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Abstract In this study, we propose nonparametric testing for heteroscedasticity in nonlinear regression models

based on pairwise distances between points in a sample. The test statistic can be formulated such that U-

statistic theory can be applied to it. Although the limiting null distribution of the statistic is complicated,

we can derive a computationally feasible bootstrap approximation for such a distribution; the validity of the

introduced bootstrap algorithm is proven. The test can detect any local alternatives that are different from the

null at a nearly optimal rate in hypothesis testing. The convergence rate of this test statistic does not depend

on the dimension of the covariates, which significantly alleviates the impact of dimensionality. We provide

three simulation studies and a real-data example to evaluate the performance of the test and demonstrate its

applications.
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1 Introduction

In regression analysis, all error terms are frequently assumed to have common variance: under such

an assumption, the variance of errors can be easily estimated, and an estimation on the regression

function can be calculated; without such an assumption, however, more complicated methods are required

to estimate the regression function. Therefore, it is important to detect heteroscedasticity in various

regression models.

In this study, we consider the following nonlinear regression model:

Y = f(X,β) + ϵ, (1.1)

where ϵ is the error term with unknown distribution, Y ∈ R is the response with covariates X ∈ Rp, and

the function f(·, β) is known as well as twice differentiable up to a d-dimensional vector of parameters β.
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Furthermore, E(ϵ|X) = 0 is assumed. Model (1.1) is commonly used in this context because it is easy to

interpret and presents well-developed theories. When f(X,β) = X⊤β, model (1.1) is transformed into

the classical linear model. When compared with the classical linear model, model (1.1) is more flexible

and applicable because high-order terms of the covariates can be included.

Our objective is to detect variance heterogeneity in the aforementioned model by focusing on the

following hypothesis testing:

H0 : ∃ σ2 > 0, E(ϵ2|X) ≡ σ2(X) = σ2, (1.2)

H1 : ∀ σ2 > 0, E(ϵ2|X) ̸= σ2.

Under H0, the constant σ2 is an unconditional variance E(ϵ2). Consequently, the heteroscedasticity test

in (1.2) is equivalent to determining whether the conditional variance function E(ϵ2|X) is equal to the

unconditional variance E(ϵ2).

A number of authors have contributed to the study of heteroscedasticity tests in nonlinear regression

models. Cook and Weisberg (1983) as well as Tsai (1986) proposed score tests for a parametric structure

variance function in linear regression models and first-order autoregressive models, respectively. Simonoff

and Tsai (1994) further developed a modified score test in linear models. More recently, Lin and Wei

(2003) developed score tests for heteroscedasticity in nonlinear regression models. Following the work of

Zheng (1996) on checking lack-of-fit in the mean function, Zheng (2009) proposed a quadratic form of

the conditional moment test for heteroscedasticity in nonlinear regression models. Hsiao and Li (2001)

investigated the tests of heteroscedasticity for nonlinear time-series regression models, while Su and Ullah

(2013) introduced a nonparametric test for conditional heteroscedasticity in nonlinear regression models

based on a measure of nonparametric goodness-of-fit (R2). In addition to heteroscedasticity tests, several

authors, including Wang and Zhou (2007), Koul and Song (2010), and Samarakoon and Song (2011,

2012), have discussed testing the goodness-of-fit of a given parametric variance function in nonlinear

regression models.

A drawback of some existing methods is the dimensionality problem, which arises due to estimation

inefficiency for the multivariate nonparametric function. This particular problem is discussed in the work

of Hsiao and Li (2001), Zheng (2009), and Su and Ullah (2013). Under the null hypotheses in these

studies, the test statistics that are multiplied by O(n1/2hp/4) converge to their weak limits, with n being

the sample size and h being the bandwidth used in nonparametric estimation. Under the assumption that

h → 0 as n → ∞, the rate O(n1/2hp/4) can be extremely slow when p is large. Therefore, the significance

level frequently cannot be sufficiently maintained when the limiting null distribution is used in scenarios

with a moderate sample size. Furthermore, these tests can only detect alternative hypotheses that differ

from the null hypothesis at the rate of order O(n−1/2h−p/4). Asymptotically, these test statistics are less

powerful for detecting alternative models.

In the present study, we propose a new statistic for testing heteroscedasticity in nonlinear regression

models. This statistic is based on the weighted integral of the residual-marked characteristic function. The

weight function—in this case, the density function of a spherical stable law—plays an important role in

the proposed test statistic. Given this choice, the weighted integral is transformed into an unconditional

expectation with a simple form. The proposed statistic is based only on pairwise distances between

points in a sample. The basic concept is adopted from the approach of Bierens (1982). The characteristic

function has been used in many hypothesis-testing problems such as those by Alba-Fernández et al.

(2008), Székely and Rizzo (2013), and Fan et al. (2017). Meintanis (2016) provided an informative

review of the aforementioned use of the characteristic function. To the best of our knowledge, however,

this study is the first to use the characteristic function to detect heteroscedasticity for nonlinear regression

models.

For theoretical investigations, we formulate the proposed test statistic as a simple U-statistic to apply

U-statistic theory instead of empirical process theory and investigate its asymptotic properties under

null, fixed alternative, and local alternative hypotheses. The asymptotic null distribution exhibits a non-

trivial form, similar to most cases for U-statistics. Subsequently, we propose a residual-based bootstrap
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algorithm to approximate the critical values of the test statistic and provide a rigorous proof for its

consistency. The test statistic multiplied by n can converge to its weak limit and can detect local

alternatives that are distinct from the null hypothesis at a rate that is as close as possible to n−1/2.

This rate is the fastest convergence rate in hypothesis testing. Moreover, the convergence rate of the

test statistic does not depend on the dimensions of the covariates. Thus, the test is not sensitive to

dimensionality. Remarkably, estimating the nonparametric conditional variance function E(ϵ2|X) is not

required in the construction of our test statistic. Therefore, typical bandwidth selection is completely

avoided.

The rest of this paper is organized as follows. In Section 2, we describe the construction of test statistic

and establish its asymptotic properties under all types of hypotheses. In Section 3, a bootstrap algorithm

for implementing the proposed test is presented and the validity of this algorithm is justified. In Section

4, we conduct numerical studies to evaluate the performance of the test and include a real-data example

to demonstrate its applications. Concluding remarks and discussions are presented in Section 5, and

proofs are provided in the Appendix.

2 Test statistic and asymptotic results

2.1 Construction

Let η = ϵ2 − σ2 with σ2 = E(ϵ2). Under the null hypothesis, we have E(η|X) = 0. Given the uniqueness

of a function’s Fourier transform, the null hypothesis in (1.2) is equivalent to

H0 : ϕ(t) = E[ηeit
⊤X ] = 0, ∀t ∈ Rp.

However, ϕ(t) cannot be a statistic by itself. This limitation motivates us to consider the following

quantity:

Dω =

∫
Rp

|ϕ(t)|2ω(t)dt, (2.1)

where ω(t) > 0 is a suitable weight function.

