
results in a smaller value of x5 and increases the chance of cross-infection among

patients. In addition, routine chest X-ray may do harm to the body, and patients

without signs or symptoms of pneumonia should receive it as little as possible.

To check the significance of the selected model, we considered the hypothesis

testing problem:

H0 : β2 = β4 = β5 = β10 = 0 versus H1 : at least one of them is non-zero.

The LSE was used to estimate the parameters in the null and alternative models,

with SSE(H0) and SSE(H1) the residual sum of squares under H0 and H1,

respectively. Let

F =
SSE(H0)− SSE(H1)

df0 − df1

/SSE(H1)

df1
,
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where df0 = n−1 and df1 = n−5 degrees of freedom for the null and alternative
models, respectively. Then the approximate null distribution of F -statistic is
F (df0−df1, df1). The realized value of F was calculated as 124.541 with approx-
imate p-value equal to zero. Hence, the selected model was significant.
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Appendix. Conditions and Proofs of Theorems

A.1. Regularity conditions

(i) Regularity conditions on the penalty. Let an = max1≤j≤pn{p′λn
(|β∗nj |), β∗nj ̸=

0}, and bn = max1≤j≤pn{p′′λn
(|β∗nj |), β∗nj ̸= 0}. The conditions on penalty func-

tions are:

(A1) lim inf
n→+∞

lim inf
θ→0+

p′λn
(θ)/λn > 0;

(A2) an = O(n−1/2);

(A3) bn → 0 as n→ +∞;

(A4) there are constants C and D such that |p′′λn
(θ1) − p′′λn

(θ2)| ≤ D|θ1 − θ2|,
where θ1, θ2 > Cλn.

Conditions (A1)-(A4) are also the regularity conditions on the penalty given
in Fan and Peng (2004).

(ii) Regularity conditions on the regression function.

(B1) There is a large enough open subset Ωn ∈ Rpn that contains the true param-
eter point β∗

n, such that for all xi the second derivative matrix ∇2f(xi,βn)
of f(xi,βn) with respect to βn, satisfies

∥∇2f(xi,βn1)−∇2f(xi,βn2)∥ ≤M(xi)∥βn1 − βn2∥∣∣∣∂2f(xi,βn)

∂βnj∂βnk

∣∣∣ ≤Njk(xi)

for all βn ∈ Ωn, with E[M2(xi)] <∞, E[N2
jk(xi)] < C1 <∞ for all j, k.



WEIGHTED COMPOSITE NONLINEAR QUANTILE REGRESSION 21

(B2) Var(∇f∗ni) = Gn > 0, E((∇f∗ni)⊗2) = Γn, and 0 < d1 < λmin(Γn) ≤
λmax(Γn) < d2 <∞, for all n, where λmin(Γn) and λmax(Γn) are the small-

est and largest eigenvalues of Γn.

(B3) β
∗
n1, β

∗
n2, . . . , β

∗
nsn satisfy min1≤j≤sn |β∗nj |/λn → ∞ as n→ ∞.

(B4) β
∗
n1, β

∗
n2, . . . , β

∗
nsn satisfy min1≤j≤sn |β∗nj |/(

√
nhn) → ∞ as n→ ∞.

Conditions (B1)−(B2) are similar to the conditions (F)−(G) placed on the infor-

mation matrix in Fan and Peng (2004). Condition (B3) is the condition of Fan

and Peng (2004) used to obtain the oracle property. Condition (B4) is used to

obtain the oracle property when using the adaptive LASSO penalty.

(iii) Regularity conditions on the error distribution.

(C) The errors εi have the distribution function G(·) with density g(·). The

density g is positive and continuous at the τk-th quantiles b∗τk .

The condition (C) acts in accord with the condition placed on the error distri-

bution for single quantile regression (Koenker (2005)).

A.2. Proofs of Theorems

Following the arguments for Theorem 2, we can show Theorem 3. Theorems

5 and 6 can be proved using the arguments for Theorems 1 and 2. Hence, we

only discuss the proofs of Theorems 1, 2, and 4. The argument for likelihood

estimation in Fan and Peng (2004) is based on Taylor’s expansion on the loss

function. Since the loss function ρ(·) is not differentiable here, we use some

arguments from quantile regression.

To facilitate the proofs, we write ηn,k = n−1/2ωk

n∑
i=1

[I(εi < b∗τk) − τk], ηn =

(ηn,1, . . . , ηn,K)′, zn = n−1/2
n∑

i=1
∇f∗ni

K∑
k=1

ωk[I(εi < b∗τk)−τk], b
∗ = (b∗τ1 , . . . , b

∗
τK

)′,

and

Sn(u,v) = Ln(β
∗
n + n−1/2u,b∗ + n−1/2v)− Ln(β

∗
n,b

∗).