From the definition of a complex modulus, we can easily obtain

|ϕ(t)|2 = E
[
cos(t⊤(X −X ′))ηη′

]
with (X ′, η′) existing as an independent copy of (X, η). As Nolan (2013) presents, the characteristic

function of a spherical stable law is given by

ϕZ(t) =

∫
Rp

cos(t⊤z)fa,p(z)dz = e−||t||a ,

where ∥ · ∥ is the Euclidean norm, and fa,p(·) denotes the density of a spherical stable law in Rp with

the characteristic exponent a ∈ (0, 2]. The spherical stable family includes the multivariate Gaussian and

Cauchy distributions as special cases for a = 2 and a = 1, respectively. For more information about this

family, see Nolan (2013).

Using the weight function ω(t) = fa,p(t), we obtain

Dω = E
[
e−∥X−X′∥a

ηη′
]
. (2.2)

When the dimensionality p of X is high, the integral
∫
Rp |ϕ(t)|2ω(t)dt can be problematic. However, we

end up with a simple and closed form without involving a high-dimensional integral with the aforemen-

tioned weight function. A significant fact is that the null hypothesis (1.2) is true if and only if Dω = 0.

This fact can then be used as a criterion for this hypothesis testing problem. When the i-th sample, ηi,

of η is available, we can then estimate Dω through its sample analogue.
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Suppose (Xi, Yi), i = 1, · · · , n are independent and identically distributed (i.i.d.) samples from the

population (X,Y ). We consider the following test statistic

Tn =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

η̂iη̂jdij ,

where dij = e−∥Xi−Xj∥a

, η̂i = ϵ̂2i − σ̂2, ϵ̂i = Yi − f(Xi, β̂) with β̂ being the nonlinear least squares

estimation of β, and σ̂2 = n−1
∑n

i=1 ϵ̂
2
i . Through the distance measure Dω, the conditional variance

function E(ϵ2|X) should no longer be estimated using nonparametric methods such as kernel, local

polynomial, and spline. Evidently, Tn is a pairwise distance-based test statistic, which presents an

alternative method.

2.2 Asymptotic results

In this subsection, we present the asymptotic properties of the test statistic Tn. To obtain the asymptotic

properties of Tn, we need the following conditions.

(C1). The parameter space B of β is a compact subset of Rd; E[Y − f(X,β)]2 has a unique minimum at

β0, an interior point of B;
(C2). The regression function f(x, β) is continuously differentiable of order 2 in β. Let ∇f(x, β) ≡
∂f(x, β)/∂β and ∇2f(x, β) ≡ ∂2f(x, β)/∂β∂β⊤. The terms ∇f(x, ·) and ∇2f(x, ·) are continuous in

x and are dominated by functions F1(x) and F2(x), respectively. The functions F1(X), F2(X) have finite

fourth and second moments, respectively.

(C3). Σ = E(∇f(X,β)∇f⊤(X,β)) is nonsingular.

(C4). E(η2) < ∞.

The first three conditions are commonly assumed to derive the asymptotic normalities of β̂ and σ̂2.

For example, see Hsiao and Li (2001), Zheng (2009), and Su and Ullah (2013). The last condition, also

extremely mild, is required for the asymptotic properties of related U -statistics and is equivalent to the

requirement that E(ϵ4) < ∞.

Let W ≡ (X, η) ∼ F (W ) and Wi ≡ (Xi, ηi) be independent copies of W , denoted by d̃ij = dij −
E(dil + djl|Xi, Xj) + E(d12) with l ̸= i, j, and h(W1,W2) = η1η2d̃12. The following theorem states the

limit distribution of Tn under the null hypothesis.

Theorem 2.1. Under the null hypothesis in (1.2) and the conditions (C1)–(C4), we have

nTn ⇒
∞∑
k=1

λkZ
2
k − E(η2),

as n → ∞, where Zks are independent standard normal random variables and λks are the eigenvalues of

the integral equation ∫
η2j d̃ijϕk(Wj) dF (Wj) = λkϕk(Wi),

with ϕk(Wj) being the associated orthonormal eigenfunctions.

Under E(η2) < ∞, we have Eh2(W1,W2) < ∞. From P197 in Serfling (1980), we know that
∑∞

k=1 λ
2
k =

Eh2(W1,W2); thus, the infinite sum
∑∞

k=1 λkZ
2
k actually converges in L2. See also Leucht and Neumann

(2009). Similar to most cases for U-statistics, the aforementioned limit distribution of Tn cannot be

directly applied to compute critical values because λks are difficult to obtain. To overcome this challenge,

we propose a bootstrap approximation for critical values and demonstrate the consistency of the developed

algorithm, which is described in Section 3.

To provide additional insight on the structure of the limit, we introduce the oracle test statistic as if

the true error ηi were observable:

TO
n =

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ηiηjdij .
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This oracle statistic weakly converges to
∑∞

k=1 λ̃kZ
2
k −E(η2), where the constant λ̃k is the eigenvalue of

another integral equation, i.e.,∫
h∗(Wi,Wj)ϕ

∗
k(Wj) dF (Wj) = λ̃kϕ

∗
k(Wi),

where h∗(Wi,Wj) = ηiηjdij and Zk denotes an independent standard normal random variable. Evidently,

the limiting null distribution of the test statistic with the residual η̂i exhibits the same structure as that

of the aforementioned oracle statistic with varying eigenvalues. That is, the estimations of parameters β

and σ2 notably impact the weak limit.

Subsequently, we investigate the sensitivity of the test statistic using a sequence of local alternatives

with the following form:

H1n : E(ϵ2|X) = σ2 + cnV (X), (2.3)

where σ2 = E(ϵ2), E(V 2(X)) < ∞ and cn represents a sequence converging to zero. Following the above

local alternative hypotheses, ηi = ϵ2i − σ2 can be rewritten as ηi = ui + cnV (Xi), where E(ui|Xi) = 0

and E(V (X)) = 0.

Then, we have the following theorem under H1n.

Theorem 2.2. Under the local alternative hypotheses in (2.3) and the conditions presented in Theorem

2.1, we have

• with cn = n−1/2,

nTn ⇒
∞∑
k=1

λk(Zk + ak)
2 − E(u2),

where ak = E(V (X)ϕk(W )) and ϕk(W ) is defined in Theorem 2.1;

• with cn = n−r, 0 < r < 1/2, nTn ⇒ ∞.

The preceding theorem implies that the test is still valid when the local alternatives converge to the

null hypothesis at the rate n−1/2. When the local alternatives are distinct from the null hypothesis at a

slower rate, n−r with 0 < r < 1/2, the asymptotic power tends towards 1, thereby implying that the test

is consistent.

If we set cn as a fixed value other than 0, the local alternative hypotheses H1n defined in (2.3) is

transformed into the fixed alternative hypothesis, H1. That is,

H1 : E(ϵ2|X) = σ2 + cV (X) ̸= σ2. (2.4)

Here σ2 = E(ϵ2). We also consider the asymptotic property of the proposed test statistic under the fixed

alternative hypothesis. The result is presented as follows.

Theorem 2.3. Under the fixed alternative hypothesis H1 in (2.4) and the conditions in Theorem 2.1,

we have √
n(Tn − E(η1η2d12)) ⇒ N(0, σ̃2),

with σ̃2 = var
(
η1E(η2d12|X1)− 2E(η1d12)η1

)
.

The convergence rates of Tn are interestingly very different under H0 and H1 and do not depend on the

dimensions of covariates X under either the null, fixed, or local alternative hypotheses. These advantages

are also observed in the following simulation studies. The proposed test can perform well in finite sample

cases, particularly when the covariate X has a relatively large dimension.

3 Numerical implementation

A bootstrap approximation is adopted to determine critical values. The algorithm is residual-based and

given as follows:

(1). The residuals ϵ̂i = Yi− f(Xi, β̂), where β̂ is the nonlinear least squares estimator of β, are obtained;
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(2). The bootstrap error ϵ∗i is obtained by randomly resampling with replacement from the set {ϵ̂i− ¯̂ϵ, i =

1, · · · , n} with ϵ̂ = n−1
∑n

i=1 ϵ̂i. Then, Y
∗
i = f(Xi, β̂) + ϵ∗i ;

(3). Y ∗
i is regressed on Xi to obtain the estimator β̂∗. The bootstrap residuals, ϵ̂∗ = Y ∗

i − f(Xi, β̂
∗) and

η̂∗i = ϵ̂∗2i − σ̂∗2 with σ̂∗2 = n−1
∑n

i=1 ϵ̂
∗2
i , are calculated. The test statistic T ∗

n is constructed based on

(X1, η̂
∗
1), . . . , (Xn, η̂

∗
n);

(4). Steps 2–3 are repeated B times, and the bootstrap statistics are denoted as {T ∗
n,b}Bb=1. The bootstrap

p-value is calculated using p∗ = B−1
∑B

b=1 I(T
∗
n,b > Tn), where I(·) is an indicator function.

The preceding algorithm has been adopted by many authors, including Hsiao and Li (2001), Wang and

Zhou (2007), and Su and Ullah (2013). The number of bootstrap samples is set to B = 500. Heuristically,

steps 2 and 3 ensure that conditional to the original sample Fn = (Xi, Yi)
n
i=1, the bootstrap sample

(Xi, Y
∗
i ) satisfies the null hypothesis. That is, conditional to the original sample Fn, the bootstrap

replicates ϵ∗i are i.i.d. with a mean of 0 and variance of n−1
∑n

i=1(ϵ̂i − ¯̂ϵ)2. Therefore, the bootstrap

distribution obtained in step 3, conditional to the random sample Fn, approximates the null distribution

of the test statistic Tn even when the null hypothesis is false.

The following theorem demonstrates that the preceding bootstrap procedure provides a valid approx-

imation of the null distribution for the Tn test.

Theorem 3.1. Under the conditions stated in Theorem 2.1, we have the following:

(i) Under the null hypothesis, H0, or the local alternative hypotheses, H1n, with cn → 0, the limiting

conditional distribution of nT ∗
n |Fn is the same as the limiting null distribution of the test statistic, nTn.

(ii) Under the fixed alternative hypothesis H1, the limiting conditional distribution of nT ∗
n |Fn is a finite

limit, which may differ from the limiting null distribution of the test statistic nTn.

Theorem 3.1 demonstrates that the bootstrap algorithm can effectively control the size of the test

statistic Tn. We then investigate the power performance of this test. From Theorem 2.2, under the

local alternative hypotheses H1n with cn = n−r(0 < r < 1/2), nTn ⇒ ∞. This implies that the

preceding bootstrap procedure can have the asymptotic power of 1 in this case. Under the local alternative

hypotheses with cn = n−1/2, the bootstrap procedure can still detect the alternative hypotheses. From

Theorem 2.3, under the fixed alternative hypothesis H1 defined in equation (2.4), nTn ⇒ ∞. This

indicates the preceding bootstrap procedure can have the asymptotic power of 1 under the fixed alternative

hypothesis. In summary, the bootstrap algorithm is valid.

4 Numerical studies

In this section, we first conduct simulation studies to demonstrate the performance of our proposed test

statistic and then to conduct real-data analysis.

4.1 Simulations

In the simulations, 1, 000 replications of the experiment were used to compute empirical sizes and powers

at significance level α = 0.05. To examine power performance, the following three examples were designed.

In the first two examples, the sample sizes n = 100, 150 and 200 were considered. The true parameter

was β = (1, 2, 3, 0, · · · , 0)⊤/
√
14; p was set to 4 and 8; the observations Xi = (X1i, X2i, · · · , Xpi) with i =

1, · · · , n, independent of the standard normal errors εi, were i.i.d with the common uniform distribution

on the p-dimensional cube [−1, 1]p. Linear regression models were used in the two examples; when

p = 4, the two examples were the same as Examples 1 and 2 in Zhu et al. (2015) for the purpose of

comparison. In the third example, the model was nonlinear. In this example, n = 100, 200; p = 4, 8;

β = (1, 1, · · · , 1)⊤/√p; Xi ∼ N(0, Ip); and εi ∼ N(0, 1). The test statistic by Zheng (2009), designed for

nonlinear regression models, was also considered and denoted as TZH
n , which resulted in the following

form:

TZH
n =

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

η̂iη̂j
1

hp
K

(
Xi −Xj

h

)
,
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Table 1 Empirical sizes (δ = 0) and powers (δ = 1) for H0 in Example 1 with n = 100, p = 4, and different a values.

a 0.25 0.5 0.75 1 1.25 1.5 1.75 2

δ = 0 0.0040 0.0220 0.0420 0.0510 0.0710 0.0500 0.0640 0.0660

δ = 1 0.0180 0.1300 0.2300 0.2570 0.3210 0.3500 0.3690 0.4070

with K(·) being a kernel function and h being the bandwidth.

Example 1: Data are generated from the following model:

Y = 2 + 2(X⊤β) + (δ|X⊤β|+ 0.5)× ε.

The null hypothesis corresponds to δ = 0, whereas the alternative hypothesis corresponds to δ ̸= 0.

To use the proposed test, we need to first determine the value of the characteristic exponent a ∈ (0, 2].

We conduct a simple simulation study for this purpose. Table 1 reports the empirical sizes and powers of

our proposed test statistic for n = 100, p = 4 when a varies. From this table, we find that as long as a is

not too small (a > 0.5), the proposed test can efficiently control empirical sizes extremely well. However,

when a is larger than 1.5, empirical sizes are slightly higher than the significance level 0.05. For empirical

powers, the powers increase with increasing a. Consequently, we use a = 1.5 in the following studies.

For TZH
n , the multiple Gaussian kernel function K(u1, u2, · · · , up) = k(u1)k(u2) · · · k(up) is used with

k(u) = 1/(
√
2π)e−

u2

2 . To select a bandwidth, we use simulations to choose an appropriate value from

the grid points j/100 for j = 11, 15, · · · , 99. From 1, 000 simulations, we plot the estimated power curves

against the aforementioned bandwidth sequences with a sample size of 100, dimensions of covariates p = 4,

and δ = 0, 1, which are shown in Figure 1. This strategy has also been used by many authors, including

Sun and Wang (2009) and Lopez and Patilea (2009). As shown in Figure 1, bandwidth affects the size

and power performances of TZH
n . In particular, when the bandwidth h is too small or too large, TZH

n

cannot efficiently control empirical size and has extremely low power. From this experiment, h = 0.45 is

a reasonable choice.