Proof of Theorem 1. Let αn =
√
pn(n

−1/2 + an), un = α−1
n (βn − β∗

n), v =

α−1
n (b − b∗), and Cn = {(un,v) : ∥(u′

n,v
′)′∥ = C}, where ∥ · ∥ denotes the L2-

norm. We show that, for any δ > 0, there is a large constant C such that, for

large n,

P{ inf
(un,v)∈Cn

QSC
n (β∗

n + αnun,b
∗ + αnv) > QSC

n (β∗
n,b

∗)} ≥ 1− δ. (A.1)
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This implies that, with probability tending to one, there is a local minimum β̂n in

the ball {(β∗
n+αnun,b

∗+αnv) : ∥(u′
n,v

′)′∥ ≤ C} such that ∥β̂n−β∗
n∥ = Op(αn).

Let DSC
n (un,v) = QSC

n (β∗
n + αnun,b

∗ + αnv)−QSC
n (β∗

n,b
∗). Then

DSC
n (un,v) = Sn(un,v) + Pλn(un), (A.2)

where Pλn(un) = n
∑pn

j=1[pλn(|β∗nj + αnunj |) − pλn(|β∗nj |)]. By the Mean Value

Theorem, there exists a β̃n between β∗
n and β∗

n + αnun, such that

f(xi,β
∗
n + αnun) = f∗ni + αn∇f(xi, β̃n)

′
un.

Let sik = αnvk+αn∇f(xi, β̃n)
′
un, B

(k)
n =

n∑
i=1

∫ sik
0 [I(εi ≤ b∗τk+x)−I(εi ≤ b∗τk)]dx,

z̃n = n−1/2
K∑
k=1

ωk

n∑
i=1

∇f(xi, β̃n)[I(εi < b∗τk) − τk], and δn(un) =
√
nαnu

′
n(z̃n −

zn). By (B1) and direct computation of the mean and variance for each compo-

nent, it is easy to show that ||z̃n − zn|| = op(1). Then, by the Cauchy-Schwartz

inequality,

|δn(un)| = op(
√
nαn)∥un∥. (A.3)

By the identity (Knight (1998)),

|r − s| − |r| = −s(I(r > 0)− I(r < 0)) + 2

∫ s

0
[I(r ≤ x)− I(r ≤ 0)]dx,

we have

ρτ (r − s)− ρτ (r) = s[I(r < 0)− τ ] +

∫ s

0
[I(r ≤ x)− I(r ≤ 0)]dx. (A.4)

Then we can rewrite Sn(un,v) as

Sn(un,v) =
√
nαn(η

′
nv + z′nun) +

K∑
k=1

ωkB
(k)
n + δn(un). (A.5)

Put µn = E(∇f∗n1) and Γn = E[(∇f∗n1)
⊗2]. Note that, by (B2), ∥Γn∥ =

O(1). It follows that E(z′nun) = 0 and E{(z′nun)
2} = u′

nE(znz
′
n)un = ω′Aω

u′
nΓnun = O(∥un∥2). Hence, z′nun = Op(∥un∥). This, combined with (A.3) and

(A.5), leads to

Sn(un,v) =

K∑
k=1

ωkB
(k)
n + op(nα

2
n)∥un∥. (A.6)
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By (B1) and (C) and computation of the expectation and variance of B
(k)
n , we

obtain

B(k)
n =

1

2
g(b∗τk)nα

2
n(v

2
k + u′

nΓnun + 2vkµ
′
nun)(1 + op(1)).

This, combined with (A.6), yields that

Sn(un,v) =
1

2
nα2

n

K∑
k=1

ωkg(b
∗
τk
)(v2k + u′

nΓnun + 2vkµ
′
nun)(1 + op(1))

+op(nα
2
n)∥un∥. (A.7)

Using pλn(0) = 0 and (A2)−(A4), we establish that

Pλn(un) ≥
sn∑
j=1

[
nαnp

′
λn
(|β∗nj |)sgn(β∗nj)unj +

1

2
nα2

np
′′
λn
(|β∗nj |)u2nj(1 + o(1))

]
≥ −(nα2

n∥un∥+ op(nα
2
n)). (A.8)

It follows from (A.7)−(A.8) thatDSC
n (un,v) in (A.2) is dominated by the positive

quadratic term (1/2)nα2
n

K∑
k=1

ωkg(b
∗
τ )(v

2
k + u′

nΓnun + 2vkµ
′
nun), as long as ∥un∥

and ∥v∥ are large enough. Therefore, (A.1) holds and proof is complete.