The power performance of the proposed test statistics with p = 4, 8; n = 100, 150, 200 and δ =

0, 0.5, · · · , 2 is presented in Table 2. This table shows that even when p = 8, the proposed test Tn and

Zheng’s test TZH
n can efficiently control the sizes. Both tests have higher power when the sample size

increases and the deviation from the hypothetical model is larger. Moreover, test Tn has higher powers

than TZH
n . This finding is appropriate given that TZH

n converges to its weak limit at a very slow rate of

n−1/2h−p/4.

When dimension p increases from 4 to 8, the power of Tn decreases. This result implies that although

the convergence rate of Tn does not depend on the dimension of covariates, the dimension of covariates

does affect power performances in practice. However, we also notice that even when p = 8, the proposed

test is still sensitive to the alternatives. Nevertheless, when the dimension p is 8, TZH
n fails completely.

It has extremely low power even when n = 200 and δ = 2. Thus, when the dimension of covariates is

high, Tn works better.

Example 2: The data are generated from the following model:

Y = 1 + 2(X⊤β) + (δ|X1 +X2|+ 1)× ε.

where X, ε, β, and δ have the same settings as those in Example 1.

The simulation results are summarized in Table 3. The conclusions are similar to those of the model

in Example 1. From the two examples, we can conclude that a dimensionality effect occurs in the

proposed test Tn; however, the effect is not as serious as that in Zheng’s test. When p = 4, the two

examples are the same as Examples 1 and 2 in Zhu et al. (2015). Their test is denoted as TZ
n . The

power curves of Tn and TZ
n in the two examples with n = 100, 200 are plotted in Figure 2. As shown

in the figure, Tn is not as powerful as TZ
n for Example 1 because an additional dimension reduction

structure for the conditional variance function is applied in TZ
n , or equivalently, a single-index structure

E(ϵ2|X) = E(ϵ2|X⊤β) is assumed for the null hypothesis of TZ
n . By contrast, the proposed test Tn does
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Figure 1 Estimated size and power curves of test TZH
n against bandwidth h with n = 100, p = 4 under δ = 0, 1 in

Example 1.

Table 2 Empirical sizes and powers for H0 in Example 1 with p = 4, 8;n = 100, 150, 200; and different δ values.

δ n = 100 n = 150 n = 200

p = 4, Tn 0 0.0510 0.0490 0.0540

0.5 0.1930 0.2580 0.3960

1.0 0.3500 0.5360 0.7380

1.5 0.4320 0.6550 0.8420

2.0 0.5240 0.7600 0.9010

p = 4, TZH
n 0 0.0460 0.0580 0.0470

0.5 0.0680 0.1570 0.2260

1.0 0.1760 0.3780 0.6280

1.5 0.2830 0.5850 0.8230

2.0 0.3350 0.6520 0.8790

p = 8, Tn 0 0.0560 0.0540 0.0520

0.5 0.1330 0.1680 0.2070

1.0 0.2050 0.2890 0.4100

1.5 0.2460 0.3620 0.5010

2.0 0.2990 0.4200 0.5450

p = 8, TZH
n 0 0.0470 0.0550 0.0560

0.5 0.0290 0.0500 0.0640

1.0 0.0650 0.0980 0.1320

1.5 0.0610 0.1120 0.2370

2.0 0.1020 0.1760 0.2740
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Table 3 Empirical sizes and powers for H0 in Example 2 with p = 4, 8;n = 100, 150, 200; and different δ values.

δ n = 100 n = 150 n = 200

p = 4, Tn 0 0.0610 0.0470 0.0560

0.5 0.1440 0.1940 0.2460

1.0 0.2670 0.4070 0.5920

1.5 0.3750 0.5970 0.7580

2.0 0.4670 0.6880 0.8630

p = 4, TZH
n 0 0.0500 0.0490 0.0470

0.5 0.0510 0.0920 0.1310

1.0 0.1210 0.2730 0.4640

1.5 0.1860 0.4500 0.6910

2.0 0.2590 0.5660 0.8210

p = 8, Tn 0 0.0620 0.0560 0.0510

0.5 0.1210 0.1300 0.1560

1.0 0.1600 0.2420 0.2800

1.5 0.2200 0.2880 0.4260

2.0 0.2520 0.3690 0.4980

p = 8, TZH
n 0 0.0390 0.0530 0.0550

0.5 0.0540 0.0460 0.0450

1.0 0.0420 0.0630 0.0920

1.5 0.0690 0.1080 0.1680

2.0 0.0730 0.1510 0.2080

Table 4 Empirical sizes and powers for H0 in Example 3 with p = 4, 8;n = 100, 200; and different δ values.

δ n = 100 n = 200

p = 4, Tn 0 0.0500 0.0570

0.5 0.3540 0.8200

1.0 0.6640 0.9620

1.5 0.6820 0.9860

2.0 0.7060 0.9940

p = 4, TZH
n 0 0.0440 0.0500

0.5 0.2140 0.5740

1.0 0.4380 0.8520

1.5 0.5260 0.9160

2.0 0.5800 0.9300

p = 8, Tn 0 0.0520 0.0480

0.5 0.1280 0.3360

1.0 0.2060 0.5740

1.5 0.2540 0.6420

2.0 0.2560 0.7020

p = 8, TZH
n 0 0.0280 0.0240

0.5 0.0720 0.1040

1.0 0.1420 0.2400

1.5 0.1260 0.2860

2.0 0.1460 0.3500

not require this assumption. Moreover, when the sample size increases from 100 to 200, the differences

between the powers of Tn and TZ
n can be extremely small for Example 1, as shown in Figure 2. When

the single index structure fails to hold, such as in Example 2, TZ
n has very low powers, as shown in the

figure. Furthermore, when the sample size increases, our proposed test statistic Tn can have more powers

than TZ
n .

Example 3: The data are generated from the following model:

Y = (X⊤β + 0.3)2 + (δ|X⊤β1|+ 0.5)× ε.

In this example, E(Y |X) = (X⊤β + 0.3)2 is a nonlinear form; β1 = (1, · · · , 1︸ ︷︷ ︸
p/2

, 0, · · · , 0)⊤/
√
p/2. The

simulation results are summarized in Table 4. We can obtain conclusions similar to those for Examples 1

and 2.

In Examples 1–3, the dimension of covariates, 8, is actually large relative to the sample sizes, n =

100, 200. For sample size n = 200, 8 > 200
1
3 ≈ 5.848 and is slightly smaller than 200

2
5 ≈ 8.3255.

Furthermore, for sample size n = 100, 8 > 100
2
5 ≈ 6.3096. Therefore, the proposed test is a satisfactory

alternative for testing heteroscedasticity, especially when the dimensions of covariates are relatively high.
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Figure 2 Empirical size and power curves in Examples 1 and 2 with p = 4, n = 100, 200. The dashed and solid lines

represent the results for TZ
n and Tn, respectively.
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4.2 Real data analysis

A real-data example is analyzed for illustration. We consider the data set comprising ultrasonic calibra-

tion. The data is publicly available from

https : //www.itl.nist.gov/div898/strd/nls/data/chwirut1.shtml.

There are 214 observations. The response, Y , represents an ultrasonic response, and the predictor

variable, X, represents metal distance. From the upper scatter plot in Figure 3, it is clear that the

relationship between the response and predictor is not linear: rather, it is an exponentially decaying

pattern in the data. According to modeling suggestions from NIST, the following nonlinear regression

model is considered:

Y =
exp(−β1X)

β2 + β3X
+ ϵ.

The three parameters in the above model are estimated as 0.1903, 0.0061, and 0.0105, respectively. From

the upper scatter plot for X and the regression residuals in Figure 3, we find that the errors have greater

variance for the values of metal distance that are < 1 in comparison to those elsewhere. This implies that

the assumption of homogeneous variances seems to be violated. Formally, the p-value of Tn is 0 with 500

bootstrap samples, and thus, the homoscedasticity assumption is strongly rejected.

Parameter inference will become more complex when heteroscedasticity exists within the model. In the

following, we try a square root transformation of the response variable to solve this problem. The three

parameters in the nonlinear regression model with the square root transformation are now estimated as

−0.0154, 0.0807, and 0.0639, respectively. The middle plot of the predicted values with the transformed

data in Figure 3 indicates a good fit. The middle scatter plot for X and the regression residuals now

suggest that the errors satisfy the assumption of homogeneous variances. Formally, the p-value of Tn is

0.542 with 500 bootstrap samples, and thus, the homoscedasticity assumption cannot be rejected.

Next, we observe the three parameters. The standard errors of these regression coefficients are esti-

mated as 0.0086, 0.0015, and 0.0029. The p-values of the corresponding t-test statistics are 0.0733, 0,

and 0. These values imply that the last two parameters are strongly significant, while the first one is

significant if we set the nominal level at 0.1. We also try the regression model with β1 set to zero for the

square root transformation. At this time, β2 and β3 are estimated as 0.0827 and 0.0590. The standard

errors of the two parameters are estimated as 0.0009 and 0.008. Again, the p-values of the corresponding

t-test statistics are both zero. The bottom scatter plot in Figure 3 displays that the regression model

without β1 also fits the data very well. Heteroscedasticity is not found from the scatter plot for X and

the regression residuals. Further, we employ our test statistic, Tn, to test this assumption and get p-value

0.404, which supports the homoscedasticity assumption.

In sum, for this data set, we find heteroscedasticity when using the nonlinear regression model to

fit the original response. This finding then motivates us to consider the square root transformation of

the response, which leads to a good fit and eliminates heteroscedasticity. Based on significance testing

results, the first parameter seems to lack significance. Then, we try the regression model without β1.

However, the models with and without β1 generate predicted values that are quite close to each other,

since the estimate of β1, −0.0154, is close to zero in magnitude. In fact, the model with the original

response also fits the data very well. The R2 values from fitting the three models are all about 0.98.

However, it is important to note that statistical inference on regression parameters commonly needs

the homoscedasticity assumption. Checking whether or not this assumption holds and developing a

suitable model that satisfies the homoscedasticity assumption can give us more arguments to justify the

conclusions and analyses obtained from the fitted models.

5 Conclusions and discussions

In this study, we consider the heteroscedasticity testing problem in regression models. We propose a

pairwise distance-based test statistic with a simple and closed form. The proposed methodology exhibits
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Figure 3 The upper two are the scatter plots for metal distance and ultrasonic response and the corresponding residual;

the middle two are the scatter plots for metal distance and the square root of ultrasonic response and the corresponding

residual; the lower two are the scatter plots for metal distance and the square root of ultrasonic response without β1 and

the corresponding residual. The red ‘+’ points denote the predicted values.
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several advantages over existing methods. For example, it is easy to implement, does not require a

bandwidth, and has a faster convergence rate than several existing methods.

The concept introduced in this study is easy to extend to testing the goodness-of-fit of a given para-

metric variance function, as studied by Wang and Zhou (2007) and Koul and Song (2010). In particular,

we can consider the following hypothesis:

H0 : E(ϵ2|X) = g(X,β, θ),

where g(X, ·, ·) is a known parametric function and θ is an unknown parameter in Rq. This formula-

tion includes the popular log-linear model and the power-of-the-mean model. The former correspond-

s to f(Xi, β) = X⊤
i β and g(Xi, β, θ) = exp(X⊤

i β), whereas the latter corresponds to g(Xi, β, θ) =

θ1(f(Xi, β))
θ2 . Let e = ϵ2 − g(X,β, θ). The following test statistic,

Sn =
1

n(n− 1)

n∑
i=1

∑
j ̸=i

êiêjdij ,

can be defined, where êi = (Yi − f(Xi, β̂))
2 − g(Xi, β̂, θ̂), (β̂, θ̂) is any

√
n-consistent estimator of (β, θ),

and dij = e−∥Xi−Xj∥a

. Similar to the decomposition of η̂ shown in the Appendix, we can obtain

ê = e− 2ϵ(f(X, β̂)− f(X,β)) + (f(X, β̂)− f(X,β))2 − (g(X, β̂, θ̂)− g(X,β, θ)).

The asymptotic properties of Sn can be similarly derived. In particular, nSn converges to a nondegenerate

limiting distribution under the null hypothesis. Sn can detect local alternative hypotheses that deviate

from the null hypothesis at a rate of n−1/2; under the fixed alternative hypotheses, the divergence rate

of Sn is n−1/2, which is asymptotically normal.

In practice, nonlinear regression models may be incorrectly specified. To avoid this problem, nonpara-

metric and semi-parametric regression models have been developed. Interests in testing heteroscedasticity

in nonparametric and semiparametric regression models have been recently observed. Studies on this top-

ic include those of Zhu et al. (2001), Dette (2002), and Dette et al. (2007) for nonparametric regression

models, You and Chen (2005), Dette and Marchlewski (2008), and Lin and Qu (2012) for partial linear

regression models and Zhu et al. (2015) for single index models. The proposed methodology is generic.

In the future, we aim to extend the proposed methodology to more complicated models, such as partial

linear regression models and single index models. Finally, extending the approach to time-series nonlinear

regression models will also be interesting.
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Appendix A

Denote f̂ = f(X, β̂), f = f(X,β), ϵ = Y − f, η = (Y − f)2 − σ2 with σ2 = E(ϵ2).

Proof of Theorem 2.1. For η̂, we have the following decomposition:

η̂ = (Y − f̂)2 − σ̂2 = [(Y − f)− (f̂ − f)]2 − σ2 − (σ̂2 − σ2)

= η − 2ϵ(f̂ − f) + (f̂ − f)2 − (σ̂2 − σ2).

Then Tn can be decomposed into 10 parts.