Lemma A.1. Under (A1)−(A4), (B1)−(B3), and (C), if λn → 0,
√
npλn → ∞,

and p3n/n → 0 as n → ∞, then with probability tending to 1, for any given βn1

satisfying ∥βn1 − β∗
n1∥ = Op(n

−1/2
p ), ∥b− b∗∥ = Op(n

−1/2
p ) and any constant C,

we have

QSC
n ((β′

n1,0
′)′,b) = min

∥βn2∥≤Cn
−1/2
p

QSC
n ((β′

n1,β
′
n2)

′,b).

Proof. Let α−1
n (βn1−β∗

n1) = un1, α
−1
n (βn2−β∗

n2) = un2, and un = (u′
n1,u

′
n2)

′.

By the definition of QSC
n (βn,b), we have

QSC
n ((β′

n1,0
′)′,b)−QSC

n ((β′
n1,β

′
n2)

′,b)

= Sn((u
′
n1,0

′))′,v)− Sn((u
′
n1,u

′
n2)

′,v)− n

pn∑
j=sn+1

pλn(|βnj |).

From (A.7), we obtain that

Sn((u
′
n1,u

′
n2)

′,v) =
1

2
nα2

n

K∑
k=1

ωkg(b
∗
τk
)(v2k + u′

nΓnun + 2vkµ
′
nun)(1 + op(1))

+op(nα
2
n)∥un∥.
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Since ∥un∥ = Op(1) and Gn = Γn−µnµ
′
n is positive, by (B2) we have u

′
nΓnun ≤

∥Γn∥∥un∥2 = Op(1) and ∥µn∥2 = tr(µnµ
′
n) ≤ tr(Γn) = Op(pn). Hence, ∥µn∥ =

Op(
√
pn). It follows that

Sn((u
′
n1,0

′)′,v) = Op(nα
2
n

√
pn) = Op(p

3/2
n ).

Similarly, Sn((u
′
n1,u

′
n2)

′,v) = Op(p
3/2
n ). Using pλn(0) = 0 and the Mean Value

Theorem, we arrive at

n

pn∑
j=sn+1

pλn(|βnj |) = n

pn∑
j=sn+1

p′λn
(|β†nj |)|β

†
nj |

≥ p2n

√
n

p3n

√
npλn

(
lim inf
n→+∞

lim inf
θ→0+

p′λn
(θ)

λn

) pn∑
j=sn+1

|β†nj |,

where 0 < β†nj < |βj | (j = sn + 1, . . . , pn). Since
√
npλn → ∞ and p3n/n →

0, p2n
√
n/p3n

√
npλn is of higher order than Op(p

3/2
n ). By (A1), it follows that

QSC
n ((β′

n1,0
′)′,b) − QSC

n ((β′
n1,β

′
n2)

′,b) is dominated by the negative term

−n
∑pn

j=sn+1 pλn(|βnj |) for larger n. Hence, the lemma holds.

Proof of Theorem 2. (i) follows from Lemma A.1.

(ii) Let un = α−1
n (βn − β∗

n). Partition the vectors un = (u′
n1,u

′
n2)

′ and ∇f∗ni =

((∇f∗ni1)
′, (∇f∗ni2)

′)′ in the same way as βn = (β′
n1,β

′
n2)

′; partition Gn as a 2×2

block matrix Gn = (Gnij) (for i, j = 1, 2). By (A.2) and Pλn(0) = 0, we can

write

DSC
n ((u′

n1,0
′)′,v) = Sn((u

′
n1,0

′)′,v) + Pλn(un1),

where Pλn(un1) = n
sn∑
j=1

(pλn(|β∗nj +αnunj |)− pλn(|β∗nj |)). By (A4) and (B3), and

by taking Taylor’s expansion for Pλn(un1) at un1 = 0, we obtain that

Pλn(un1) = nαnc
′
nun1 +

1

2
nα2

nu
′
n1Σλnun1(1 + o(1)).

Let tik(un1,un2, vk) = αnvk + f(xi,β
∗
n +αnun)− f(xi,β

∗
n). Then the minimizer

(ûn1, v̂) of D
SC
n ((u′

n1,0
′)′,v) satisfies the score equations

n−1
K∑
k=1

ωk

n∑
i=1

ψτk(εi − b∗τk − tik(ûn1,0, v̂k))∇f∗ni1(1 + op(1))

= cn + αnΣλnûn1(1 + op(1)), (A.9)

ωk

n∑
i=1

ψτk(εi − b∗τk − tik(ûn1,0, v̂k)) = 0. (A.10)
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Since ψτ (u) = τ − I(u < 0), we can write

n−1
K∑
k=1

ωk

n∑
i=1

ψτk(εi − b∗τk − tik(ûn1,0, v̂k))∇f∗ni1

= −n−1/2zn1 +
K∑
k=1

ωk(B
(k)
n21 +B

(k)
n22), (A.11)

where zn1 = n−1/2
n∑

i=1
∇f∗ni1

K∑
k=1

ωk[I(εi < b∗τk)− τk],

B
(k)
n21 = n−1

n∑
i=1

[G(b∗τk)−G(b∗τk + tik(ûn1,0, v̂k))]∇f∗ni1,

B
(k)
n22 = n−1

n∑
i=1

{
[I(εi < b∗τk)− I(εi < b∗τk + tik(ûn1,0, v̂k))]

−[G(b∗τk)−G(b∗τk + tik(ûn1,0, v̂k))]
}
∇f∗ni1.

Taking Taylor’s explanation for G(b∗τk + tik(ûn1,0, v̂k)) at b
∗
τk

gives

B
(k)
n21 = −n−1

n∑
i=1

g(b∗τk)tik(ûn1,0, v̂k)∇f∗ni1(1 + o(1))

= −αng(b
∗
τk
)(Γn11ûn1 + µn1v̂k)(1 + op(1)). (A.12)

By direct calculation of the mean and variance, we can show, as in Jiang, Zhao,

and Hui (2001), that B
(k)
n22 = op(αn). This combined with (A.9), (A.11), and

(A.12) leads to

−(n−1/2zn1 + cn) = αn{
K∑
k=1

ωkg(b
∗
τk
)(Γn11ûn1 + µn1v̂k) +Σλnûn1}(1 + op(1)).

(A.13)

Similarly, (A.10) can be simplified as

n−1/2ηn,k + αnωkg(b
∗
τk
)(v̂k + µ′

n1ûn1(1 + op(1))) = 0. (A.14)

Solving (A.13) and (A.14), we obtain that

αn

(
Gn11 +

Σλn

ω′g

)
ûn1 +

cn
ω′g

= −n−1/2(zn1 − µn1

K∑
k=1

ηn,k)

ω′g
+ op(n

−1/2),
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where e′nG
−1/2
n11 (zn1 − µn1

∑K
k=1 ηn,k)/ω

′g
D−→ N (0, σ2(ω)). Note that ûn1 =

α−1
n (β̂n1 − β∗

n1). It follows that

√
ne′nG

−1/2
n11

(
Gn11+

Σλn

ω′g

)
×[(β̂n1−β∗

n1)+
(
Gn11+

Σλn

ω′g

)−1 cn
ω′g

]
D−→ N (0, σ2(ω)).

Proof of Theorem 4. By the definition of Ω, we have Ω = (K+1)−2A, where

the (i, j)th entry of A is Aij = min(i, j)(K + 1−max(i, j)). Let C be a K ×K

matrix with diagonal elements all 2/(K + 1)2, superdiagonal and subdiagonal

elements all −1/(K + 1)2, and others all zero. Then AC = (K + 1)IK×K and

Ω−1 = (K + 1)C. Note that τi =
i

K+1 for i = 1, . . . ,K. Then

g′Ω−1g = 2(K + 1)[

K∑
i=1

g2(bi)−
K∑
i=1

g(bi)g(bi+1)]
2

= (K+1)

K∑
i=0

[g(bi)−g(bi+1)]
2 = (K+1)

K∑
i=0

[g(G−1(τi))−g(G−1(τi+1))]
2.

Using Taylor’s expansion, we obtain that

g′Ω−1g = (K + 1)

K∑
i=0

{(τi+1 − τi)
g′(G−1(τi))

g(G−1(τi))
+ o(τi+1 − τi)}2.

=
1

K + 1

K∑
i=0

{g
′(G−1(τi))

g(G−1(τi))
+ o(1)}2

=

∫ 1

0

{g′(G−1(t)

g(G−1(t)

}2
dt+ o(1) =

∫ +∞

−∞

(g′(t))2

g(t)
dt+ o(1)

as K → ∞. Therefore, g′Ω−1g = Ig, where Ig =
∫ +∞
−∞ (g′(t))2/g(t) dt is the Fisher

information. It follows that e(WCQR,OML) = I−1
g g′Ωg → 1 as K → ∞.
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