Tn =
1

n(n− 1)

n∑
i=1

∑
j ̸=i

dijηiηj + 4
1

n(n− 1)

n∑
i=1

∑
j ̸=i

dijϵiϵj(f̂i − fi)(f̂j − fj)
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+
1

n(n− 1)

n∑
i=1

∑
j ̸=i

dij(f̂i − fi)
2(f̂j − fj)

2 +
1

n(n− 1)

n∑
i=1

∑
j ̸=i

dij(σ̂
2 − σ2)2

−4
1

n(n− 1)

n∑
i=1

∑
j ̸=i

dijηiϵj(f̂j − fj) + 2
1

n(n− 1)

n∑
i=1

∑
j ̸=i

dijηi(f̂j − fj)
2

−2
1

n(n− 1)

n∑
i=1

∑
j ̸=i

dijηi(σ̂
2 − σ2)− 4

1

n(n− 1)

n∑
i=1

∑
j ̸=i

dijϵi(f̂i − fi)(f̂j − fj)
2

+4
1

n(n− 1)

n∑
i=1

∑
j ̸=i

dijϵi(f̂i − fi)(σ̂
2 − σ2)

−2
1

n(n− 1)

n∑
i=1

∑
j ̸=i

dij(f̂i − fi)
2(σ̂2 − σ2) ≡:

10∑
i=1

Qin.

Given that β̂−β = Op(1/
√
n) and E(ϵ|X) = E(η|X) = 0, we can easily obtain that: Q2n = Op(n

−2), Q3n =

Op(n
−2), Q5n = Op(n

−3/2), Q6n = Op(n
−3/2), Q8n = Op(n

−2), Q9n = Op(n
−3/2), Q10n = Op(n

−3/2).

Here, we only present a sketch proof for the order of Q2n. Others can be similarly obtained, and thus

the details are omitted in this paper. Notably

f̂i − fi = f(Xi, β̂)− f(Xi, β) = (β̂ − β)⊤∇f(Xi, β) +
1

2
(β̂ − β)⊤∇f2(Xi, β̃)(β̂ − β).

Here β̃ is a value between β and β̂. Let

Q2n,1 = 4(β̂ − β)⊤
1

n(n− 1)

n∑
i=1

∑
j ̸=i

dijϵiϵj∇f(Xi, β)∇f⊤(Xj , β)(β̂ − β)

=: 4(β̂ − β)⊤
1

n(n− 1)

n∑
i=1

∑
j ̸=i

L(Ri, Rj)(β̂ − β).

Here Ri = (Xi, ϵi). We obtain Q2n = Q2n,1 + op(Q2n,1). Furthermore, L(Ri, Rj) = L(Rj , Ri). Thus

n(n− 1)
−1∑n

i=1

∑
j ̸=i L(Ri, Rj) is a U -statistic. In addition, we have E(L(Ri, Rj)|Ri) = 0. Notably,

E(ϵ|X) = 0 and also

E(L(Ri, Rj)|Ri) = E
[
dijϵiϵj∇f(Xi, β)∇f⊤(Xj , β)|Xi, ϵi

]
= E

[
E(dijϵiϵj∇f(Xi, β)∇f⊤(Xj , β)|Xi, Xj , ϵi)|Xi, ϵi

]
= E

[
dijϵi∇f(Xi, β)∇f⊤(Xj , β)E(ϵj |Xi, Xj , ϵi)|Xi, ϵi

]
= 0.

This finding implies that n(n− 1)
−1∑n

i=1

∑
j ̸=i L(Ri, Rj) is a degenerate U -statistic of order 1, and thus,

n(n− 1)
−1∑n

i=1

∑
j ̸=i L(Ri, Rj) = Op(n

−1). Since β̂ − β = Op(1/
√
n), we get Q2n,1 = Op(n

−2), and

thus, Q2n = Op(n
−2).

Consequently, we can obtain:

Tn =
1

n(n− 1)

∑
i=1

∑
j ̸=i

dij [ηiηj + (σ̂2 − σ2)2 − 2ηi(σ̂
2 − σ2)] + op(

1

n
)

= Q1n +Q4n −Q7n + op(
1

n
). (A.1)

Notably,

σ̂2 − σ2 =
1

n

n∑
i=1

[(Yi − f̂i)
2 − σ2] =

1

n

n∑
i=1

[ηi − 2ϵi(f̂i − fi) + (f̂i − fi)
2]

=
1

n

n∑
i=1

ηi +Op(
1

n
),
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which implies that:

(σ̂2 − σ2)2 =

(
1

n

n∑
i=1

ηi

)2

+ op(
1

n
)

=
n− 1

n

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ηiηj +
1

n2

n∑
i=1

η2i + op(
1

n
).

Consequently, we have:

Q4n = E(d12)
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ηiηj +
1

n
E(d12)E(η2) + op(

1

n
). (A.2)

Then, we consider the term Q7n. Similarly we have:

Q7n =
1

n2(n− 1)

n∑
i=1

n∑
j ̸=i

n∑
l=1

dij(ηi + ηj)ηl + op(
1

n
)

=
1

n2(n− 1)

n∑
i ̸=j ̸=l

dij(ηi + ηj)ηl +
1

n2(n− 1)

n∑
i=1

n∑
j ̸=i

dij(ηi + ηj)
2 + op(

1

n
)

=: Q7n,1 +Q7n,2 + op(
1

n
). (A.3)

Given that E(d12η1η2) = 0, the following expression can be easily shown:

Q7n,2 =
E[d12(η1 + η2)

2]

n
+ op(

1

n
) =

2E[d12η
2
1 ]

n
+ op(

1

n
).

We can write Q7n,1 = n−2
n Un, where

Un =

(
n

3

)−1∑∑∑
16i<j<l6n

Hs(Wi,Wj ,Wl).

Un is a third-order U -statistic. Here, Wi = (Xi, ηi),H
s(Wi,Wj ,Wl) = (Hijl+Hilj +Hjli)/3 is the kernel

with Hijl = dij(ηi + ηj)ηl.

By construction the kernelHs(Wi,Wj ,Wl) is symmetric in its three arguments, and E(Hs(Wi,Wj ,Wl)|Wi) =

0. Notably,

E(Hijl|Wi) = E(dij(ηi + ηj)ηl|Wi) = E[E(dij(ηi + ηj)ηl|Wi,Wj)|Wi]

= E[dij(ηi + ηj)E(ηl|Wi,Wj)|Wi] = 0.

Similarly, we can obtain E(Hilj |Wi) = 0. Moreover, we observe that

E(Hjli|Wi) = E(djl(ηj + ηl)ηi|Wi) = ηiE(djl(ηj + ηl))

= ηiE[E(djl(ηj + ηl)|Xj , Xl)] = 0.

In summary, we conclude that E(Hs(Wi,Wj ,Wl)|Wi) = 0.

However, E(Hs(Wi,Wj ,Wl)|Wi,Wj) ̸= 0. To be precise, although E(Hijl|Wi,Wj) = E(dij(ηi +

ηj)ηl|Wi,Wj) = 0, we obtain

E(Hilj |Wi,Wj) = E(dil(ηi + ηl)ηj |Wi,Wj) = E[E(dil(ηi + ηl)ηj |Wi,Wj , Xl)|Wi,Wj ]

= E[dilηiηj |Wi,Wj ] = ηiηjE(dil|Xi, Xj).

Similarly, we derive E(Hjli|Wi,Wj) = ηiηjE(djl|Xi, Xj). In summary, we have

E(Hs(Wi,Wj ,Wl)|Wi,Wj) =
1

3
ηiηjE(dil + djl|Xi, Xj).



Guo et al. Sci China Math 17

From Serfling (1980, section 5.3.4), we have:

Un =
3 · 2

n(n− 1)

∑∑
16i<j6n

1

3
ηiηjE(dil + djl|Xi, Xj) + op(

1

n
)

=
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ηiηjE(dil + djl|Xi, Xj) + op(
1

n
),

which implies that

Q7n =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ηiηjE(dil + djl|Xi, Xj) +
2E(d12η

2
1)

n
+ op(

1

n
). (A.4)

From Equations, (A.1), (A.2) and (A.4), we conclude that

Tn =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ηiηj [dij − E(dil + djl|Xi, Xj) + E(d12)]

+
E(d12)E(η2)− 2E(d12η

2
1)

n
+ op(

1

n
)

=:
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

h(Wi,Wj) +
µ

n
+ op(

1

n
). (A.5)

Here d̃ij = dij − E(dil + djl|Xi, Xj) + E(d12), h(Wi,Wj) = ηiηj d̃ij and µ = E(d12)E(η2)− 2E(d12η
2
1).

Notably, E(η|X) = 0 under H0, and thus,

E(h(Wi,Wj)|Wi) = E[E(ηiηj d̃ij |Wi, Xj)|Wi]

= E[ηid̃ijE(ηj |Wi, Xj)|Wi] = 0.

Recall that dij = e−∥Xi−Xj∥a 6 1. Hence, |d̃ij | 6 4 and under condition C4,

E(h2(W1,W2)) = E(η21η
2
2 d̃

2
ij) 6 16E(η21η

2
2) = 16E2(η2) < ∞.

Accordingly, we can obtain n 1
n(n−1)

∑n
i=1

∑n
j ̸=i h(Wi,Wj) ⇒

∑∞
i=1 λi(Z

2
i − 1) based on the standard

theory of U -statistics, see e.g. Serfling (1980, section 5.5). Here, Zk’s are independent standard normal

random variables, and the constants λk’s are the eigenvalues of the integral equation∫
h(Wi,Wj)ϕ̃k(Wj) dF (Wj) = λkϕ̃k(Wi)

with F being the pdf of W .

We derive

λkϕ̃k(Wi) =

∫
h(Wi,Wj)ϕ̃k(Wj) dF (Wj) =

∫
ηiηj d̃ij ϕ̃k(Wj) dF (Wj)

= ηi

∫
ηj d̃ij ϕ̃k(Wj) dF (Wj).

Then we can write ϕ̃k(Wi) = ηiϕk(Wi) by appropriately choosing ϕk(Wi). Similarly, ϕ̃k(Wj) = ηjϕk(Wj).

The integration equation can be rewritten as∫
η2j d̃ijϕk(Wj) dF (Wj) = λkϕk(Wi).

We immediately obtain nTn ⇒
∑∞

i=1 λi(Z
2
i − 1) + µ. Furthermore

∞∑
i=1

λi = E[h(W1,W1)] = E[η21
(
1− 2E(d13|X1) + E(d12)

)
]
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= E(η2) + E(d12)E(η2)− 2E(η2E(d12|X1))

= E(η2) + E(d12)E(η2)− 2E(η2d12).

Consequently, we derive that nTn ⇒
∑∞

i=1 λiZ
2
i − E(η2).

Proof of Theorem 2.2. Under the local alternative hypothesis, Tn is still able to be decomposed into 10

parts.

Tn =
1

n(n− 1)

∑
i=1

∑
j ̸=i

dij [ηiηj + 4ϵiϵj(f̂i − fi)(f̂j − fj) + (f̂i − fi)
2(f̂j − fj)

2

+(σ̂2 − σ2)2 − 4ηiϵj(f̂j − fj) + 2ηi(f̂j − fj)
2 − 2ηi(σ̂

2 − σ2)

−4ϵi(f̂i − fi)(f̂j − fj)
2 + 4ϵi(f̂i − fi)(σ̂

2 − σ2)− 2(f̂i − fi)
2(σ̂2 − σ2)] ≡:

10∑
i=1

Qin.

Under the alternative hypothesis, ϵi, f̂i and fi do not change. Thus we can also obtain that Qkn =

Op(n
−2), k = 2, 3, 8. Notably, ηi can be rewritten as ηi = ui + cnV (Xi), here E(ui|Xi) = 0 and

E(V (X)) = 0. Furthermore, recall that

σ̂2 − σ2 =
1

n

n∑
i=1

ηi +Op(
1

n
) = Op(

1√
n
),

which results in Qkn = Op(cnn
−1 + n−3/2), k = 5, 6 and, Qkn = Op(n

−3/2), k = 9, 10. Accordingly,

nQkn = op(1), k = 2, 3, 5, 6, 8, 9, 10. Similar to the arguments in the proof for Theorem 2.1, we have:

Tn =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ηiηj d̃ij +
E(d12)E(η2)− 2E(d12η

2
1)

n
+ op(

1

n
). (A.6)

Here d̃ij = dij − E(dil + djl|Xi, Xj) + E(d12). Thus if cn = n−1/2, given that E(η|X) = cnV (X), from

Theorem 2.1 in Gregory (1977), then we have:

n× 1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ηiηj d̃ij ⇒
∞∑
i=1

λi[(Zi + ai)
2 − 1].

Here ai = E(V (X)ϕi(W )). Similarly, we can obtain that

E(d12)E(η2)− 2E(d12η
2
1)−

∞∑
i=1

λi = E(η2) = E(u2) + op(1).

Here u = η − cnV (X). In summary, if cn = n−1/2, then we have:

nTn ⇒
∞∑
i=1

λi(Zi + ai)
2 − E(u2).

Furthermore we also derive:

Tn =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ηiηj d̃ij +
E(d12)E(η2)− 2E(d12η

2
1)

n
+ op(

1

n
)

=
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

d̃ij [uiuj + 2cnuiVj + c2nViVj ] +
E(d12)E(u2)− 2E(d12u

2
1)

n
+ op(

1

n
)

= : Tn1 + cnTn2 + c2nTn3 +
µ∗

n
+ op(

1

n
).

By using the standard U-statistic theory, we determine that Tn1 = Op(n
−1), Tn2 = Op(n

−1/2) and

Tn3 = E[d̃12V1V2] + op(1). Thus if cn = n−r, 0 < r < 1/2, then we can easily obtain nTn ⇒ ∞. 2
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Proof of Theorem 2.3. From the Proof of Theorem 2.2, under the fixed alternative hypothesis, we

have Qkn = Op(n
−2), k = 2, 3, 8 and Qkn = Op(n

−1), k = 5, 6 for the decomposition of Tn. Since

σ̂2 − σ2 = Op(n
−1/2), we obtain that Qkn = Op(n

−3/2), k = 9, 10 and Q4n = Op(n
−1). Then we have

Tn =
1

n(n− 1)

∑
i=1

∑
j ̸=i

dij [ηiηj − 2ηi(σ̂
2 − σ2)] + op(

1√
n
).

For the term Q1n, we have

√
n(Q1n − E(η1η2d12)) =

1√
n

n∑
i=1

[ηiE(ηjdij |Xi)− E(η1η2d12)] + op(
1√
n
).

For the term Q7n, we derive

√
nQ7n =

1

n(n− 1)

∑
i=1

∑
j ̸=i

[(ηi + ηj)dij ]×
1√
n

n∑
l=1

ηi + op(1)

= E((η1 + η2)d12)×
1√
n

n∑
l=1

ηi + op(1).

Let c1 = E(η1η2d12) and c2 = E((η1 + η2)d12). Then, we can obtain

√
n(Tn − c1) =

1√
n

n∑
i=1

[ηiE(ηjdij |Xi)− c1 − c2ηi] + op(
1√
n
) ⇒ N(0, σ̃2).

Here, σ̃2 = var
(
ηiE(ηjdij |Xi)− c2ηi

)
. 2

Proof of Theorem 3.1. The proof of Theorem 3.1 follows steps similar to those in the proof of Theorem

2.1. Therefore, we only sketch the proof in this paper. Recall that Fn = {Xi, Yi}ni=1. Furthermore, denote

E∗(·) = E(·|Fn). Note that ϵ̂∗i = ϵ∗i − [f(Xi, β̂
∗)− f(Xi, β̂)]. Define σ∗2 = E∗(ϵ∗2) = n−1

∑n
i=1(ϵ̂i − ϵ̄)2

and η∗i = ϵ∗2i − σ∗2. Consequently, we have:

η̂∗i = ϵ̂∗2i − σ̂∗2 =
(
ϵ∗i − [f(Xi, β̂

∗)− f(Xi, β̂)]
)2

− σ̂∗2

= η∗i − 2ϵ∗i [f(Xi, β̂
∗)− f(Xi, β̂)] + [f(Xi, β̂

∗)− f(Xi, β̂)]
2 − (σ̂∗2 − σ∗2).

Recall that ϵ∗i and ϵ∗j with i ̸= j are independent with each other conditional on the random sample,

Fn = {Xi, Yi}ni=1. Thus, we have E∗(η∗i |η∗j , Xi, Xj) = 0 for i ̸= j. Moreover, β̂∗ − β̂ = Op(n
−1/2). In

addition, note that

σ̂∗2 − σ∗2 =
1

n

n∑
i=1

(ϵ̂∗2i − σ∗2)

=
1

n

n∑
i=1

[η∗i − 2ϵ∗i [f(Xi, β̂
∗)− f(Xi, β̂)] + [f(Xi, β̂

∗)− f(Xi, β̂)]
2]

=
1

n

n∑
i=1

η∗i + op(
1√
n
).

Consequently, we obtain that

T ∗
n |Fn =

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

η∗i η
∗
j d̃ij +

E(d12)E
∗(η∗2)− 2E∗(d12η

∗2
1 )

n
+ op(

1

n
).

Subsequently, we define ηi = ϵ2i −E(ϵ2i |Xi). As shown in the proof of theorem 2.1, we have E[η2i η
2
j d̃

2
ij ] 6

16E2(η2) < ∞ and E[|η2i d̃ii|] 6 4E(η2) < ∞ under our assumed condition E(η2) < ∞, which implies
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that the conditions A1 and A3 in Leucht and Neumann (2009) are satisfied. Thus, according to Lemma

2.1 and Lemma 2.2 in Leucht and Neumann (2009), to prove the conditional asymptotic distribution of

T ∗
n given Fn is the same as the asymptotic distribution of Tn, we need to prove the following three issues.

First, the common distribution F ∗
η of η∗ will converge to the common distribution Fη of η. Second,

E∗[η∗2i η∗2j d̃2ij ] ⇒ E[η2i η
2
j d̃

2
ij ], and third, E∗[η∗2i d̃ii] ⇒ E[η2i d̃ii].

Notably,

F ∗
η (r) =

1

n

n∑
i=1

I((ϵ̂i − ϵ̄)2 − σ∗2 6 r).

Denote ∆fi = f(Xi, β̂)− f(Xi, β) and recall that ϵ̂i = ϵi −∆fi. Then, we can obtain

F ∗
η (r) =

1

n

n∑
i=1

I(ϵ2i − 2∆fiϵi +∆f2
i − 2ϵ̂iϵ̄+ ϵ̄2 − σ∗2 6 r)

=
1

n

n∑
i=1

I(ηi 6 r + 2∆fiϵi −∆f2
i + 2ϵ̂iϵ̄− ϵ̄2 + σ∗2 − E(ϵ2|Xi)).

Denote ∆ηi = 2∆fiϵi−∆f2
i +2ϵ̂iϵ̄− ϵ̄2+σ∗2−E(ϵ2|Xi). Under the null hypothesis and local alternative

hypothesis with cn → 0, we have either E(ϵ2|Xi) = E(ϵ2) = σ2 or E(ϵ2|Xi) − E(ϵ2) = Op(cn). In

summary, under H0 and H1n, we always have σ∗2 − E(ϵ2|Xi) = σ∗2 − σ2 + σ2 − E(ϵ2|Xi) = Op(n
−1/2)

or Op(cn). Given that β̂− β = Op(n
−1/2), ϵ̄ = Op(n

−1/2) and σ∗2 −E(ϵ2|Xi) = Op(n
−1/2) or Op(cn), we

obtain ∆ηi = Op(n
−1/2) or Op(cn). Consequently, we obtain that

F ∗
η (r)−

1

n

n∑
i=1

I(η 6 r) =
1

n

n∑
i=1

I(ηi 6 r +∆ηi)−
1

n

n∑
i=1

I(ηi 6 r)

6 1

n

n∑
i=1

I(|ηi − r| 6 |∆ηi|) = op(1),

given that n−1
∑n

i=1 I(η 6 r) ⇒ Fη(r), we conclude that F ∗
η (r) ⇒ Fη(r).

Next, we show that E∗[η∗2i η∗2j d̃2ij ] ⇒ E[η2i η
2
j d̃

2
ij ] hold. Notably,

E∗[η∗2i η∗2j d̃2ij ] =
1

n

n∑
i=1

[(ϵ̂i − ϵ̄)2 − σ∗2]2[(ϵ̂j − ϵ̄)2 − σ∗2]2d̃2ij

=
1

n

n∑
i=1

[ϵ2i − σ2]2[ϵ2j − σ2]2d̃2ij + op(1) = E[η2i η
2
j d̃

2
ij ] + op(1).

E∗[η∗2i d̃2ii] ⇒ E[η2i d̃
2
ii] can be similarly proven. In summary, we prove that the conditional asymptotic

distribution of T ∗
n given Fn is the same as the asymptotic distribution of Tn under H0 and H1n.

Under fixed alternative hypothesis H1, we still have E∗(η∗|Xi) = 0. Consequently, nT ∗
n |Fn still

converges to a finite limit, which may differ from the limiting distribution of Tn under the null hypothesis.

However, nTn ⇒ ∞ under H1, as shown in Theorem 2.3. In other words, the bootstrap algorithm is

valid.


